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Dedicated to
Georgy Feodosevich Voronoi (1868–1908)
on the Occasion
of His 150th Birthday



Foreword

It is with great pleasure that I write a few lines to introduce the proceedings of
the NUMGRID Voronoi 2018 conference. This year is the 150th anniversary of the
birth of Georgy Voronoi. After a century and a half, his work is still the base of
many researches and has received a renovated attention in particular in the field of
mesh generation. Voronoi graph and its dual, the Delaunay tessellation, are the base
for the most popular and effective tetrahedral and polyhedral mesh generators.

In addition, recently a number of researchers have also attempted a direct usage
of the Voronoi graph ideas to construct a polyhedral mesh, avoiding the usage of the
Delaunay tessellation. Mesh optimization is also greatly affected by concepts that
have their foundation in Voronoi’s work.

Most academic and industrial simulation packages offer, one way or another,
a mesh generator that exploits the power of Voronoi graph. This should make us
consider how the advances in mathematics, achieved in an “era” when computers
were not yet available, continue to affect our life with unexpected fruits.

Computational Fluid Dynamics and Stress Analysis, the two main areas where
simulation and therefore mesh generation play a strong role, are responsible for
reduced cost and time-to-market of many objects that we commonly use in our day-
to-day life. Cars, airplanes, engines, turbomachines, ships, roads, bridges, buildings,
etc. can now be designed and tested at a pace that was unreachable only a few
decades ago.

It is worth noting that Voronoi graph has been used in other research and
application areas such as medicine, chemistry, biology, logistics, and operations
research as a demonstration that a seminal idea can in time generate very fruitful
consequences. Therefore I believe that the NUMGRID VORONOI conferences
are a positive effort in the direction of increasing the knowledge and the growth
of Voronoi’s work that can still stimulate innovative solutions, balancing the
algorithmic advances and their practical applications.

Rome, Italy Stefano Paoletti
April 2019
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Preface

This volume presents a selection of papers presented at the 9th International Confer-
ence on Numerical Geometry, Grid Generation, and Scientific Computing celebrat-
ing the 150th anniversary of Georgy F. Voronoi (NUMGRID 2018/Voronoi 150),
held on December 3–5, 2019, at the Dorodnicyn Computing Center of the Federal
Research Center “Computer Science and Control” of the Russian Academy of
Sciences in Moscow, Russia. The conference is biannual (since 2002) and it is
one of the well-known international conferences in the area of mesh generation.
The main topic of this conference, grid (mesh) generation, is about how to create a
geometric discretization of a given domain. It is an indispensable tool for solving
field problems in nearly all areas of applied mathematics. The background of grid
generation is highly interdisciplinary and involves mathematics, computer science,
and engineering.

The objective of this book is to provide a good balance between engineering
algorithms and mathematical foundations. The book includes an overview of the
current progress in numerical geometry, grid generation and adaptation in terms of
mathematical foundations, algorithm and software development, and applications.
In focus are the Voronoi-Delaunay theory and algorithms for tilings and partitions,
mesh deformation and optimization, equidistribution principle, error analysis, dis-
crete differential geometry, duality in mathematical programming and numerical
geometry, mesh-based optimization and optimal control methods, iterative solvers
for variational problems, as well as algorithm and software development. The
applications of the discussed methods are multidisciplinary and include problems
from mathematics, physics, biology, chemistry, material science, and engineering.
The presented 22 papers were selected from 38 submissions. The main section
criteria are based on the recommendations of anonymous peer reviews from experts
of the corresponding fields. All accepted papers are revised according to the
comments of reviewers and the program committee.
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x Preface

The organizers would like to thank all who submitted papers and all who
helped to evaluate the contributions by providing reviews for the submissions. The
reviewers’ names are acknowledged in the following pages. The organizers would
like to thank all participants of NUMGRID for making it a successful and interesting
experience.

