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Preface

This volume reviews the current knowledge on the structure, composition, and
functions of the Golgi and centriole/centrosome and the functional partnership and
codependence of these two organelles, their roles in the establishment of cell
and organ geometry and morphogenesis, and how the disruptions of their structure
and positioning lead to the various diseases.

The first part of this volume describes structural diversity and evolution of
centriole, the role of acetylated proteins and cytoskeletal remodeling proteins
(formins) in the centriole and Golgi biology, and the role of intracellular transport
and RhoA and Rab GTPase signaling in the formation of Golgi and Golgi/centriole
complex.

The second part is devoted to the description of mechanisms involved in the
positioning of Golgi and centriole in resting and directionally moving cells, the
significance of their positioning, and the methods for studying the Golgi dynamics in
the semi-intact cell system.

The third part describes how centrosome coordinates divisions duringDrosophila
early embryogenesis and focuses on the role of the centriole and Golgi in the
establishment of cell geometry, organ branching, tubulogenesis, neurogenesis, and
differentiation of neurons and hypothesizes how the Golgi may communicate with
the cell periphery.

The fourth part summarizes our current knowledge on the role of Golgi and
centriole in stress response and various diseases and describes how the changes in
the Golgi/centriole structure/number may lead to development or/and progression of
cancer.

We believe that this volume besides being highly informative and scientifically
inspiring will shed new light on the mechanisms and role of the Golgi/centriole
functional partnership during development and in health and disease.

Houston, TX Malgorzata Kloc
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Abstract

This book reviews the most recent knowledge on the evolution, structure, functions,
codependence, and interactions of centriole and Golgi apparatus; what roles they
play in the establishment of cell and organ geometry and development; and how their
disruption leads to cancer and other diseases.

The book covers the following subjects: the evolution of centriole structure and
the role of intracellular transport and centriole in the formation of the Golgi ribbon;
the role of small GTPases and acetylated proteins in the Golgi and centriole/
centrosome structure and function; the mechanisms and methods to study the
dynamics and the role of positioning of Golgi/centriole in different cell types and
how they communicate with cell periphery; the role of centriole/Golgi in embryo
development, and in the establishment of geometry and polarity of cells and organs;
and how the inherited or acquired defects in centriole or Golgi lead to cancer and
other diseases.

This book should give the readers a new and often unrecognized perspective on
the roles of the centriole and Golgi complex, structural and functional codependence
and partnership between these two organelles, and their importance for various
aspects of cell and organ functions.

Keywords Golgi � Centriole � Centrosome � Polarity � Geometry � Morphogenesis �
Evolution
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Chapter 1
The Evolution of Centriole Structure:
Heterochrony, Neoteny,
and Hypermorphosis

Tomer Avidor-Reiss and Katerina Turner

Abstract Centrioles are subcellular organelles that were present in the last eukary-
otic common ancestor, where the centriole’s ancestral role was to form cilia. Centri-
oles have maintained a remarkably conserved structure in eukaryotes that have cilia,
while groups that lack cilia have lost their centrioles, highlighting the structure–
function relationship that exists between the centriole and the cilium. In contrast,
animal sperm cells, a ciliated cell, exhibit remarkable structural diversity in the
centriole. Understanding how this structural diversity evolved may provide insight
into centriole assembly and function, as well as their unique role in sperm. Here, we
apply concepts used in the study of the evolution of animal morphology to gain
insight into the evolution of centriole structure. We propose that centrioles with an
atypical structure form because of changes in the timing of centriole assembly events,
which can be described as centriolar “heterochrony.” Atypical centrioles of insects
and mammals appear to have evolved through different types of heterochrony. Here,
we discuss two particular types of heterochrony: neoteny and hypermorphosis. The
centriole assembly of insect sperm cells exhibits the retention of “juvenile” centriole
structure, which can be described as centriolar “neoteny.” Mammalian sperm cells
have an extended centriole assembly program through the addition of novel steps
such as centrosome reduction and centriole remodeling to form atypical centrioles, a
form of centriole “hypermorphosis.” Overall, centriole heterochrony appears to be a
common mechanism for the development of the atypical centriole during the evolu-
tion of centriole assembly of various animals’ sperm.

