
Springer Series on Atomic, Optical, and Plasma Physics 109

Sergey Leble

Waveguide 
Propagation 
of Nonlinear 
Waves
Impact of Inhomogeneity and 
Accompanying Effects



Springer Series on Atomic, Optical,
and Plasma Physics

Volume 109

Editor-in-Chief

Gordon W. F. Drake, Department of Physics, University of Windsor, Windsor, ON,
Canada

Series Editors

James Babb, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
Andre D. Bandrauk, Faculté des Sciences, Université de Sherbrooke, Sherbrooke,
QC, Canada
Klaus Bartschat, Department of Physics and Astronomy, Drake University,
Des Moines, IA, USA
Robert N. Compton, Knoxville, TN, USA
Tom Gallagher, University of Virginia, Charlottesville, VA, USA
Charles J. Joachain, Faculty of Science, Université Libre Bruxelles, Bruxelles,
Belgium
Michael Keidar, School of Engineering and Applied Science, George Washington
University, Washington, DC, USA
Peter Lambropoulos, FORTH, University of Crete, Iraklion, Crete, Greece
Gerd Leuchs, Institut für Theoretische Physik I, Universität Erlangen-Nürnberg,
Erlangen, Germany
Pierre Meystre, Optical Sciences Center, The University of Arizona, Tucson,
AZ, USA



The Springer Series on Atomic, Optical, and Plasma Physics covers in a
comprehensive manner theory and experiment in the entire field of atoms and
molecules and their interaction with electromagnetic radiation. Books in the series
provide a rich source of new ideas and techniques with wide applications in fields
such as chemistry, materials science, astrophysics, surface science, plasma
technology, advanced optics, aeronomy, and engineering. Laser physics is a
particular connecting theme that has provided much of the continuing impetus for
new developments in the field, such as quantum computation and Bose-Einstein
condensation. The purpose of the series is to cover the gap between standard
undergraduate textbooks and the research literature with emphasis on the
fundamental ideas, methods, techniques, and results in the field.

More information about this series at http://www.springer.com/series/411

http://www.springer.com/series/411


Sergey Leble

Waveguide Propagation
of Nonlinear Waves
Impact of Inhomogeneity and Accompanying
Effects

123



Sergey Leble
Immanuel Kant Baltic Federal University
Kaliningrad, Russia

ISSN 1615-5653 ISSN 2197-6791 (electronic)
Springer Series on Atomic, Optical, and Plasma Physics
ISBN 978-3-030-22651-0 ISBN 978-3-030-22652-7 (eBook)
https://doi.org/10.1007/978-3-030-22652-7

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-22652-7


To my wife
Anna Perelomova



Dal centro al cerchio, e si dal cerchio al
centro movesi l’acqua in un ritondo vaso,
secondo ch’ é percosso fuori o dentro…
Dante Alighieri, LA DIVINA COMMEDIA,
Paradiso, Cante XIV
Paradiso, Cante XIV
The water in a rounded dish vibrates from the
centre to the rim, or from the rim to the
centre, depending on how it is struck, from
inside or out.
From centre unto rim, from rim to centre, In a
round vase the water moves itself, As from
without ’tis struck or from within.
by Henry Wadsworth Longfellow
Thought after thought, wave after wave - Two
manifestations of the elements of one: In the
heart of a small, in the boundless sea, Here -
in conclusion, there - in the open, - The same
everlasting surf and hang up, The same all
ghost is alarmingly empty.
F. I. Tyutchev. “Thought after thought, wave
after wave …”



Preface

This book is a direct continuation and development of my book [2], published in
1988, taking into account the results in [3–5]. Generally, the route to any explicit
formula that describes the evolution of a disturbance in a medium must involve a
number of crucial simplifications [1]. These procedures carry such names as
derivation or heuristic arguments. The results are often very impressive and are
beginning to write their own story. The celebrated examples obtained by a lin-
earized statement of the problem can be found in any textbook on mathematical
physics. These are the D’Alembert (wave, string) equation, the Laplace–Poisson
equation, and the heat (diffusion) equation. Derivations of these equations are a
necessary feature of such textbooks. When we carry out this procedure, we neglect
some terms, but we rarely see attempts to justify them mathematically.

