Building REST
APIs with Flask

Create Python Web Services
with MySQL

Kunal Relan

ApPress’

Building REST APIs
with Flask

Create Python Web Services
with MySQL

Kunal Relan

Apress’

Building REST APIs with Flask: Create Python Web Services with MySQL

Kunal Relan
New Delhi, Delhi, India

ISBN-13 (pbk): 978-1-4842-5021-1 ISBN-13 (electronic): 978-1-4842-5022-8
https://doi.org/10.1007/978-1-4842-5022-8

Copyright © 2019 by Kunal Relan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karkal

Development Editor: Laura Berendson

Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484250211.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5022-8

Dedicated to caffeine and sugar, my companions
through many long night of writing, and
extra credits to my mom.

Table of Contents

About the AUhOFcccmmmnmmmmsensssssss s ix
About the Technical ReVIEWErccuvcesssessssmssssnsssassssnsssssssssssssnsssassssass xi
Acknowledgments.......cccermssssssssnnnnsmmsssssssssssnnsssssssssssssnssnnsssssssssnnnnnns Xiii
Introduction........cccccnnsmmmmsmmmmnn s ————————— Xv
Chapter 1: Beginning with FIaskcccuccccmmmmmsmmnmmnsssnsnmmnssssnmmssssnms 1
Introduction t0 FIASKcccorriinninns e 1
STArtING FIASKcevereerirsircere s s s s sa s nne e 2
Flask Components Covered in ThiS BOOK..........ccueerrerrrerserieresensensesessssessensenes 3
Introduction t0 RESTIUl SEIVICEScccveerererirnsscssis e 4
UNiform INTErface.........coveveirrrncccr s 7
RePreSentationscccveererrrerierennsensenese s s sse s sse e ssssessesnessssessesaees 8
MESSAQGES ...cvuerurerieririir et ri st e s 9
Links BEtWEen RESOUICESccceererermssssmsesssssssssss s s sssesssssnns 12

072 T 1] T 13
STALBIESS.....ececcccr e ——————————— 13
Planning REST APccccvirririerenirreresesss s sessessessssessessessssessessessssessesaesas 14

F o I DT o RS 15
Setting Up Development ENVIronmentccovvevverensnnsensesesessessesessesessessenes 16
WOrKIing With PIPcooueiirre s s s 17
ChooSING the IDEcocveeeercere et sa e s sre e e e s ene s 18
Understanding Python Virtual Environments..........coceccvvvrevenensenienenessensenenns 19

TABLE OF CONTENTS

LT L0 O 2 24
INSTAIlING FIASKcevveiirieriererercen s s 25
(00111 11 P 26
Chapter 2: Database Modeling in FIasK.......cccusseemmmmssssnnsesssssnnssssssnnnnes 27
INEPOAUCTION.....c.eceeeecee e 27
SQL DAADASEScvrerverereereresssseesesesessssesesesesessssssssssessssssssssssssessssssssssssssssens 28
NOSQL Databasescocreeeerererereereeereresese e se s sennes 28

Key Differences: MySQL vs. MONGODBccccvirenninicnens e 29
Creating a Flask Application with SQLAIChemYccccvrienrenrnsenesesereesenens 30
Creating an Author Database...........cccoererernnernnenesese s 33
Sample Flask MongoEngine Application...........cccvrvninvninnnnsnseness s 46
0] T 111 (0] o 58
Chapter 3: CRUD Application with Flask (Part 1).......cccenmsssnnnnnssssnnnnns 59
User Authentication............cccovnrinnnnnn s 88
0] T 1T (0] o 96
Chapter 4: CRUD Application with Flask (Part 2)........ccceersssnennessssnnnnns 97
INEPOAUCTION.....c.eceeeec e 97
Email VerifiCationcccvveernnenrnenerssesnesss s sesssse s sessesenns 98
1 Lo (0 Lo RS 109
AP DOCUMENTALION.......coeirirircccire s 114
Building Blocks of APl Documentationcccceevevnvenierenensensenesessensensens 115
O0penAPI SPECITICALIONccvvererererrerier e 116