1.1 Introduction

Centrioles are present in most eukaryotic cell types and are essential for the devel-
opment and physiology of humans and many animals. Because centrioles are so
essential for life, they have been studied using multiple approaches in many in vitro
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and in vivo systems. Over the years, it has become evident that, while centriole
structure and function are highly conserved, centrioles exhibit distinct and some-
times dramatic differences (Jana et al. 2018; Riparbelli et al. 2010). Many studies
focus on the more universal aspects of centrioles to draw conclusions that are
applicable across species because conservation suggests a similar underlying mech-
anism (Jana et al. 2016; Winey and O’Toole 2014; Sluder 2016). However, differ-
ences between centrioles are also significant for several reasons. First, some
differences provide a unique opportunity to overcome a difficulty in investigating
a process (e.g., the presence of the giant centriole cartwheel in some species was
instrumental in elucidating its detailed structure) (Guichard et al. 2012). Second,
understanding the differences can provide conceptual insight that would otherwise
be hidden. For example, the observation that in some species centrioles with one
symmetry can nucleate a centriole with a different symmetry, suggests that the
preexisting centriole does not act as the template for centriole organization (Phillips
1967). Third, differences are commonly present and are essential for animal or
tissue-specific function; impacting them can result in devastating pathologies.
Fourth, differences provide a basis for tissue-specific therapeutics with minimal
systemic side effects. Last, there are evolutionary reasons for differences—they
are beneficial. For these reasons, in this chapter, we will focus on the diversity in
centriole structure and how differently shaped centrioles evolved.

Here, to gain insight into centriole structural diversity, we take the approach best
described by Theodosius Dobzhansky: “Nothing in BiologyMakes Sense Except in the
Light of Evolution” (Dobzhansky 1973). We will apply concepts from the study of
animal development such as heterochrony, neoteny, and hypermorphosis to study the
evolution of the centriole. We focus on sperm because, due to the postcopulatory sexual
selection, it underwent rapid evolution, during which time the typical structure of the
centriole changed in many species (Lupold and Pitnick 2018; Mordhorst et al. 2016).
This chapter starts with background on heterochrony and centriole structure and
function. We continue with describing two types of centriole changes: a neotenic
change in insect proximal centrioles and a hypermorphotic change in mammalian distal
centrioles. We will then discuss potential molecular mechanisms that may be essential
to this evolutionary change. Finally, we propose that applying the concept of
heterochrony, which was originally intended to explain organismal evolution, to
organelle evolution is beneficial to understanding the molecular basis of heterochrony.

1.2 Heterochrony, Neoteny, and Hypermorphosis

A comparative biology approach is routinely used in the study of sperm where the
sperm centriole mainly acts as a tool to determine the phylogenetic relationship
between groups of animals (see for example Dias et al. 2015). Here, we borrow
concepts from evolutionary developmental biology that are generally used to
describe animal development, to explain changes in centriole assembly and struc-
ture. One general concept we focus on is heterochrony, a term originally coined by
the nineteenth century German biologist Ernst Haeckel in the context of the theory of
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recapitulation. The modern premise of heterochrony, as explained by the twentieth
century evolutionary biologist Stephen Jay Gould, is that the development of an
organism (ontogeny) and the evolution of an organism (phylogeny) are related; and
changes in the timing and the rate of developmental processes explain evolutionary
change (Gould 1977; McNamara and McKinney 2005). For example, the develop-
mental process for the formation of vertebrae may be happening quicker or slower
resulting in a relatively longer or shorter spine in similar species (Keyte and Smith
2014). At its core, heterochrony provides an explanation for the differences observed
in various species in terms of evolutionary change and timing of development. Other
ideas that we do not discuss here are that the evolutionary change can be mediated by
changing the location of a process (i.e., Heterotopy).