Moscow, Russia Vladimir A. Garanzha
Berlin, Germany Lennard Kamenski
Berlin, Germany Hang Si
April 2019
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and Multidimensional Determinants. Birkhäuser, Basel, 1994) geometrizes the
triangulations of a point configuration, such that all coherent triangulations form
a convex polytope, the so-called secondary polytope. The secondary polytope can
be treated as a weighted Delaunay triangulation in the space of all possible coherent
triangulations. Naturally, it should have a dual diagram. In this work, we explicitly
construct the secondary power diagram, which is the power diagram of the space
of all possible power diagrams with non-empty boundary cells. Secondary power
diagram gives an alternative proof for the classical secondary polytope theorem
based on Alexandrov theorem. Furthermore, secondary power diagram theory
shows one can transform a non-degenerated coherent triangulation to another non-
degenerated coherent triangulation by a sequence of bistellar modifications, such
that all the intermediate triangulations are non-degenerated and coherent.
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4 N. Lei et al.

1 Introduction

An ingenious construction of Gel’fand et al. [1–3] geometrizes the triangulations of
a point configuration, such that all coherent triangulations form a convex polytope,
the so-called secondary polytope.

The secondary polytope can be treated as a weighted Delaunay triangulation in
the space of all possible triangulations. Naturally, it should have a dual diagram. In
this work, we explicitly construct the secondary power diagram, which is the power
diagram of the space of all possible power diagrams.

A more precise description is as follows: fix a point configuration, the secondary
polytope is the “triangulation” of the space of all coherent triangulations, the
secondary power diagram is the “power diagram” of the space of all power diagrams
with non-empty boundary cells.

Secondary power diagram gives an alternative proof for the classical secondary
polytope theorem based on Alexandrov theorem. Furthermore, secondary power
diagram theory shows one can transform a non-degenerated coherent triangulation
to another non-degenerated coherent triangulation by a sequence of bistellar
modifications, such that all the intermediate triangulations are non-degenerated and
coherent.

1.1 Basic Terminologies

1.1.1 Secondary Polytope

A point configuration is a finite set of distinct points Y = {y1, y2, . . . , yk} in the
n-dimensional Euclidean space R

n. The convex hull of Y is denoted as Conv(Y ).
We call yi a boundary point if yi is on the convex hull Conv(Y ), and interior point
if yi is in the interior volume bounded by Conv(Y ).

Let T be a triangulation of the interior volume bounded by Conv(Y ) with
vertices in Y , denoted as a triangulation of (Y,Conv(Y )). All boundary points are
vertices of T , but some interior points may be not. The characteristic vector of T is
ψT = (λ1, λ2, . . . , λk), λi =∑yi∼σ vol(σ ), where σ is a simplex in T . The convex
hull of all the characteristic vectors of all possible triangulations of (Y,Conv(Y ))
is denoted as Σ(Y), and called secondary polytope of Y . All the triangulations
corresponding to the characteristic vectors on the secondary polytope are called
coherent triangulation. If a coherent triangulation misses some points in Y , then it
is called degenerated.

Let Δ be a simplicial complex, F ∈ Δ be a face and G ⊆ F . If F is a finite set,
we write F̄ := {G ⊆ F } to denote the simplex on F and ∂F̄ := {G � F } to denote
the boundary complex of the simplex on F . The star of F in Δ and the link of F in
Δ both describe the local structure of Δ around F :

stΔ(F ) := {G ∈ Δ|F ∪G ∈ Δ}, lkΔ(F ) := {G ∈ stΔ(F )|F ∩G = ∅}.
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If Γ and Δ are simplicial complexes on disjoint vertex sets, their join is the
simplicial complex:

Γ ∗Δ := {F ∪G|F ∈ Δ,G ∈ Γ }.
Note that stΔ(F ) = F̄ ∗ lkΔ(F ), and the deletion of F from Δ is defined as:

Δ\F = {G ∈ Δ|F � G}.
Let Δ be a simplicial complex, and assume that A ∈ Δ,B /∈ Δ and lkΔ(A) =

∂B̄, so that stΔ(A) = Ā ∗ ∂B̄. Then the process of removing Ā ∗ ∂B̄ and replacing
it with ∂Ā ∗ B̄ is called a bistellar transformation or a bistellar flip [4]:

Δ→ Δ\(Ā ∗ ∂B̄) ∪ (∂Ā ∗ B̄).