Recently, a boom in mathematical physics has seen the development of standard
‘minimal’ nonlinear equations, such as so-called integrable equations. The list of
such equations already includes many entries and is still growing. The best known
among these are the Korteweg–de Vries (KdV) and nonlinear Schrödinger
(NS) equations. These describe one-dimensional wave packets in the long wave-
length limit in the KdV case and very close to a (carrier) frequency in the NS case.
Considering the form of these equations, it is clear that their one-component and
one-dimensional nature requires a lot of explanation to embed the resulting solu-
tions in a general statement of the problem based on the original multicomponent
and multidimensional description.

There are other important features in the form of these equations. Both contain
only the first derivative in time, which means that they consider only one direction
of wave propagation, and this is the principal difference from the above-mentioned
D’Alembert equation. It is clear that, considering the initial stages in the evolution
of a 1D perturbation of small amplitude, we observe propagation in both directions.
This directly indicates the complex content of the potential development of the
general initial perturbation, involving a kind of superposition to be taken into
account in the mathematical description. This phenomenon has been well studied in
the theory of 1D string evolution, but some effort is needed to translate the idea into
multicomponent field language. In this book, we suggest a systematic realization of
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such a program that brings out all the ingredients and stages involved in trans-
forming the ‘minimal’ equations into general statements of problems of hydro- and
electrodynamics. We consider mainly two kinds of problems: initial (Cauchy) and
boundary regime problems.

We develop a method for separating disturbances in a medium into components.
Hydrodynamic systems are locally split into coupled nonlinear equations of inter-
acting modes. Linearization provides independent modes with a specific evolution.
The corresponding projection operators can be used to formulate initial value prob-
lems for each mode and introduce a physical basis for following interacting distur-
bances. The one-dimensional problem for exponential stratification is examined in
detail as an example. Entropy and directed components (modes) are introduced, and
interaction equations are derived. The weak nonlinearity/dispersion account intro-
duces Burgers/KdV-like systems for directed waves interacting with a mean flow.

In the general three-dimensional case, we derive five eigenvectors of a linear
thermoviscous flow over a homogeneous background for the quasiplane geometry
of the flow. The corresponding projectors are calculated and applied to get the
nonlinear evolution equations for the interacting vortical and acoustic modes. We
specify the equation for the streaming caused by an arbitrary acoustic wave. We
examine the correspondence with known results on streaming caused by a
quasiperiodic source. The acoustic radiation force is calculated for a monopolar
source [5]. In a further application of the projection method, we treat the propa-
gation and interaction of acoustic waves in a medium stratified by gravity.

The same method is applied systematically to electromagnetic disturbances of a
medium with given dispersion and magnetic properties. The separation of a dis-
turbance is provided on the basis of a linear dispersion relation that is introduced
either in the frequency domain for a boundary regime or in the wavevector domain
for a Cauchy problem [3, 4]. The problem is in a sense ‘diagonalized’ in a linear
version and partially diagonalized in the nonlinear regime. The linear and nonlinear
problems are considered in terms of polarized directed wave propagation and
interaction in a dispersive medium.

Compared to the previous book [2],we paymore attention to the kinetic description
of wave propagation and its effects. Certain simplifications of the Boltzmann equation
are used in the case of wave phenomena in rarefied gases, in the so-called Knudsen
regime, with a transition to generalized hydrodynamics.We use kinetic equations like
Vlasov’s in combination with Maxwell’s for a plasma and specify a direct route to a
wavepacket description. The Kolmogorov kinetic equation provides an immediate
tool for studying charge transfer along a nanowaveguide with various kinds of
resistivity impact.

Kaliningrad, Russia Sergey Leble
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Chapter 1
Introduction

1.1 General Remarks

Weshall firstmake some remarks about the history, physical applications, and general
context of waves and waveguide propagation, developing what was said in [1]. This
book presents the nonlinear evolution equations and the theory ofwave interactions in
waveguides (quasi-waveguides) that result from nonlinearity and an inhomogeneity
in the propagation medium. The theoretical description of finite amplitude wave
dynamics is relevant to problems in mathematical physics as well as geophysical
hydrodynamics [2, 3].