Heterochrony can be divided into two broad categories of changes (Smith 2002):
(1) changes that result in a juvenile or simple shape in comparison to the ancestral
shape and (2) changes that result in a more complex shape in comparison to the
ancestral shape. Here we focus on a specific example for each category, known as
neoteny and hypermorphosis. Neoteny is a decrease in the rate of development or a
maturation arrest at an early stage. Hypermorphosis is an acceleration or extension of
a preexisting process to accommodate additional steps.

The concept of neoteny has already been “borrowed” to describe a cellular
process; the term “cellular neoteny” was used to describe the differentiation program
that generates various neuronal and neuroendocrine cells. It was suggested that these
cell types might represent different stages of differentiation by cells “arresting” along
a linear development pathway, whose endpoint is a cholinergic sympathetic neuron
(Anderson 1989). Here, we apply this concept to the subcellular level, which in our
case is the alteration of the timing of centriole assembly events. We create distinct
analogies between “animal” and “centriole,” “development of an animal” and
“assembly of a centriole,” and “evolution of an animal” and “evolution of a centri-
ole.” The centrioles of sperm cells are particularly suitable for this analysis because
postmating sexual selection drove the rapid evolution of sperm, during which time
centriole structure changed in many species (Mordhorst et al. 2016; Lupold and
Pitnick 2018).

1.3 The Centriole and Cilium Structure–Function
Relationship Restricts Centriole Diversity

Centrioles are barrel-shaped structures made of nine triplet microtubule blades that
form a wall surrounding the centriole lumen (Fig. 1.1a–ii). Each blade is made up of
three connected microtubules (named A, closest to the lumen, B, and C, furthest
from the lumen) and therefore is referred to as triplet microtubules. Centrioles have
two essential functions inside the cell (Bornens 2012). The centrioles form centro-
somes, which are large microtubule-organizing centers in the cell; the resulting
organized microtubules mediate cell division and intracellular transport. Centrioles
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Fig. 1.1 Model of centriole development in various animal groups. The centrioles are depicted via
cross section at the centriole base and side view. (a) A model depicting the two centrioles in a stem
cell (i), fly spermatozoon (ii), and non-rodent mammal spermatozoon (iii). N nucleus, MC mother
centriole, dC daughter centriole, DC distal centriole, PCL proximal centriole like, SDC spermato-
zoon distal centriole, PC proximal centriole. (b–d) Models depicting the mechanism of a typical
centriole formation in a stem cell (b), of an atypical centriole in fly sperm (c), and of an atypical
centriole in mammalian sperm (d). (b) A typical centriole forms from a cartwheel made of a central
tubule with spokes surrounded by an amorphous wall (i). Then, the procentriole develops a wall of
nine singlet tubules, which grows to doublet tubules, and then triplet tubules (ii). Next, the
procentriole elongates and loses its cartwheel (iii). (c) The neotenic sperm centriole of flies (the
PCL) initially resembles the cartwheel stage and is made of a central tubule with spokes and an
amorphous wall (i). Then, the neotenic centriole is remodeled, losing its amorphous wall (ii) in a
hypermorphic step. (d) The hypermorphic sperm centriole of non-rodent mammals starts its forma-
tion like a typical centriole with a cartwheel (i), procentriole (ii), and a mature centriole (iii). Finally,
the centriole is remodeled by splaying the microtubules in a hypermorphic step (iv). (e) The
molecular pathway of human typical centriole formation (left column) and PCL formation (right
column). Genes in the same row are orthologues to each other in humans and flies, except for Poc1B
that changes position in the pathway. The figure shows that the same molecular pathway initiates the
typical centriole and fly PCL, but Poc1B gains an earlier essential function in the formation of the
PCL as compared to the human typical centriole pathway
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are also responsible for the formation of cilia, which are hair-like organelles that are
essential for cell motility as well as cell–cell communication. The centriole also
provides a stable anchor for the cilium and centrosome after their formation when
they perform their respective functions. A typical animal cell has two centrioles
(Fig. 1.1a-i). These centrioles are different from each other in their age, structure,
composition, and function. The older centriole (aka mother centriole) is structurally
and compositionally mature, and it is functionally competent to form a centrosome
or a cilium. The younger centriole (aka daughter centriole) is immature; thus, it is
unable to build a centrosome or a cilium.