Roughly speaking, a bistellar transformation is a local topological operation that
modifies the configuration of a small set of adjacent d-simplices. For instance, in
three dimensions, a bistellar transformation can modify two tetrahedra to three, three
to two, one to four, or four to one, as shown in Fig. 1.

Furthermore, each edge on the secondary polytope Σ(Y) represents a bistellar
transformation from one coherent triangulation to another one. All the coherent
triangulations can be transformed by bistellar transformations by traversing the
edges of Σ(Y) [5, 6].

1.1.2 Primary Power Diagram

Given the powers R = {r1, r2, . . . , rk}, ri ∈ R, the power distance is defined
as pow(x, yi) = |x − yi |2 − r2

i . The nearest power diagram D(R) is a cell

Fig. 1 The four types of bistellar transformation in three dimensions
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decomposition of R
n D(R) = ⋃k

i=1 Wi(R), where each nearest power cell is
defined as

Wi(R) =
{
x ∈ R

n | pow(x, yi) ≤ pow(x, yj ), 1 ≤ j ≤ k
}
.

We call the infinite cells as the boundary cells. The infinite cells correspond to the
boundary points in Y . Some Wi(R)’s might be empty. Let Ω ⊂ R

n be a convex
compact domain, the volume of the intersection betweenWi(R) andΩ is denoted as

wi(R) := vol(Wi(R) ∩Ω),

it is obvious that
∑k

i=1 wi(R) = vol(Ω). Some wi(R)’s might be 0’s.
The nearest weighted Delaunay triangulation T (R) of (Y,Conv(Y )) is the

Poincaré dual of the nearest power diagram: each simplex in the weighted trian-
gulation with vertices {yi1, yi2, . . . , yim} corresponds to the intersection of cells in
the power diagram Wi1 ∩Wi2 · · · ∩Wim . Figure 2 shows the duality between a 2-d
power diagram and the weighted triangulation, the power is illustrated as red circles
with radii ri ’s.

Power diagrams and weighted Delaunay triangulations are closely related to
convex polytopes. For each point yi ∈ Y , we construct a plane

πi(x) = 〈x, yi〉 − hi, hi = 1

2
|yi |2 − r2

i .

The heights of all the planes are represented as a height vector h = (h1, h2, . . . , hk).
The upper envelope of the planes is denoted asEnv({πi}), or simply Env(h), which
is the graph of the function

uh(x) := k
max
i=1
{πi(x)}.

Fig. 2 Power diagram (blue) and its dual weighted Delaunay triangulation (black), the power
weights equal to the square of radii (red circles)
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Each plane πi has a dual point π∗i = (yi, hi), the convex hull is denoted as
Conv({π∗i }), or simply Conv(h). For the upper envelope Env(h), the Legendre
dual of uh(x) is

u∗h(y) = sup
x∈Ω

{〈x, y〉 − uh(x)}.

The graph of u∗h(y) is the lower part of the convex hull. Figure 3 shows the Legendre
dual relation between the uh and u∗h, namely the upper envelope Env(h) and the
lower part of the convex hull Conv(h).

Because pow(x, yi) ≤ pow(x, yj ) is equivalent to πi(x) ≥ πj (x), the
projection of Env(h) is exactly the same power diagram D(R), hence we
also denote the power diagram as D(h). The projection of the lower part of
the convex hull Conv(h) is the weighted Delaunay triangulation T (R), also
denoted as T (h). D(h) and T (h) are Poincaré dual to each other. Figure 3 shows
the relations among upper envelope Env(h), the lower convex hull Conv(h),
the nearest power diagram D(h), and the weighted Delaunay triangulation
T (h).

Similarly, we can define furthest power diagram, where each cell is defined as

Wi(R) =
{
x ∈ R

n | pow(x, yi) ≥ pow(x, yj ), 1 ≤ j ≤ k
}
.

uh u∗
h

∇uh

Wi(h) yi

πi(h)
π∗

i

Ω, μ
Y, ν

proj proj∗

Fig. 3 The upper envelope uh, Legendre dual to the lower convex hull u∗h. The upper envelope
projects to the power diagram D(h), the lower convex hull projects to the weighted Delaunay
triangulation T (h)
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Fig. 4 The lower and upper
parts of a convex hull

It is the projection of the lower envelope,

uh(x) :=
k

min
i=1
{πi(x)},

which is dual to the upper part of the convex hull Conv(h). The lower and upper
convex hull (see Fig. 4) share the boundary points in Y , the nearest and furthest
power diagrams share the infinite cells. The projection of the lower part of the
convex hull is the weighted Delaunay triangulation, in which all the vertices are
the boundary points in Y .