The development of the theory of wavemotion was initially motivated by the need
for a description of surface waves [4]. Surface wave propagation, however, may be
considered as a limiting degenerate case of waveguide propagation [5]. Within this
framework, the system can be described by choosing one or more coordinates in
such a way that the dependence of dynamical variables on them may have a wave
structure but no propagation. These coordinates are referred to as transverse, while
the remaining ones will be called longitudinal.

The theory of nonlinear waves was first developed in the previous century by
Scott-Russell, Riemann, Korteweg, deVries, Boussinesq, and Stokes [6]. These early
papers introduced the fundamental ideas of 1D shock waves (Riemann), solitary
waves (Scott Russell), counteracting nonlinearity and dispersion effects (Stokes),
and the distinction between waves moving in opposite directions (Boussinesq). The
approximate (nonlinear) dispersion relations were derived in [1]. The ‘new wave’
of interest in finite amplitude wave theory was initiated by the development of the
inverse problem method in 1967 and rapid progress in the integration of a class of
model evolution equations [7].

The successes of the physical theory include the development of experimental
soliton dynamics and the investigation of specially organized nonlinear phenom-
ena. Examples are investigations of surface and internal waves in hydro-channels
and rotating vessels [8–10], and modeling of nonlinear wave phenomena in electric
transmission lines with a given nonlinearity, dispersion, and dissipation [11]. New
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2 1 Introduction

discoveries in electromagnetic nonlinear wave physics [12] have led to new techno-
logical devices such as the splendid example of single-mode solitons propagating
10,000km in fiber optic waveguides [13, 14]. Progress in the design of powerful
sources and control devices, necessary for investigations of large-amplitude media
disturbances, has allowed the global control of geophysical parameters [15].

These experiments provided ample information for theoretical interpretation. As a
result, a gap has formedbetween the development of the physics and themathematical
methods. In one-dimensional problems, notable progress has been made through the
efforts of many authors [14, 16, 17], but the essentially multi-dimensional nonlinear
wave theory is far from being complete [1, 18]. The propagation of waves in guides
is one such problem.

We should add that the rapid perfection of numerical methods and computers
allows us to solve complex problems that model the physical situation ever more
exactly. Development of analytical techniques combined with numerical simulation
allow mutual testing and broaden the range of validity of the theory. The methods
of reduction of systems of equations introduces new evolution equations into math-
ematical physics. Thus, the classic waveguide propagation theory for surface and
internal waves has given birth to a variety of integrable nonlinear equations, includ-
ing Korteweg–de Vries (KdV), Kadomtsev–Petviashvili (KP), nonlinear Schröinger
(NS), Benjamin–Ono (BO), Joseph, Johnson, and so on, whose universal applicabil-
ity has influenced all areas of physics. Recently, new integrable equations such as the
sine–Gordon and short pulse equations (SPE) have been discovered in the theory of
electromagnetic wave propagation in dispersive media by Schafer–Wayne [19] and
Ampilogov–Leble for metamaterials [20], with two-component generalizations to
account for polarization and direction [21].

Two basic overall ideas may be formulated as alternatives to the long wave and
wave packet descriptions. The first leads to the coupledKdV system, the second to the
coupled NS equations. This demonstrates the basic tool used for the new description
of two- and three-dimensional nonlinear waves in guides. As a universal tool for such
a derivation of the model systems, we continue to develop the dynamic projection
operator technique [22].