Animal centrioles form centrosomes, and most animal cells require two centro-
somes for normal mitosis (Nigg and Raff 2009; Bornens 2012). The centrosome
nucleates and anchors asters of microtubules and determines the location of the
mitotic spindle pole (Tang and Marshall 2012). When present, centrosomes are the
dominant microtubule-organizing center in the cell. When centrosomes are normally
absent, as in the oocyte, a self-assemblymechanism canmediate mitosis (Petry 2016).
However, when centrosomes are abnormally absent, there is an increased rate of
chromosome missegregation during mitosis (Poulton et al. 2014). An abnormal
number of centrosomes can lead to mono- or multipolar spindles, which often results
in cell death (Prosser and Pelletier 2017). An exception to this outcome occurs in
cancer cells, which overcome the centrosome’s dominance by clustering the centro-
somes in a bipolar spindle (Leber et al. 2010). However, asymmetric clustering of
centrosomes can also cause chromosome missegregation (Cosenza et al. 2017).
Altogether, mature centrosomes, and the centrioles within them, are microtubule
organization centers whose precise number is essential for normal animal
development.

Centriole number control is achieved through a two-part process: first, by regu-
lating the number of newly assembled centrioles in the cell and, second, by precisely
segregating centriole pairs, each made up of one old and one new, during cell
division (Firat-Karalar and Stearns 2014). New centrioles are assembled in associ-
ation with a preexisting (mature) centriole that serves as a platform to restrict
centriole formation to one centriole per preexisting centriole per cell cycle. Many
proteins that are key to centriole assembly have been identified, but the precise
mechanism that assures that only a single new centriole forms near an old centriole is
still under intensive investigation. However, it appears that centriole microtubules do
not have an essential role in centriole duplication (Avidor-Reiss 2018). Altogether,
having precisely two centrioles in a cell is essential for cellular function, animal
viability, and reproductive success; the control of centriole formation requires a
preexisting centriole, but centriolar microtubules are dispensable for the assembly of
new centrioles or for centrosome function.

The ancestral role of cilia in eukaryotes is to produce cellular motility. This
motility is generated by molecular machines known as dynein arms, which contain
dynein motor proteins (Viswanadha et al. 2017). The dynein arms are permanently
attached to each of the microtubule blades on one side and are transiently binding to
a nearby microtubule blade to exert the force that produces motility. This force
results in one microtubule blade sliding relative to the other microtubule blade. Each
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microtubule blade is made of two connected microtubules (called A and B) and are
therefore referred to as doublet microtubules. There are nine doublets arranged in a
circle, such that each of the nine microtubule doublets can slide against another
doublet. This ninefold arrangement is conserved in animal evolution and found
across many groups. These microtubules form the cilium skeleton that is named
the axoneme, and they are the cilium’s most fundamental structural element. More
details on cilium motility can be found in Downing and Sui (2007).

In addition to cell motility, cilia function as a cell receiver or antenna in cell
signaling (Malicki and Johnson 2017). In many of these cases, the cilia are immotile
and the dynein arms are missing. In order to be an efficient signaling device, the
cilium is compartmentalized from the rest of the cell by a cilium gate and the cilium
transport machinery allows entry of specific ciliary cargo. The cilium gate (aka
transition zone in general or annulus in sperm cells) and the cilium transport
machinery (aka intraflagellar transport) are built around and travel along the axo-
neme microtubules. The cilium gate connects the microtubule doublets and the
ciliary membrane to form a barrier between both the cilioplasm and cytoplasm,
and the cilium membrane and cell membrane. More details on cilium gate and cilium
transport machinery can be found in Malicki and Avidor-Reiss (2014). The critical
point to our discussion is that cilia mediate signals utilizing an axoneme made of
microtubule doublets organize in ninefold symmetry.