In the following discussion, by power diagram we refer to the nearest power
diagram, unless stated explicitly otherwise. All the theories holds for both nearest
and furthest power diagrams.

1.1.3 Alexandrov Power Diagram Space

Alexandrov Theorem 13 shows that, given a set of positive numbers ν =
{ν1, ν2, . . . , νk}, satisfying

∑k
i=1 νi = vol(Ω), there exists a power diagram D(h)

with the height vector h, such that wi(h) = νi,∀i. Furthermore, such h is unique
upto adding a constant (c, c, . . . , c).

Definition 1 (Alexandrov Power Diagram) Fixing a convex domainΩ ⊂ R
n and

a small positive number ε > 0, a power diagram D(h) is called an Alexandrov
power diagram with respect to (Ω, ε) if its cell volumes satisfy the following
conditions:

1. For each boundary point yi ∈ Y , the boundary cell volume wi(h) > ε;
2. for each interior point yj ∈ Y , the interior cell volume wj(h) > 0;

If the equality holds, then the diagram is called a generalized Alexandrov power
diagram.

Definition 2 (Alexandrov Power Diagram Space) The space of all Alexandrov
power diagrams with respect to (Ω, ε) parameterized by the height vectors is called
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the Alexandrov power diagram space of Y with respect to (Ω, ε), and denoted as

H ε
Ω(Y ) := {h|D(h) is an Alexandrov power diagram w.r.t. (Ω, ε)}. (1)

We will show that the H ε
Ω(Y ) is a k − 1 dimensional convex domain in R

k . Its
closure H

ε

Ω(Y ) is called the generalized Alexandrov power diagram space of Y
with respect to (Ω, ε). Note that any height vector h in H ε

Ω generates a non-
degenerated coherent triangulation T (h) via nearest power diagram; some height
vectors on the boundary of H

ε

Ω generate degenerated coherent triangulations via
either nearest or furthest power diagrams.

1.2 Main Result: Secondary Power Diagram

The secondary polytope Σ(Y) is the polytope of all (coherent) triangulations of
(Y,Conv(Y )). Similarly, in this work, we construct the secondary power diagram
Π(Y), which is the power diagram of the space of all (generalized) Alexandrov
power diagrams H

ε

Ω(Y ). Then Σ(Y) and Π(Y) are Poincaré dual to each other.
Similar to the primary power diagram, we will construct the upper envelopeEnv(Y )
corresponding to the power diagram Π(Y), and whose Legendre dual convex hull
coincides with Σ(Y).

Definition 3 (Secondary Power Diagram) The secondary power diagram is de-
fined as

Π(Y) :H ε

Ω(Y ) =
⋃

T ∈Σ(Y)

DT (Y ), DT (Y ) :=
{
h ∈H

ε

Ω(Y )|T (h) = T
}
, (2)

where each cell DT (Y ) is given by all the generalized Alexandrov power diagrams,
whose dual weighted Delaunay triangulation T (h) are T .

We show that all the cells DT (Y ) are non-empty convex cones.
The principles of the secondary power diagram Π(Y) are exactly the same as

those of the primary power diagram. Π(Y) is induced by the upper envelope of a
set of hyper-planes πT (h), Env({πT (h), T ∈ Σ(Y)}), which is the graph of the
piecewise linear function

U(Y ) := max
T ∈Σ(Y)

{πT (h)},

as well as the lower envelope, which is the graph of the function minT ∈Σ(Y)

{πT (h)}.
The hyper-plane πT (h) has explicit geometric meaning. As shown in Fig. 5,

let T ∈ Σ(Y) be a triangulation, choose one simplex σ ∈ T with vertices
{yi0, yi1, . . . , yin}, construct a simplex σ̃ with points ỹil = (yil , hil ) ∈ R

n+1. The
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yi yj

yk

ỹi

ỹj

ỹk

Rn

Rn+1

σ̃

σ

Pσ(h)