{0] T 11T (0] o R 134

TABLE OF CONTENTS

Chapter 5: Testing in FIasKccccuussseennnnssssnnsmsssssnnsssssssnssssssssssssssssnns 135
INEPOAUCTION....c.eeeeeeeeeee e 135
Setting Up UNIt TESEScvvvecirircrrerrc s 136

Unit Testing User ENdpoints.........cccovcvininisnnnncnsss s 139

TEST COVEIAQE......coveerircre ettt e 155
L] e 11 o S 157
Chapter 6: Deploying Flask Applications......ccusseesesnnnnsssssssssssssnnnnnas 159
Deploying Flask with uWSGI and Nginx on Alibaba Cloud ECS.cccoceeenn.e. 160
Deploying Flask on Gunicorn with Apache on Alibaba Cloud ECS..................... 167
Deploying Flask on AWS Elastic BeanstalKccccvvvvrvrierienensenseniesessensenenns 172
Deploying Flask APp 0N HErOKUc.covcrerennimnse s ssssssesne s 176
Adding @ ProcCfileccccevevieriiriee s erses e s s e s e e sne e nsenns 177
Deploying Flask App on Google App ENgine........c.cccvivvnvnncniennsensesessssensessens 180
(0] 0 e 11 o S 182
Chapter 7: Monitoring Flask Applicationscccinnssenmnmnsssannnnsssnnns 183
Application MONItOriNg......cccvevrrrieriere s 183
R3-SR 185
Flask Monitoring Dashboard...........cccueeerenernsesnessnnssesssesesesesesessssessssenens 187

NEW REIIC ..o 189
BONUS SEIVICES.....oueerrecrrnseesreserisse s e ss e ses e s s e sessssnnssnens 192

0] T 11T 0] 194
1T = 195

vii

About the Author

Kunal Relan is an iOS security researcher
and a full stack developer with more than
four years of experience in various fields

of technology, including network security,
DevOps, cloud infrastructure, and application
development, working as a consultant with
start-ups around the globe. He is an Alibaba
Cloud MVP and author ofiOS Penetration
Testing (Apress) and a variety of white papers.

Kunal is a technology enthusiast and an active
speaker. He regularly contributes to open source communities and writes
articles for Digital Ocean and Alibaba Techshare.

ix

About the Technical Reviewer

Saurabh Badhwar is a software engineer
with a passion to build scalable distributed
systems. He is mostly working to solve
challenges related to performance of software
at a large scale and has been involved in
building solutions that help other developers
quickly analyze and compare performance

of their systems when running at scale.

He is also passionate about working with

open source communities and has been
actively participating as a contributor in various domains, which involve
development, testing, and community engagement. Saurabh has also been
an active speaker at various conferences where he has been talking about
performance of large-scale systems.

Acknowledgments

I'would like to thank Apress for providing me this platform, without which
this would have been a lot harder. I would also like to thank Mr. Nikhil
Karkal for his help and Miss Divya Modi for her perseverance, without
whom this would have been a farsighted project.

I'd like to mention about the strong Python community which helped
me understand the core concepts in my early years of programming, which
inspired me to contribute back to the community with this book.

Last but certainly not the least, I would like to acknowledge all the
people who constantly reminded me about the deadlines and helped me
write this book, especially my family and Aparna Abhijit for helping me out
with editing.

xiii

Introduction

Flask is a lightweight microframework for web applications built on top

of Python, which provides an efficient framework for building web-based
applications using the flexibility of Python and strong community support
with the capability of scaling to serve millions of users.

Flask has excellent community support, documentation, and
supporting libraries; it was developed to provide a barebone framework for
developers, giving them the freedom to build their applications using their
preferred set of libraries and tools.

This book takes you through different stages of a REST API-based
application development process using flask which explains the basics of
the Flask framework assuming the readers understand Python. We'll cover
database integration, understanding REST services, REST APIs performing
CRUD operations, user authentication, third-party library integrations,
testing, deployment, and application monitoring.

At the end of this book, you'll have a fair understanding of Flask
framework, REST, testing, deploying, and managing Flask applications,
which will open doors to understanding REST API development.

