Mohamed Ramadan Rady

Plant
Biotechnology
and Medicinal
Plants

Periwinkle, Milk Thistle and Foxglove

@ Springer



Plant Biotechnology and Medicinal Plants



Mohamed Ramadan Rady

Plant Biotechnology and
Medicinal Plants

Periwinkle, Milk Thistle and Foxglove

@ Springer



Mohamed Ramadan Rady
Department of Plant Biotechnology
National Research Centre

Giza, Egypt

ISBN 978-3-030-22928-3 ISBN 978-3-030-22929-0  (eBook)
https://doi.org/10.1007/978-3-030-22929-0

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


https://doi.org/10.1007/978-3-030-22929-0

Dedicated to my beloved family, Ayah,
Achraf, and Salwa



Preface

Recently, secondary metabolite production through plant cell culture and plant
biotechnology has attracted interest from scientists. The potential of some plant
culture systems for the production of medically important compounds has been
demonstrated. Recently, genetic transformation and metabolic engineering are
important areas which may provide new ways and efficient systems to increase
in vitro production of secondary metabolites in medicinal plants. This system can
now provide a commercially realistic alternative to whole plants for the production
of some drugs. More recently, the progress on the genetic manipulation of biosyn-
thetic units in microorganisms (synthetic biology) has opened the possibility of
in-depth exploration of the large chemical space of natural product derivatives. In
spite of several successful reports on the studied plants, there is still a gap in the
knowledge for biosynthetic pathways and upscaling of this culture system for
commercial utilization.

The purpose of this book is to provide recent information and studies about the
induction of cell and organ cultures, establishment of transgenic cultures, and
induction of hairy roots from in vitro cultures of periwinkle, milk thistle, and fox-
glove plants with special emphasis on elicitation strategies by abiotic and biotic
elicitors for the production of the bioactive compounds from cultures. This book is
expected to serve as a guide for the use of plant biotechnology as alternative source
for increasing pharmaceutically important anticancer, flavonolignan, and cardeno-
lide compounds from the studied plants. This book will be valuable to researchers
as well as students working in the area of medicinal plant biotechnology. It will
also serve as a reference for the pharmaceutical industry.

Giza, Egypt Mohamed Ramadan Rady
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2 1 Plant Biotechnology and Periwinkle

Abstract Catharanthus roseus is one of the most extensively investigated medici-
nal plants, which can produce more than 130 alkaloids, including the powerful
antitumor drugs vinblastine and vincristine which are used in the treatment of can-
cer. Alkaloids are one of the most important secondary metabolites known to play a
vital role in various pharmaceutical applications leading to an increased commercial
importance in recent years. An overview of recent studies which have been used
using various approaches of plant tissue, organ culture, regeneration, cryopreserva-
tion, and transformation of C. roseus is presented in this chapter. One of the most
effective strategies for enhancing the biotechnological production of alkaloid com-
pounds is elicitation. This chapter summarizes the recent research work of various
in vitro cultures, abiotic, biotic elicitors, and precursor feeding applied to C. roseus
cultural system and their stimulating effects on the accumulation of TIAs.

Keywords Catharanthus roseus - Biosynthesis - Cell and callus culture -
Regeneration - Cryopreservation - Transformation - Hairy root cultures -
Elicitation - Alkaloids

1 Introduction

Catharanthus roseus is an important medicinal plant, belonging to the family
Apocynaceae, and is a rich source of alkaloids, which are distributed in all parts of
the plant. C. roseus is a perennial, evergreen herb that was originally native to the
island of Madagascar. It has been widely cultivated for hundreds of year and has
been widely cultivated in all warm and pantropical regions of the world (Aslam
et al. 2010). The subshrub grows about 30-100 cm high with glossy and dark
green leaves of 2—5 cm long and 1-3 cm broad. The wild C. roseus plant has a pale
pink phlox-like flower with a purple eye in the center, but various cultivars have
been developed with flower colors ranging from purple, violet, red, pink, and
white (Fig. 1.1).