σ

Pσ(h)

t

Fig. 5 The prism Pσ (h) constructed from one simplex σ in the triangulation t ∈ T (Y ). The
volume πt (h) of the union of the prisms

simplices σ and σ̃ bound a prism Pσ (h). The summation of the volumes of all such
prisms is

πT (h) =
∑

σ∈T
vol Pσ (h) = 1

n+ 1
〈ψT , h〉, (3)

where ψT is the characteristic vector of T . Hence the volume function πT (h)

is a linear function of h, which is the supporting plane of the upper envelope
Env(Y ).

If all the heights of the supporting planes πT (h) of Env(Y ) are 0’s, therefore
the dual of each hyperplane πT (h) is (ψT , 0). Then the graph of the Legendre dual
U∗(Y ) coincides with the secondary polytope Σ(Y) itself.

Suppose Ω contains the origin of Rk , λΩ (λ > 0) represents the scaling of Ω by
factor λ. Then H λnε

λΩ = λH ε
Ω , and their secondary power diagram are exactly the

same. When λ goes to infinity, H ε
λnΩ covers the whole space Rk , each power cell is

a cone. Π(Y) gives the complete fan structure.
Furthermore, our secondary power diagram theorem shows that one

can transform one non-degenerated coherent triangulation to another non-
degenerated coherent triangulation by bistellar transformations as defined in
Theorem 11. All the intermediate triangulates are non-degenerated coherent as
well.
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1.3 Contributions

The main contributions of the current work are as follows:

• This work proposes the concept of secondary power diagram Π(Y), and gives an
explicit geometric construction:Π(Y) is the power diagram of all possible power
diagrams of a fixed point configuration.

• The secondary power diagram theory can reproduce secondary polytope theory
based on Alexandrov theorem.

• The secondary power diagram theory shows all the non-degenerated coherent
triangulations are connected by bistellar transformations.

The work is organized as follows: Sect. 2 reviews the theory of secondary
polytope; Sect. 3 explains Alexandrov theorem and a variational approach for
constructing Alexandrov polytope; the main theorems of secondary power diagram
are proven in Sect. 4; the work is concluded in Sect. 6. In appendix, detailed proofs
are given, as well as a symbol list for the major concepts in this work.

2 Secondary Polytope

In this section, we briefly recall the basic concepts and theorems of Gel’fand’s
second polytope theory, details can be found in [3, 7].

Let Y be a point configuration, a finite set of distinct points in R
n, Conv(Y ) is

the convex hull of Y . A triangulation T of (Y,Conv(Y )) decomposes the interior
volume bounded by Conv(Y ) into simplices with vertices in Y . Some yi ∈ Y may
not appear as a vertex of a simplex.

A circuit Z is obtained by adding one point to the set of vertices of a simplex.
There is a unique affine relation among the elements of a circuit, up to a real
multiple:

∑

ω∈Z
cω · ω = 0,

∑
cω = 0.

Let Z+ := {ω ∈ Z|cω > 0} and Z− := {ω ∈ Z|cω < 0}. The convex hull of Z,
Conv(Z), has exactly two triangulations,

T+ =
⋃

ω∈Z+
Conv(Z − {ω}); T− =

⋃

ω∈Z−
Conv(Z − {ω}).

Given a triangulation T , a piecewise linear function g : Conv(Y ) → R is affine-
linear on every simplex of T . Furthermore, g is concave, if for any x, y ∈ Ω g(tx+
(1− t)y) ≥ tg(x)+ (1− t)g(y).
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Definition 4 (Coherent Triangulation) A triangulation T of (Y,Conv(Y )) is
called coherent if there exists a concave piecewise linear function whose domains
of linearity are precisely (maximal) simplices of T.

Denote by R
Y the space of all functions Y → R. Given a function ψ ∈ R

Y ,
we can linearly extend it to a piecewise linear function gψ,T : Conv(Y ) → R by
linearly interpolating ψ inside each simplex.