During cilium formation, the centriolar microtubules extend to form the cilium
microtubules. Therefore, the centriole’s microtubules dictate the symmetry of the
axoneme microtubules, which are critical to the cilium’s motility and signaling
function. Because the centriole’s structure has such an important role in axoneme
structure, it makes sense that centriole structure is highly conserved throughout
evolution.

Centriole assembly is conserved in protists, invertebrates, and vertebrates
(Azimzadeh 2014). The new centriole initially forms as a cartwheel structure
surrounded by electron dense material at the base of the preexisting centriole,
near to the wall (Fig. 1.1b-i,ii). Next, microtubules are built around the cartwheel
to create the procentriole. First, the A microtubules are formed and later the B and
C microtubules. The completed procentriole structure is 200 nm long and 200 nm
wide, including the wall made of nine microtubule triplets and a centriole lumen
filled by the cartwheel. The formation of the cartwheel and procentriole usually
happens in the early S phase of the cell cycle and is very rapid. The next step in
centriole formation is the elongation of the centriole, which starts in the G2 phase
of the cell cycle. In this stage, the microtubules of the centriole elongate to about
400–500 nm in length. The cartwheel does not elongate and is restricted to the
base of the centriole. Finally, the cartwheel is eliminated from the centriole base
and the distal lumen is formed, which has a distinct structure composed of rings
and columns (Fig. 1.1b-iii). Altogether, centriole formation is a step-by-step
process in which a cartwheel forms, then develops to become a procentriole, and
further matures into a centriole.
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1.4 Centriole Neoteny in Sperm Cells

During development, certain traits can be advantageous to a young animal, but those
same traits become a detriment when the animal reaches maturity so they are
replaced by adult features. Neoteny describes the inverse; it is a biological phenom-
enon where an adult animal retains juvenile features, presumably because those
features remain advantageous (Gould 1977). The classic example of neoteny in an
organism is the Ambystoma mexicanum, or axolotl, a species of salamander. Most
salamanders start their life as a larva; at this stage, they live in water, and have
external gills, and a caudal fin. They then develop into an adult form that lives on
land and breathes air. However, unlike other salamanders, the adult axolotl retains
some larval characteristics as it matures, it continues living in water, and has external
gills, and a caudal fin (Rosenkilde and Ussing 1996).

Identifying neoteny in nature is useful because it provides insight into the type of
evolutionary changes that led to the morphology of an animal and is likely linked to
developmental genes. Here we propose that the term neoteny has a broader applica-
tion and can be applied to subcellular structures that retain immature features in an
otherwise mature subcellular system. We hypothesize that these structures may also
exhibit neoteny by arresting early in certain specialized cells. We propose that the
centriole found in insect sperm cells is a neotenic subcellular structure.

In most animals, round spermatids (haploid cells that differentiate to form sper-
matozoa) have two mature centrioles, named the distal centriole and the proximal
centriole (Avidor-Reiss et al. 2015). However, insect spermatids for a long time were
thought to have only one centriole, the distal centriole, which has the typical barrel-
shaped structure with a microtubule wall. Recently, an early form of the procentriole
was identified in the insect spermatid near the distal centriole (Khire et al. 2016;
Blachon et al. 2014; Gottardo et al. 2015; Dallai et al. 2017; Fishman et al. 2017)
(Fig. 1.1a-ii). This structurally immature form of sperm centriole was named the
proximal centriole-like structure or PCL andmay represent an example of subcellular
neoteny; the structure maintains juvenile traits while the sperm itself matures from
spermatid to spermatozoon. During spermatid differentiation, both the distal centriole
and the PCL undergo remodeling that further modifies their structure (Fig. 1.1c). Both
centrioles are deposited in the egg after fertilization and both function in zygotes like
mature centrioles, which include nucleating new centrioles.