We encounter two kinds of projection. The first involves a combination of the
basic fields in the first order linear approximation, i.e., the basic wave modes are
introduced. These modes are projections in the eigen subspace of a Sturm–Liouville
problem for transverse variables ρ for functions Zn . The vector field u is represented
by a series

u =
∑

n

Zn(ρ)Bn(x, t) , (1.1)

where ρ is transverse and x is the longitudinal coordinate. The sum in (1.1) cor-
responds to the case of the discrete spectrum of the Sturm–Liouville problem. It
is this property that leads to classic waveguide propagation. In the case of quasi-
waveguides, there is a possibility of energy leakage and the spectrum may contain a
continuous part. In the particular case of long waves, for a problem in hydrodynam-
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ics with typical nonlinearity of second order, the mode coefficient functions Bn(x, t)
satisfy the coupled KdV equations (CKdV)

Bnt + cn Bnx +
∑

m,k

Nmk
n Bm Bkx + DnBnxxx = 0, n,m, k = 0, 1, 2, . . . (1.2)

where Nn and Dn are the nonlinear and dispersion constants, respectively. The equa-
tions are obtained by plugging the expansion (1.1) into both the linear and nonlinear
terms and finalizing the derivation of (1.2) by projecting onto a transverse mode
subspace.

Let us turn to the role of the boundary conditions that determine the basis functions
Zn for the expansion (1.1). In the simple cases of classic waveguides, these are
the uniform conditions of the first or second kind that give the standard spectral
problem for a finite interval. In the case of optical fibers, the matching conditions
replace the ‘solid’ ones. Otherwise, if a quasi-waveguide is formed and the waves
are captured in any transverse coordinate interval, due to significant inhomogeneity
in the stratification in the direction of some transverse variable z, the boundaries
are conventional. This leads to a change in the dispersion type, which is usually
nonlocal. Problems that lead to model equations with pseudodifferential operators
are considered in Sect. 3.1.

The study of interaction of waves with a nonlocal dispersion law is one of the
current directions in waveguide propagation theory [1, 23]. It includes the derivation
and investigation of BO and Joseph equations, as well as their short wave, two-
dimensional, and multi-mode generalization. Separating the propagation medium
into regions of varying stratification scales improves the convergence of the expan-
sions and allows one to get a compact representation for the quasi-waveguide prop-
agation solutions.

The application of Fourier analysis and perturbation theory to nonlinear oscilla-
tions began with the well-known studies by Poincare, Bogolyubov, and Galerkin.
Their results were generalized by Taniuti’s group [24–27], Maslov, Dobrokhotov
[28–30], Grimshaw [31], Ostrovsky [32], and Pelinovsky [4, 33]. The concept of
interacting guide modes was further developed by Miropolsky [34] and the present
author [1, 23, 35, 36]. The difficulty with this problem lies in a certain ambiguity in
the correct choice of sequence in the perturbation technique for solving the nonlinear
equation for which the simple perturbation theory shows a singularity (instability,
effect accumulation). The presence of two or three space variables obviously com-
plicates the description. Moreover, the question arises whether the expansion (1.1)
converges at all orders of the amplitude and dispersion parameters. The answer could
be obtained only from the arbitrary mode decomposition term. One must therefore
explore the dependence of the solution on the same small parameters used to derive
this sequence of evolution systems. This is one issue on the program in this book.

We now give a short review of results directly related to this approach. The appro-
priate CKdV system was introduced in [37] and discussed in [38]. Another version
of this system as well as single- and two-soliton solutions have been given by Hirota
and Satsuma [39] without any discussion of the physical implications. The gen-
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eral CKdV derivation is reproduced here for hydrodynamical systems, describing
oceanic internal gravity waves (IGW) (Sect. 6.4) [1, 35, 40]. The explicit form is
obtained for nonlinear and dispersion constants. The approach to CKdV integration
was developed in a collaboration with Kshevetsky. This allows one to reduce the
wave disturbance solution, which is nearly a single-mode wave, to the solution of a
combined KdV–MKdV equation [41] (with the same amplitude parameter as in the
derivation of CKdV), which is integrable [7]. The solution of the latter equation and
formulas for intermode couplings gives the representation of the multi-mode prob-
lem. Amplitudes of mode contributions decrease rapidly enough with mode number
n to ensure convergence of the expansion (1.1). The limiting case Dn → 0 of the
CKdV (1.2) was considered in [41]. Solutions have been constructed with charac-
teristics given in the same approximation as was used for the perturbation scheme.
Analysis of the solution demonstrates a tendency to self-localization due to wave
mode interaction [1]. Independent investigations have shown that similar results are
obtained in the interaction of two Riemann waves [42].