Definition 5 (Cone) Let T be a triangulation of (Y,Conv(Y )). We shall denote by
C(T ) the cone in R

Y consisting of functions ψ : Y → R with the following two
properties:

• The function gψ,T : Conv(Y )→ R is concave.
• For any ω ∈ Y which is not a vertex of any simplex from T , we have gψ,T (ω) ≥
ψ(ω).

A triangulation T is coherent if and only if the interior of C(T ) is non-empty.
Moreover, ψ lies in the interior of C(T ) if and only if T can be obtained from the
projection of Conv({(ω,ψ(ω)), ω ∈ Y }).
Definition 6 (Fan) A fan in R

k is a finite collection F of convex polyhedral cones,
such that

• Every face of every cone from F belongs to F
• The intersection of any two cones from F is a face of both of them.

If the cones from F cover the whole space, then the fan F is called complete.

Lemma 7 Let Y and Conv(Y ) be fixed. The cones C(T ) for all the coherent
triangulations of (Y,Conv(Y )) together with all faces of these cones form a
complete fan in R

Y , which is called the secondary fan of Y .

Let T be a triangulation of (Y,Conv(Y )). The characteristic function of T , ϕT :
Y → R, is defined as follows:

ϕT (ω) =
∑

ω∈V ert (σ )
V ol(σ ) (4)

where the summation is over all (maximal) simplices of T for which ω is a vertex.
If ω is not a vertex of any simplex of T , then ϕT (ω) = 0.

Definition 8 (Secondary Polytope) The secondary polytope Σ(Y) is the convex
hull in the space RY of the vectors ψT for all the triangulations T of (Y,Conv(Y )).

The normal cone NϕT Σ(Y ) consists of all linear forms ψ on R
Y such that

ψ(ϕT ) = max
ϕ∈Σ(Y)

ψ(ϕ)

The point ϕT is a vertex ofΣ(Y) if and only if the interior of this cone is non-empty.
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Theorem 9 It holds:

(a) The secondary polytope Σ(Y) has dimension k − n− 1 where k = #(Y ).
(b) Vertices of Σ(Y) are precisely the characteristic functions got for all

coherent triangulations T of (Y,Conv(Y )). If T is a coherent triangu-
lation of (Y,Conv(Y )) then ϕT �= ϕT ′ for any other triangulation T ′ of
(Y,Conv(Y )).

(c) For any triangulation T (coherent or not) the normal coneNϕT Σ(Y ) coincides
with the cone C(T ) ⊂ R

Y .

Definition 10 Let T be a triangulation of (Y,Conv(Y )), and let Z ⊂ Y be a circuit.
We say that T is supported on Z if the following conditions hold:

• There are no vertices of T inside Conv(Z) except for the elements of Z itself.
• The polytope Conv(Z) is a union of the faces of the simplices of T .
• Let Conv(l) and Conv(l′) be two simplices (of maximal dimension) of one

of the two possible triangulations of Conv(Z). Then, for every subset F ⊂
A − Z, the simplex Conv(I ∪ F) appears in T if and only if Conv(l′ ∪ F)

appears.

Let T be a triangulation supported on a circuit Z. Then T induces one of
two possible triangulations on Conv(Z), say T+. We let sz(T ) denote the new
triangulation of (Y,Conv(Y )) that is obtained from T by taking away all the
simplices of the form Conv(l ∪ F) with Conv(l) ∈ T+ and adding the simplices of
the form Conv(l′ ∪ F) with Conv(l′) ∈ T− and the same F . We say that sz(T ) is
obtained from T by the modification alongZ. It is clear that sz(T ) is also supported
on Z, and sz(sz(T )) = T .

Theorem 11 Let T and T ′ be two coherent triangulations of (Q,A). The vertices
ϕT , ϕT ′ ∈ Σ(A) are joined by an edge if and only if there is a circuit Z ⊂ A

such that T and T ′ are both supported on Z and obtained from each other by the
modification along Z.

This type of modification is also called bistellar transformation.

3 Convex Geometry

In this section, we briefly recall the basic concepts and theorems of Minkowski and
Alexandrov theory in convex geometry, which can be described by Monge-Ampere
equation and closely related to power diagram and weighted Delaunay triangulation.
This intrinsic connection gives the theoretic tool to study the Alexandrov polytope
space. Details can be found in [8, 9].