CHAPTER 1

Beginning with Flask

Flask is a BSD licensed, Python microframework based on Werkzeug and
Jinja2. Being a microframework doesn’t make it any less functional; Flask
is a very simple yet highly extensible framework. This gives developers
the power to choose the configuration they want, thereby making writing
applications or plugins easy. Flask was originally created by Pocoo, a
team of open source developers in 2010, and it is now developed and
maintained by The Pallets Project who power all the components behind
Flask. Flask is supported by an active and helpful developer community
including an active IRC channel and a mailing list.

Introduction to Flask

Flask has two major components, Werkzeug and Jinja2. While Werkzeug
is responsible for providing routing, debugging, and Web Server Gateway
Interface (WSGI), Flask leverages Jinja2 as template engine. Natively,
Flask doesn’t support database access, user authentication, or any other
high-level utility, but it does provide support for extensions integration to
add all such functionalities, making Flask a micro- yet production-ready
framework for developing web applications and services. A simple Flask
application can fit into a single Python file or it can be modularized to
create a production-ready application. The idea behind Flask is to build a
good foundation for all applications leaving everything else on extensions.

© Kunal Relan 2019 1
K. Relan, Building REST APIs with Flask, https://doi.org/10.1007/978-1-4842-5022-8_1

CHAPTER 1 BEGINNING WITH FLASK

Flask community is quite big and active with hundreds of open source
extensions. The Flask core team continuously reviews extensions and
ensures approved extensions are compatible with the future releases. Flask
being a microframework provides flexibility to the developers to choose
the design decisions appropriate to their project. It maintains a registry of
extensions which is regularly updated and continuously maintained.

Starting Flask

Flask, just like all other Python libraries, is installable from the Python
Package Index (PPI) and is really easy to setup and start developing with,
and it only takes a few minutes to getting started with Flask. To be able to
follow this book, you should be familiar with Python, command line (or at
least PIP), and MySQL.

As promised, Flask is really easy to start with, and just five lines of code
lets you get started with a minimal Flask application.

Listing 1-1. Basic Flask Application

from flask import Flask
app = Flask(__name_)

@app.route('/")
def hello world():
return 'Hello, From Flask!'

The preceding code imports the Flask library, initiates the application
by creating an instance of the Flask class, declares the route, and then
defines the function to execute when the route is called. This code is
enough to start your first Flask application.

CHAPTER 1 BEGINNING WITH FLASK

The following code launches a very simple built-in server, which
is good enough for testing but probably not when you want to go in
production, but we will cover that in the later chapters.

When this application starts, the index route upon request shall return
“Hello From Flask!” as shown in Figure 1-1.

2] © [localhost:5000 X -+
< C @ localhost:5000 g

Hello, From Flask!

Figure 1-1. Flask minimal application

Flask Components Covered in This Book

Now that you have been introduced to Flask, we will discuss the

components that we’ll cover in Flask REST API development in this book.
This book will serve as a practical guide to REST API development

using Flask, and we’ll be using MySQL as the backend database. As already

discussed, Flask doesn’t come with native database access support, and

to bridge that gap, we'll use a Flask extension called Flask-SQLAlchemy

which adds support for SQLAlchemy in Flask. SQLAlchemy is essentially

CHAPTER 1 BEGINNING WITH FLASK

a Python SQL toolkit and Object Relational Mapper which provides the
developers the full power and flexibility of SQL.

SQLAIchemy provides full support for enterprise-level design patterns
and is designed for high-performing database access while maintaining
efficiency and ease of use. We'll build a user authentication module, CRUD
(Create, Read, Update, and Delete) REST APIs for object creation, retrieval,
manipulation, and deletion. We’ll also integrate a documentation utility
called Swagger for creating API documentation, write unit and integration
tests, learn application debugging, and, finally, check out different
methods of deploying and monitoring our REST APIs on cloud platforms
for production use.

For unit tests, we'll use pytest which is a full-featured Python testing
tool—pytest is easy to write tests with and yet is scalable to support
complex use cases. We'll also use Postman which is a complete REST API
Platform—Postman provides integration tools for every stage of the API
lifecycle, making API development easier and more reliable.