The integrability of the CKdV system was studied using the Lax and Wahlquist–
Estabrook methods [Kshevetsky and Leble, unpublished]. It was shown that there
exist two-mode systems generalizing the Hirota–Satsuma equation that have a Lax
pair. Independently, Dodd and Fordy found an L-A pair for the Hirota–Satsuma
equations [17]. The methods of nonlinear evolution equations, including waveguide
systems, are presented in [4]. Thematerial in that volume is similar to the first stage of
our method, which also follows Ostrovsky and Pelinovsky [32, 33]. The subsequent
stages, i.e., interactions in small terms anddetermination of dispersion branches,were
not pursued there, however. The simplest evolution equation was derived in [4] for
a single mode case. The development of nonlinear evolution equations and progress
in the theory of integrable systems [43], as well as the discovery of new integrable
systems (e.g., the Benney–Kaup and Ito systems [44]), suggest good reason to hope
for further propagation of the method.

The important stage in the simplification of the description of nonlinear wave
dynamics is the determination of dispersion branches (i.e., separation of waves
according to their types). The formulation of this problem appeared in the pioneering
work [45], in a search for a connection between the solutions of the Boussinesq and
KdV equations. TheKdV equation is traditionally derived by separating the ‘left’ and
‘right’ waves by introducing a small parameter in the wave function argument. This
allows one to get the equation for a single-directed wave, but does not give a unique
form for interaction terms. Traditionally, separation methods for any individual case
follow the characteristic (often spectral) properties of a given branch. The conditions
prohibiting another branch might be transversality in the case of an electromagnetic
wave or incompressibility in the case of an internal gravity wave in a stratified fluid.
The wave separation decreases the order of the basis equations. Thus, the possibil-
ity arises of including the various waves identified in physical experiments in the
description. Currently, increasing attention is being paid to different types of wave
interaction [46, 47]. In the case of electromagnetic waves, either the components
of the field intensity or the states of definite polarization can be similarly described
[48]. There is very rich set of various types of plasma waves [49].
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The first attempts to develop a universal approach to this problem in 1D were
made by Novikov [50, 51] and, for higher dimensions, by Leble [52, 53]. The correct
introduction of branch subspaces in thewave dispersion relation is necessary even in a
linear theory. This is not a simple problem and it is important for correct separation of
the corresponding contributions in given initial data, a boundary regime, or sources.
Progress here is reviewed in the book [22]. The approach there is based on a dynamic
projection operator technique which is a convenient tool for deriving equations in
their explicit form. This problem has an important physical aspect: identification of
the contributionof eachwave type involvesmeasuring a fundamental set of dynamical
variables and studying the connection between them (polarization relations). The
modern nomenclature is based on linear equations. Therefore it is convenient to
preserve the traditional terminology, at least in the case of weak non-linearity. The
classification principle within the projection operator approach is general and thus
allows generalization to the nonlinear case. In this book, however, only the linear
couplings are used.

The complexity of thewave separation problem depends on the number of dynam-
ical variables and orders of derivatives in the equations of the fundamental problem.
The separation into right- and left-traveling waves may be obtained via a multi-scale
decomposition [4, 31, 54], and also by the reductive perturbation method [55], as
has been shown for the nonlinear string case. However, the separation of internal
and sound waves in the atmosphere cannot be so simply treated. It is shown in [1]
that, with the discrete Silin–Tikhonchuk equations written in a form that includes
interacting unidirectional Langmuir waves, the system can be integrated exactly.