Catharanthus roseus contain important alkaloids, viz., vincristine and vinblas-
tine, which are used in the treatment of cancer. These alkaloids interfere with the
mitotic cell division process of the cancerous cells. They stop formation of micro-
tubules, and thus chromosomes are unable to arrange on metaphase plate (Negi
2011). The vinblastine and vincristine can lower the number of white cells in
blood. A high number of white cells in the blood indicate leukemia. So they act as
anticancer drug. These alkaloids prevent mitosis in metaphase, and they bind to
tubulin and thus prevent the cell from making the spindles it needs to divide
(Kalidass et al. 2010). However, ajmalicine, serpentine, vindoline, and catharan-
thine are major alkaloids. In these alkaloids, ajmalicine and serpentine are useful
for treatment of hypertension. Vindoline and catharanthine are the obvious precur-
sors in the biosynthetic pathways of dimeric indole alkaloids such as vinblastine
and vincristine. But their isolation from intact C. roseus plants is very costly
because of their extremely low concentrations. Alkaloids from the C. roseus are
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Fig. 1.1 C. roseus plant

normally obtained from the field-grown plants. It requires lots of space and infra-
structure; in addition the raw material is season dependent and is affected by vari-
ous fluctuating environmental risk factors. The antitumor alkaloids are produced
in trace amounts (0.0003% dry weight) (Negi 2011). The high prices of these
anticancer products, ranging from $1 million to $3.5 million per kilogram, have
led to a widespread research interest over the past 25 years in the development of
alternative sources for the production of these compounds (Verpoorte et al. 1991).
The low yield and high market price of the pharmaceutically important alkaloids
of C. roseus have created interest in improved alternative routes for their produc-
tion (Verma et al. 2012). However, most TIAs are present in very small amounts,
especially the dimeric/bisindole alkaloids. Thus large quantities of raw material
are needed for compound isolation. For example, to isolate 1 g of vinblastine,
about 500 kg of C. roseus leaves are required (Van der Heijden et al. 2004). In
addition, it is also difficult to synthesize TIAs by chemical methods due to their
complicated structures (Yang and Stockigt 2010). However, the yields of these
TIAs are low in wild-type plants, and the total chemical synthesis is impractical in
large scale due to high cost and their complicated structures (Wang et al. 2012).
As the demand for medicinal plants is growing at a very fast pace, consequently
some of them are increasingly being threatened even in their natural habitats
(Muthukumar et al. 2004). For these reasons, a biotechnological approach using
plant cell or tissue cultures is being explored as alternative production method of
the valuable bioactive metabolites from plants. Plant tissue culture might be a
source of these monomeric and dimeric alkaloids, and therefore, many attempts
have been made to establish a culture that produces them in large amounts.
Ajmalicine, serpentine, and catharanthine are produced by some cell culture lines
in amounts several times those obtained from intact plant (Kurz et al. 1981).
Researchers are focusing their attention to enhance the alkaloids yield by various
ways, chemically, enzymatically, and synthetically, or by cell culture method.
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In this chapter, recent studies for establishment of cell, callus, organ, and
transgenic cultures were reviewed. Optimization of the culture medium, plant
growth regulators, and culture conditions were extensively studied to improve the
cell biomass accumulation and the TIA production. However, abiotic, biotic elici-
tors and precursor feeding to enhance accumulation of TIAs in different cultures of
C. roseus are highlighted.

2 Biosynthesis of TIA in C. roseus

Alkaloids of C. roseus comprise a group of more than 130 terpenoid indole alka-
loids (TTAs) which represent one of the largest and most diverse groups of alkaloids
in this plant. It is the sole resource of vinblastine and vincristine, which are two of
the biggest concerns of TIAs because of their powerful anticancer activities (Van
Der Heijden et al. 2004). A complete knowledge of the biosynthetic pathway of the
targeted compounds and its regulation is essential to increase the metabolic flux
toward the desired products. The biosynthesis of Catharanthus’ alkaloids has been
studied extensively. The biosynthetic pathway of TIAs in C. roseus and character-
ization of the related genes encoding the enzymes involved in this pathway are sum-
marized in Fig. 1.2.