When neoteny is exhibited, it is thought that the halt of development is evolu-
tionarily beneficial. In the case of humans, neoteny may provide more time to
increase brain size after birth and more time to develop social skills (Skulachev
et al. 2017; Bufill et al. 2011). The reason for sperm centriole neoteny is not yet clear,
but it may be an advantage for sperm to have an immature centriole when competing
with other sperm trying to fertilize the egg. The smaller size of the centriole does not
deform the neck of the sperm, thus improving motility. Neoteny, like other evolu-
tionary changes in development, is mainly thought to be a result of mutations in the
regulation of genes that control development, but the precise mutations are not
known. Similarly, the centriole neoteny that forms the PCL may be due to mutations
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in genes that control the development of centrioles in the sperm. One potential gene
to mediate PCL neoteny is the gene poc1 (see Sect. 1.6).

1.5 Centriole Hypermorphosis in Sperm Cells

Adult animals exhibit certain traits that are characteristic of their maturation.
Hypermorphosis is a biological phenomenon where development is extended, for
example, by the addition of new developmental stages at the end of the ancestral
development sequence. The common example of hypermorphosis is the enlargement
of a body part relative to the rest of the body, such as the large antlers of reindeer or the
large upper canine teeth of saber-toothed tigers. Interestingly, it was proposed that
hypermorphosis may be a mechanism for the evolution of male weaponry (Kelly and
Adams 2010). Similar to animal development, subcellular structures can also have
developmental programs that reach a “mature” state, which then could be extended.
Here, we propose that the centrioles found in mammalian sperm cells exhibit
hypermorphosis.

In most animals, a spermatozoon has two centrioles, each with typical mature
centrioles morphology (Avidor-Reiss et al. 2015). However, most mammalian sper-
matozoon only has one typical centriole, the proximal centriole. Recently, a distinctly
shaped centriole was identified in the spermatozoon of non-rodent mammals
(Fishman et al. 2018; Avidor-Reiss and Fishman 2018) (Fig. 1.1d-iv). This shape
results from the remodeling of the distal centriole during spermatid differentiation.
Both centrioles, the typical centriole and the atypical centriole, are deposited in the
egg after fertilization, and both function in the zygote like mature centrioles, which
includes forming centrosomes and nucleating new centrioles. A more moderate form
of distal centriole remodeling is observed in insects (Khire et al. 2016; Dallai et al.
2018; Fishman et al. 2017). We propose that the alteration of the distal centriole’s
structure is due to the addition of new developmental stages after the end of normal
centriole maturation when the sperm is maturing from spermatid to spermatozoon
and, therefore, is an example of centriolar hypermorphosis (Fig. 1.1c).

Sperm centriolar hypermorphosis can take several forms in various animal
groups. Compared to other mammals, the rodent spermatozoon’s distal centriole is
further modified, resulting in the apparent degeneration of the DC. Furthermore, the
rodent spermatozoon’s proximal sperm centriole is also degenerated after it is fully
formed (Simerly et al. 2016). Similarly, in insects, the neotenic proximal centriole,
the PCL, undergoes further remodeling after its neotenic formation is finished,
suggesting that the PCL is a product of two heterochronic processes: neoteny and
hypermorphosis. Currently, it is unclear if the two processes evolved together, or one
after the other.
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1.6 The Genetic and Molecular Control of Centriole
Heterochrony

In the last two decades, some progress has been made in understanding the molecular
changes underlying heterochrony, but the complexity of studying whole animal devel-
opment presents a major barrier to that progress (Keyte and Smith 2014). Centriole
assembly is much simpler than animal development and may provide some insight into
the understanding of the molecular basis of heterochrony. It would also be interesting to
compare the molecular basis of heterochrony at a subcellular level and at the whole
animal level to determine if there are general rules that affect developmental timing.
Here, we suggest that the appearance of a neotenic centriole in flies is linked to a change
in the essential function of the gene Protein of Centriole 1 (poc1), based on the
comparison of the molecular pathways that form the PCL and the centriole.