The rapid developments in the theory of integrable systems have often led to
the proposal of new equations and their solutions before such equations are derived
fromphysics. Thiswas the casewith the two-dimensional Joseph equation, a nonlocal
analogue of the Kadomtsev–Petviashvili equation, which was investigated in [56]
and derived in [35, 57]. Nonlocal operators in the theory of electromagnetic wave
dispersion are introduced when there is spatial dispersion or a strong inhomogeneity
in the stratification in the medium of propagation [49]. Such strong variations in
the stratification scale of liquid media lead to nonlocal dispersion of internal waves,
too. In these cases the waveguide regions appear in a propagation medium where
the solutions oscillate and exponentially decrease outside the medium. Then the
basis of the linear problem is introduced inside the waveguide interval, matching the
solutions at the region’s boundaries. The solution outside the guide interval may be
found without mode expansion, due to the simplification of the structure of the basic
equation operator.

This problem was first studied at the level of a dispersion relation by Phillips
[58, 59] and Whitham [60]. The explicit form of the pseudo-differential operators
appeared in the studies by Benjamin [61], Ono [62], and Levikov [63] for the fluid
pycnoclyne guide (layer with density varying in z) surrounded by infinite homoge-
neous layers in the single-mode case. For a finite-depth fluid, the nonlocal analogue
of the KdV equation was derived by Joseph [64]. The two-dimensional multi-mode
wave has also been studied [35]. The theory of nonlocal equations led to algebraic
solitons [62]. The theory of algebraic and algebro-geometric integration was devel-
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oped for nonlocal dispersion in [65]. The soliton solutions of single-mode evolution
equations are generally a rather crude approximation in waveguide theory. However,
they can be the starting point for the averaging methods of Whitham [60]. The solu-
tion of the multi-mode problem is to look for a soliton form with parameters that
weakly depend on the coordinates. Knowledge of the behavior of the solutions of
simplified equations allows one to apply the iteration procedure to the system con-
sidered, going over to the model equation in a power series of a small parameter
[1]. The fundamental statement of the problem has been discussed by Maslov and
Dobrokhotov [30, 66] and also in [67].

An important case of waveguide propagation is when only one mode is possible,
due to the waveguide dimensions. This is the case for electromagnetic waves in metal
tubes, dielectric layers, and fibers (Chap. 3). The broad range of possible applications
in physics and engineering has resulted in a proliferation of publications on model
evolution equations of NS type with various kinds of higher order nonlinear disper-
sion and dissipation [14, 68]. The total dispersion operator preserves the soliton form
and the existence of multi-soliton decay gives the possibility of shortening the pulse
time to femtoseconds [68].

Elimination of arbitrariness in the choice of boundary conditions [34, 68] requires
an additional analysis of basic physical assumptions. For example, the transition
from hydrodynamic flow to the collisionless regime in gaseous flow may cause
waveguide propagation [69]. The boundary conditions for such a wave propagation
problem are formulated within the kinetic theory. The statement of the problem in
the hydrodynamic regime follows from the general kinetic formulation.

There are many situations when the boundary regions along the longitudinal coor-
dinates should be taken into account. In this case new salient features appear. For
example, periodic conditions may arise in problems with a torus (ring) guide geom-
etry, as is the case in experiments with rotating vessels [9, 70] and tokamak plasma
installations [47]. The fundamental mathematical elements of these problems are the
Riemann theta-functions or finite-gap solutions [71]. The problem of extracting the
class of real nonsingular periodic solutions fromageneral finite-gap solution has been
discussed in [71, 72]. Large-scale atmosphericwave propagation,where the periodic-
ity along the planetary longitude is natural, allows for the application of the finite-gap
integration method. For long internal waves, the simplest two-dimensional single-
mode system is the Kadomtsev–Petviashvili (KP) equation [36]. Various aspects of
the application of the functional KP solution are specified in [73, 74]; see also [1].
The very wide field of applications at the ‘quantum border’ of this book are outlined
in the rather recent multi-author paper [75].