The biosynthesis of TIA in C. roseus is a complex metabolic pathway involving
different subcellular compartments including plastids, cytosol, nucleus, endoplas-
mic reticulum (ER), and vacuole, in which biosynthetic machinery lies within mem-
branes for alkaloid metabolism (Pomahacova et al. 2009). More than 50 biosynthetic
events are composed of the involved genes, enzymes, regulatory genes, and intra-/
intercellular compartments (Zhao et al. 2013). TIA biosynthesis requires two pre-
cursors from two different biosynthetic routes, i.e., tryptamine from the shikimate/
tryptophan pathway and secologanin from the iridoid/methylerythritol phosphate
(MEP) pathway (Pan et al. 2016).

Among the two precursor pathways, the iridoid pathway is considered a major
rate-limiting factor for TIA production in C. roseus cell cultures (Zhao and Verpoorte
2007; Pan et al. 2016). The iridoid precursors of the TIA derive from
8-hydroxygeraniol (also known as 10-hydroxygeraniol) which is formed upon
hydroxylation of geraniol generated from monoterpene geranyl diphosphate (GPP).
GPP is a condensation product of the basic isoprene units, isopentenyl diphosphate
(IPP) and dimethylallyl diphosphate (DMAPP). The other enzymes such as geraniol
10-hydroxylase (G10H), NADPH-cytochrome P-450 reductase, and anthranilate
synthetase (AS) have the similar TDC activities which are involved in the biosyn-
thesis of indole alkaloids.

Formation of Tryptamine and Secologanin
Tryptamine is derived from indole biosynthetic pathway. Tryptamine is derived
from a single enzymatic conversion of the amino acid L-tryptophan (product of
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the plastidial shikimate pathway) by the enzyme tryptophan decarboxylase (TDC)
(De Luca et al. 1989), while secologanin is derived from the monoterpene geranyl
diphosphate (GPP) in the plastidial methylerythritol phosphate (MEP) pathway
(Contin et al. 1998b; Hong et al. 2003). Strictosidine synthetase (STR) catalyzes
the coupling of tryptamine and secologanin to produce strictosidine. These two
compounds are the universal precursors of all TIAs in plants.

Biosynthesis of Strictosidine

Strictosidine is the central intermediate in the biosynthesis of many alkaloids in C.
roseus, which is derived from the condensation of secologanin and tryptamine by
strictosidine synthase (STR) (Fig. 1.2). Strictosidine synthase (STR) was shown to
be localized in the vacuole; thus tryptamine and secologanin from the MEP pathway
need to be transported to the vacuole to produce strictosidine. Subsequently, stricto-
sidine is transported out of the vacuole to be deglucosylated by strictosidine-f-
dglucosidase (SGD) which is associated with the nucleus (Guirimand et al. 2010).
The reversible intermediate 4,21-dehydrogeissoschizine can also be converted into
stemmadenine which leads to the production of vindoline and catharanthine, the
monomeric precursors of bisindole alkaloids vinblastine and vincristine (El-Sayed
and Verpoorte 2007).

Biosynthesis of Vinblastine and Vincristine

Biosynthesis of vinblastine and vincristine involves a series of enzymatic reaction
localized in the endoplasmic reticulum (ER) (tabersonine 16-hydoxylase [T16]),
cytosol (16-hydroxytabersonine 16-O-methyltransferase [OMT], desacetoxyvin-
doline 4-hydroxylase [D4H], and deacetylvindoline 4-O-acetyltransferase
[DAT]), thylakoid membrane of chloroplasts (N-methyltransferase [NMT]), and
vacuole (peroxidase [PRX1]) (Costa et al. 2008; Guirimand et al. 2011). The
bisindole alkaloids vinblastine and vincristine are derived from the coupling of
the monomeric alkaloids catharanthine and vindoline; the process is catalyzed by
the major class of vacuolar III peroxidase (CrPrx1) (Costa et al. 2008). These
monomeric alkaloids produced anhydrovinblastine by a peroxidase which is a
reduction product. The product a-3",4’-anhydrovinblastine catalyzed by CrPrx1 is
the common precursor of all dimeric alkaloids, which can be future converted into
vinblastine and vincristine through several steps (Zhu et al. 2015).