Poc1 is a family of proteins that is evolutionarily conserved and is found through-
out the eukaryotic tree of life suggesting it was present in the ancestral eukaryote that
had a centriole (Hodges et al. 2010). Poc1 family members are found only in
eukaryotes that have centrioles, pointing to its specific role in centriole biology.
However, Poc1 members are absent in some eukaryotes, such as nematodes, indicat-
ing it is not one of the core essential centriole proteins. In vertebrates, the Poc1 family
is made of two genes (POC1A and POC1B), in invertebrates the Poc1 family is made
of one gene, poc1. In flies, the poc1 gene codes for two splice isoforms: Poc1A, which
localizes to the typical centriole (the DC), and Poc1B, which localizes to the atypical
centriole (the PCL) (Khire et al. 2016). Depletion of Poc1 proteins in human cells and
fly sperm results in short centrioles that are unstable, hinting that Poc1 is essential
after the initial formation of the procentriole (Keller et al. 2009; Pearson et al. 2009;
Blachon et al. 2009). In fly sperm, Poc1 depletion also results in an abnormal looking
PCL (Khire et al. 2015).

The placement of Poc1 proteins in the molecular pathway of centriole assembly was
studied based on whether Poc1 was required or dispensable for the localization of other
centriolar proteins to the centriole. In the centriole of human cells, the last steps in
centriole assembly are Centrosomal Protein 135 (CEP135), which recruits Centrosomal
Protein 295 (CEP295), which then recruits Protein of Centriole 1B (POC1B) (Chang
et al. 2016) (Fig. 1.1e). In the fly PCL, the order of recruitment seems to be reversed; the
fly ortholog gene of human POC1B (Poc1B) is essential for the recruitment of the fly
CEP295 protein ortholog Anastral spindle 1 (Ana1) and the fly CEP135 protein
ortholog Bald 10 (Bld10) (Fig. 1.1e) (Blachon et al. 2009). Together, these studies
suggest that Poc1B gained a new essential early function in the centriole formation
pathway in flies that is not observed in human typical centrioles. This new essential
function may allow the cartwheel to be a stable structure and become the PCL, instead
of being an intermediate structure that normally continues to develop into a stable
centriole. To test this hypothesis, it would be critical to determine this new essential
function more precisely.

One insight into the origin of Poc1’s essential function in the early centriole is its
localization during early centriole formation. Poc1 is recruited to the procentriole
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and localizes to the cartwheel in Tetrahymena thermophila, a ciliated protozoan,
although Poc1 does not appear to have an essential function at that stage (Pearson
et al. 2009). Therefore, one possible scenario is that Poc1 was recruited to the
cartwheel by an ancestral mechanism, and the nonessential function of Poc1 evolved
to an essential function in the fly. The Poc1 recruitment mechanism and the
molecular change that made Poc1 essential are currently unknown. Altogether,
small perturbations in proteins already functioning in the centriole (possibly through
the generation new splice isoforms) may be the mechanism of centriole
heterochrony.

1.7 Conclusions

Heterochrony, neoteny, and hypermorphosis are useful concepts for the study of the
evolution of centrioles and other subcellular structures. Here, using these terms
enables us to describe the different types of changes that occur in the centriole
assembly pathway resulting in the formation of an atypical centriole shape. This
creates a conceptual framework to study the evolution of the centriole. The future
challenge is to understand the genetic and molecular basis of centriole heterochrony.
The molecular pathway that assembles centrioles is extensively studied in a variety
of eukaryotes that are amenable for genetic analysis, including vertebrates, inverte-
brates, and protists. Therefore, in the future we should be able to draw the ancestral
pathway of centriole assembly and the step-by-step evolutionary changes that
produce a variety of diverse centriole forms.
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