1.2 Overview

1.2.1 On Mathematics. Evolution and Projection

In this chapter we sketch the basic mathematical notions used in this book, starting
from general relations and illustrating them with the simplest examples. We pay
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particular attention to the waveguide aspects of these fundamentals: eigenfunctions
of the chosen transverse coordinate operator and expansion in these basicmode series;
and formulation of a problem in terms of the longitudinal variable and time, defining
a propagation with dispersion and nonlinear effects. The first problem involves the
boundary/matching condition formulation. The second is studied from two points of
view: the initial (classicCauchy) problemand aboundary regimepropagation picture.
Both problems for multicomponent fields require special techniques that can be used
to fix a generalized polarization and direction of propagation. We start from the
dynamic projection operator technique developed for the corresponding evolution
operators [22], applying it to the initial and boundary regime propagation problems.
The peculiarities of the technique arising from introduction of a small parameter
are illustrated in Sect. 2.4 with an account of weak nonlinearity and Sect. 2.5 for the
weak inhomogeneity case.

1.2.2 Electromagnetic Waveguides

Electromagnetic (EM) waves in waveguide propagation have a specific feature that
comes from the Maxwell equation formulation, which contains stationary equations
(like div B = 0). Such equations are in fact ‘projecting’ equations, keeping the EM
fieldE,B in a subspace that does not change under the evolution. We should take this
into account when writing the time evolution operator or the evolution of the longi-
tudinal variable. Another important issue relates to EM waves in a medium, where
additional information about atomic charges should be taken into account. Quantum
ormodelmaterial relations are necessary. These relate themagnetisation/polarisation
vectors with the EM field vectors, seriously complicating the statement of the prob-
lem in the case of nanostructures and metamaterials (see Chaps. 7 and 8).

1.2.3 Solitonics

Soliton theory has an important place in modern physics. In particular, electromag-
netic waveguides such as optical fibers or photonic crystals have demonstrated its
physical relevance and opened the way to technical applications [13, 17]. The multi-
soliton formalism is intimately related to and inspired by the integrable systems
of mathematical physics. Its practical construction is based on one of the iteration
methods, called the dressing method [76]. In this chapter, we outline a version of the
method, known as the Darboux transformation technique. We present here results
that are not included in that book. We describe ‘inclined’ solitons for the three-wave
interaction with asynchronism, solutions of theMaxwell–Bloch system, and solitons
for the integrable version of the coupled nonlinear Schrödinger equation (Manakov
case).



8 1 Introduction

1.2.4 Hydrodynamics

Hydrodynamics is conventionally based on a system of conservation laws for prob-
lems without losses. The losses are described by the corresponding equations of
balance (mass, energy, and momentum). We focus our attention on determination of
the wave type using the dynamical projection technique. Next we apply the method
to atmospheric wave problems and develop this by including waveguide features
of the propagation [77]. We start from acoustic gravity waves in a 2D exponential
atmosphere and continue with the study of Rossby and Poincaré waves.

1.2.5 Guide Propagation and Interaction of Plasma Waves.
Metamaterials

The main peculiarity of wave theory for an interesting medium like a plasma is its
rich spectrum. The reason for the abundance of such dispersion branches is the mul-
ticomponent nature of the medium, which contains electrons and ions. The mixture
oscillates in space in a way that naturally requires us to account for the electromag-
netic field.

Even in a very simplified version of multi-stream hydrodynamics, unified with the
Maxwell equations, this leads to a system of equations with an evolution operator of
high dimension. Direct investigation is extremely difficult even after simplification,
as attested by the magneto-acoustic wave theory with 7 × 7 and 8 × 8 evolution
operators and the nonlinear heating effect in [78]. The kinetic description is based on
the Vlasov kinetic equation, which is of a higher level than the hydrodynamic one;
special tools are required to derive the wave equation, especially in an inhomoge-
neous medium. In Sect. 7.4.1, such transformations are illustrated by 1D examples.
The plasma confinement problem is briefly outlined using the example of a rarefied
plasma. Confinement creates a quasi-waveguide. Wave propagation and the possi-
bility of flute instability within such a region are illustrated in Sect. 7.4.3.