In general, the TIAs are condensation products of two biosynthetic routes, requir-
ing coordination of the amount of intermediates supplied by both pathways. Starting
from the amino acid tryptophan and the monoterpenoid geraniol, the biosynthesis of
vinblastine requires the participation of at least 35 intermediates, 30 enzymes, 30
biosynthetic, 2 regulatory genes, and 7 intra- and intercellular compartments.
Although many genes and corresponding enzymes have been characterized in this
pathway, our knowledge on the whole TIA biosynthetic pathway still remains
largely unknown up to date. Full elucidation of TIA biosynthetic pathway is an
important prerequisite to understand the regulation of the TIA biosynthesis in the
medicinal plant and to produce valuable TIAs by synthetic biological technology
(Zhu et al. 2014).
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3 In Vitro Culture of C. roseus

3.1 Cell and Callus Cultures of C. roseus

Various explants (stem, leaf, hypocotyl shoot tips, roots, and petioles) were used
from in vitro germinated seedlings or from in vivo plants of C. roseus which have
been tested as primary explant sources on several basal media with plant growth
regulators for obtaining callus cultures. It has been noted that the plant cell’s
growth is fast in agitated suspension compared to solid medium because of easier
uptake of nutrients by the cells. Establishment of callus and cell suspension cul-
tures in C. roseus is considered the first step to study biosynthetic capacity and
improve the production of TIAs. The procedures of standardizing friable calli or
suspension culture development become a necessary step to manufacture valuable
plant metabolites.

Several studies have investigated the effects of plant growth regulators, culture
media, and cultural conditions for establishment of C. roseus cultures. In vitro stud-
ies of cell and callus culture induction from C. roseus were presented in Table 1.1.

Miura and Hirata (1987) obtained callus cultures of greenhouse-grown C. roseus
plants. They found that MS medium supplemented with 1.0 mg/l NAA and 0.1 mg/1
kinetin induced callus tissues from young leaf explants. Initiated calli were brown
and tight and differentiated many hairy white roots and maintained high antimitotic
activity for several passages. However, isolation of vinblastine in callus culture with
differentiated roots was detected. Zhao et al. (2001a) observed that there was no
obvious difference between the compact callus cluster cultures derived from leaf
explants and stem explants from C. roseus grown on MS liquid induction medium
supplemented with 5.37 uM NAA and 4.65 pM kinetin. They also postulated that
the level of cellular/tissue differentiation might be responsible for these different
alkaloid synthesis capabilities. Sucrose regime affected some properties (the size,
degree of compaction, differentiation level) of the compact callus cluster cultures
and therefore influenced alkaloid production. The optimal sucrose concentration for
alkaloid and biomass production by that cultures was 50 or 60 g/l. Junaid et al.
(2006) found that MS medium supplemented with 1.0 mg/l1 2,4-D was the best for
callus induction from hypocotyl explants of C. roseus. The maximum callusing
response percentage was 85. The hypocotyl callus was friable, light yellow, and fast
growing. In another study, callus cultures were initiated from single-node explants
of field-grown Vinca minor when cultured on MS medium supplemented with the
combination of 7.21 mg/l BAP and 2 mg/l NAA (Raouf Fard et al. 2008). Also, cal-
lus cultures were initiated from petiole explants of C. roseus greenhouse-grown
plants, when cultured on MS medium containing 0.1 mg/l NAA + 0.1 mg/1 Kin after
6-week incubation (Ataei-Azimi et al. 2008).

Four aseptically explants (shoot tip, leaf, stem, and root) were excised from the
plantlets as well as sterilized seeds of C. roseus and used for callus initiation (Taha
et al. 2008). They found that response of shoot tip explant was the best between the
different explants on MS medium supplemented with 1.0 mg/l 2,4-D and 1.0 mg/1
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