API deployment and monitoring are critical parts of REST API
development; development paradigm changes drastically when it comes
to scaling the APIs for production use cases, and for the sake of this book,
we'll deploy our REST APIs using uWSGI and Nginx on a cloud Ubuntu
server. We'll also deploy our REST APIs on Heroku which is a cloud
platform that facilitates Flask app deployment and scaling out of the box.

Last but not least, we'll discuss debugging common Flask errors and
warnings and debugging Nginx requests and check out Flask application
monitoring ensuring least amount on the downtime for production use.

Introduction to RESTful Services

Representational State Transfer (REST) is a software architectural style
for web services that provides a standard for data communication
between different kinds of systems. Web services are open standard

CHAPTER 1 BEGINNING WITH FLASK

web applications that interact with other applications with a motive of
exchanging data making it an essential part of client server architecture in
modern web and mobile applications. In simple terms, REST is a standard
for exchanging data over the Web for the sake of interoperability between
computer systems. Web services which conform to the REST architectural
style are called RESTful web services which allow requesting systems to
access and manipulate the data using a uniform and predefined set of
stateless operations.

Since its inception in 2000 by Roy Feilding, RESTful architecture has
grown a lot and has been implemented in millions of systems since then.
REST has now become one of the most important technologies for web-
based applications and is likely to grow even more with its integration
in mobile and IoT-based applications as well. Every major development
language has frameworks for building REST web services. REST principles
are what makes it popular and heavily used. REST is stateless, making it
straightforward for any kind of system to use and also making it possible
for each request to be served by a different system.

REST enables us to distinguish between the client and the server,
letting us implement the client and the server independently. The most
important feature of REST is its statelessness, which simply means that
neither the client nor the server has to know the state of each other to
be able to communicate. In this way, both the client and the server can
understand any message received without seeing the previous message.
Since we are talking about RESTful web services, let’s take a dive into web
services and compare other web service standards.

Web services in a simple definition is a service offered by one
electronic device to another, enabling the communication via the World
Wide Web. In practice, web services provide resource-oriented, web-
based interface to a database server and so on utilized by another web
client. Web services provide a platform for different kinds of systems to
communicate to each other, using a solution for programs to be able to
communicate with each other in a language they understand (Figure 1-2).

CHAPTER 1 BEGINNING WITH FLASK

[
i0S Client |'
v (421111 9]
Web Client E < < > o=l
9 —@ c.
Internet

Database Server

A

{

REST API Server

Iml <
Android Client '

Figure 1-2. REST architecture diagram

SOAP (Simple Object Access Protocol) is another web service
communication protocol which has been overtaken by REST in the
recent years. REST services now dominate the industry representing
more than 70% of public APIs according to Stormpath. They operate by
exposing consistent interface to access named resources. SOAP, however,
exposes components of application logic as services rather than data.
SOAP is now a legacy protocol originally created by Microsoft and has a
lot of other constraints when compared to REST. SOAP only exchanges
data over XML, and REST provides the ability to exchange data over a
variety of data formats. RESTful services are comparatively faster and less
resource intensive. However, SOAP still has its own use cases in which it’s a
preferred protocol over REST.

SOAP is preferred when robust security is essential as it provides
support for Web Services Security (WS-Security), which is a specification
defining how security measures are implemented in web services to
protect them from external attacks. Another advantage of SOAP over REST
is its built-in retry logic to compensate for failed requests unlike REST in
which the client has to handle failed requests by retrying. SOAP is highly
extensible with other technologies and protocols like WS-Security,
WS-addressing, WS-coordination, and so on which provides it an edge
over other web service protocols.

CHAPTER 1 BEGINNING WITH FLASK

Now, when we have briefly discussed web services—REST and SOAP—
let’s discuss features of REST protocol. In general, REST services are
defined and implemented using the following features:

1. Uniform interface

2. Representations

3. Messages

4. Links between resources
5. Caching

6. Stateless

Uniform Interface

RESTful services should have a uniform interface to access resources, and
as the name suggests, APIs’ interface for the system should be uniform
across the system. A logical URI system with uniform ways to fetch and
manipulate data is what makes REST easy to work with. HTTP/1.1 provides
a set of methods to work on noun-based resources; the methods are
generally called verbs for this purpose.