1.2.6 Nanowaveguides. Bloch Waves

Minimizing the waveguide dimension increases the relative contribution of surface
atoms in energy, compared to bulk atoms. Quantum foundations are definitely needed
to understand any phenomenon on such a length scale. When we consider a world
involving such quantum notions as electron exchange, which depend on spin vari-
ables, amicroscopic approach should be the basis of any consideration that introduces
averaged (mean) values, including parameters of distribution functions. In its limiting
case, mesoscopic physics is relevant to the study of quantum waveguides [79].
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In this chapter the problem of nanowire conductivity is studied from the kinetic
point of view for quasi-classical Bloch electrons in an electric field. Several problems
with cylindrical symmetry are formulated for the integro-differential Kolmogorov
equation: a dynamical Cauchy problem and two problems with stationary boundary
regimes. The first is for an empty cylinder with scattering of the conduction electrons
on thewalls, while the second takes into account scattering by defects inside thewire.
The integro-differential equations are transformed to integral equations and solved by
iteration. There are two types of expansionwith the leading terms on the right and left
sides. The iteration series is constructed and its convergence is investigated. Under
such conditions, the pseudopotential [76] and other solvable models that include
resonances [80] are effective tools for understanding various phenomena.

1.2.7 Microwaveguides Versus Nanowaveguides. Domain
Wall Propagation

Microwires (MW) [81] do not only differ from nanowires in terms of size. Their char-
acteristics have 3D properties that influence the dynamics of the magnetic moment
density (MMD). In an amorphous MW, we use either the Landau–Lifshitz–Gilbert
equation [82] or direct applications of an alternative Hamiltonian approach [83]. In
this chapter we review three important aspects of the theory: the origin of the basic
equations, their explicit solutions, and stability. The latter is investigated for a 1D
model, where we consider the so-called Walker solution/instability [84]. Applica-
tions to nanowires are also considered, including an approach by direct application of
the original discrete Heisenberg chain equations. We start from the Heisenberg chain
equations (see also [82]), and particular explicit solutions as in [85, 86], touching
upon the results of [83].

1.2.8 Kinetics of Charges in Waveguides. Charge Transport

The propagation of ‘charge waves’ in waveguides is naturally described by a kinetic
equation for a distribution function in phase space. In this chapter we continue to
develop the technique introduced in Chap.7 on plasma dynamics, based on the colli-
sionless Vlasov equation. Here, we take into account collisions of charged particles
with particles of the propagation medium and scattering by the waveguide walls,
introducing the collision term in the Kolmogorov equation from [87]. We consider
the non-stationary kinetic equation (containing a time derivative). This allows us
to study the propagation of charge pulses and the dynamics of resistance [88]. Sta-
tionary cases are also studied. Expressions for the resistivity of electron transport
as a function of temperature and wire radius are derived by solving the resulting
Fredholm equation using the resolvent method.
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Chapter 2
Evolution Operator and Projectors
to Its Eigenspaces

In this chapter we sketch the basic mathematical notions of dynamical projection
used in this book, starting from general relations and illustrating them by the sim-
plest examples, following [1–3] and paying particular attention to the impact of
inhomogeneities and accompanying effects. As mentioned in the introduction [see
(1.1)], in the waveguide propagation, after expanding all the fields in series over
the transverse coordinate basis, the coefficients ψk of the expansions will depend on
the unique longitudinal space coordinate, say x , and time. Let ∂ = ∂/∂x denote the
space derivative.We shallwrite the basic evolution equation in 1D for the components
ψk(x, t) as

ψt (x) − L(∂, x)ψ(x) = N (ψ(x)) , (2.1)

where the multicomponent vector of state represents a set of physical variables of the
system under consideration. The transverse mode index k will henceforth be omitted.
It is written as

ψ =
⎛
⎜⎝

ψ1
...

ψn

⎞
⎟⎠ . (2.2)

We pick up the linear terms on the left-hand side and the nonlinear ones on the
right-hand side, denoted N (ψ). There is an option to place small linear terms on the
right-hand side:

ψt (x) − L0(∂, x)ψ(x) = N (ψ(x)) + εL1(∂, x)ψ(x) , (2.3)

treating εL1(∂, x)ψ(x) as a perturbation. The origin of such terms may be related to
dissipation or gain . The joint account of dissipation and nonlinearity leads to such
important phenomena in acoustics as heating [4–6] and streaming [7, 8].
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