In REST architecture, there is a concept of safe and idempotent
methods. Safe methods are the ones that do not modify resources like a GET
or a HEAD method. An idempotent method is a method which produces
the same result no matter how many times it is executed. Table 1-1 provides
a list of commonly used HTTP verbs in RESTful services.

CHAPTER 1 BEGINNING WITH FLASK

Table 1-1. Commonly used HTTP verbs useful in RESTful services

Verb CRUD Operation Safe Idempotent

GET Read Fetch a single or multiple resource Yes Yes

POST Created Insert a new resource No No

PUT Update/ Insert a new resource or update No Yes
Create existing

DELETE Delete Delete a single or multiple resource No Yes

OPTIONS READ List allowed operations on a resource Yes Yes

HEAD READ Return only response headersandno Yes Yes

body

PATCH Update/ Only update the provided changesto No No
Modify the resource

Representations

RESTful services focus on resources and providing access to the resources.
A resource can be easily thought of as an object in OOP. The first thing to
do while designing RESTful services is identifying different resources and
determining the relation between them. A representation is a machine-
readable explanation defining the current state of a resource.

Once the resources are identified, representations are the next course
of action. REST provides us the ability to use any format for representing
the resources in the system. Unlike SOAP which restricts us to use XML to
represent the data, we can either use JSON or XML. Usually, JSON is the
preferred method for representing the resources to be called by mobile or
web clients, but XML can be used to represent more complex resources.

Here is a small example of representing resources in both formats.

CHAPTER 1 BEGINNING WITH FLASK

Listing 1-2. XML Representation of a Book Resource

<?xml version="1.0" encoding="UTF-8"?>
<Book>
<ID> 1 </ID>
<Name> Building REST APIs with Flask </Name>
<Author> Kunal Relan </Author>
<Publisher > Apress </ Publisher >
</Book>

Listing 1-3. JSON Representation of a Book resource

{
"ID": "1",
"Name": "Building REST APIs wiith Flask",
"Author": "Kunal Relan",
"Publisher": "Apress"
}

In REST Systems, you can use either of the methods or both the
methods depending on the requesting client to represent the data.

Messages

In REST architecture, which essentially established client-server style
way of data communication, messages are an important key. The client
and the server talk to each other via messages in which the client sends

a message to the server which is often called as a request and the server
sends a response. Apart from the actual data exchanged between the
client and the server in the form of request and response body, there is
some metadata exchanged by the client and the server both in the form
of request and response headers. HTTP 1.1 defines request and response
headers formats in the following way in order to achieve a uniform way of
data communication across different kinds of systems (Figure 1-3).

CHAPTER 1 BEGINNING WITH FLASK

HTTP Copy to Clipboard

1 GET /comments?postIdsl HTTP/1.1

2 Host: jsonplaceholder.typicode.com

3 cache-control: no-cache

4 Postman-Token: 7facdb3f-cld7-4558-ac@7-cbb3efdl8eld

Figure 1-3. HTTP sample request

In Figure 1-4, GET is the request method, “/comments” is the path in
the server, “postld=1" is a request parameter, “HTTP/1.1” is the protocol
version that the client is requesting, “jsonplaceholder.typicode.com” is the
server host, and content type is a part of the request headers. All of these
combined is what makes a HTTP request that the server understands.

In return, the HTTP server sends the response for the requested
resources.

[

"postId": 1,

"id": 1,

"name": "id labore ex et quam laborum",

"email": "Eliseo@gardner.biz",

"body": "laudantium enim quasi est quidem magnam voluptate
ipsam eos\ntempora quo necessitatibus\ndolor quam
autem quasi\nreiciendis et nam sapiente accusantium”

"postId": 1,

"id": 2,

"name": "quo vero reiciendis velit similique earum",
"email": "Jayne Kuhic@sydney.com",

10

