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Preface

It was our pleasure to be among the organizers of the International workshop on
BSDEs, SPDEs, and applications, held at the University of Edinburgh in July 2017.
The workshop brought together more than 200 active researchers in probability
theory, for over 150 research talks, in addition to poster presentations and net-
working events. The meeting also included the 8th World BSDE symposium.

The papers in this volume give a taste of those areas presented at the meeting,
covering a range of actively researched areas. We hope that they act as a stimulus
for further research in this exciting subfield of probability theory. We now sum-
marize the key themes of each of the papers in the volume:

The first paper, by Dirk Becherer, Martin Büttner, and Klebert Kentia, considers
the monotone stability approach to BSDEs with jumps. This is an approach to
studying basic questions of existence and uniqueness of solutions to backward
SDEs, by leveraging the result of the “comparison theorem” for these equations.
This is made more difficult than in the standard case due to the presence of jumps,
which imply that additional requirements on the generator of the BSDE must be
imposed. This paper uses this result to provide existence results without a standard
Lipschitz continuity condition and then further explores how these equations appear
in some applied problems in mathematical finance.

The second paper, by Mireille Bossy and Jean-François Jabir, studies McKean
stochastic differential equations, in particular, a framework where the dynamics of a
process Y depend on the (conditional) distribution of Y given a related process
X. The well-posedness of this equation is proven, under appropriate continuity and
regularity assumptions.

The third paper, by Philippe Briand and Adrien Richou, studies the uniqueness
of solutions to BSDEs with drivers which may grow quadratically, without an
assumption of convexity. If the driver and terminal value are assumed to be
bounded, the uniqueness of solutions to these equations is well known; however in
the unbounded case, the study of these equations is significantly more difficult. This
paper studies the case where the terminal value is unbounded and is determined by
the path of a forward SDE.
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The fourth paper, by Antonella Calzolari and Barbara Torti, studies the question
of martingale representation, when a filtration is enlarged by additional information.
In particular, a model is studied in which information arrives from two sources—a
Brownian motion and the occurrence of a random time. In this setting, they show
that while the Brownian motion and the martingale associated with the random time
have the predictable representation property in each of their filtrations, the com-
bination of these two sources can introduce the necessity for a third martingale in a
representing set (alternatively, the multiplicity of the joint filtration may be three).

The fifth paper, by Samuel N. Cohen and Martin Tegnér, considers the pricing of
European options in a setting with estimation uncertainty. The paper considers
estimating the parameters in a Heston stochastic volatility model for stock prices,
along with their statistical uncertainties. It then explores, if the future dynamics
of the price are only constrained to lie within the estimated bounds on the
parameters, how to find the range of possible prices for a financial option. This is
done by means of numerical solutions of BSDEs.

The sixth paper, by Gonçalo dos Reis and Greig Smith, studies a class of
transport PDEs which have a representation from a stochastic perspective, in terms
of branching processes with regime switching. This is then used to study the
convergence of Monte Carlo approximations to these equations, and a comparison
with alternative Laplacian–perturbation methods is given.

The seventh paper, by Nicole El Karoui, Caroline Hillairet, and Mohamed Mrad,
gives a method of constructing an aggregate consistent utility from a collection of
heterogeneous agents. Working in a setting of a financial market and assuming no
arbitrage, they consider the marginal utilities of each agent and their corresponding
investment preferences, and from these, construct a utility function which gives the
same aggregate preferences. This is then applied to studying the yield curve in bond
markets.

The eighth paper, by Monique Jeanblanc and Dongli Wu, returns to the theme of
enlargement of filtrations, in this case studying how BSDEs vary when additional
information is given. This question is then extended to the related question of how
an optimal control (in particular the choice of an optimal investment in a financial
market) would change under an increase in the information available.

The final paper, by Mauro Rosestolato, focusses on path-dependent stochastic
differential equations in Hilbert spaces. This paper in particular focuses on the
continuity and (Gâteaux) differentiability of the solution to such an equation with
respect to the initial value given and with respect to perturbations of the other
coefficients.

Oxford, UK Samuel N. Cohen
Edinburgh, UK István Gyöngy
Edinburgh, UK Gonҫalo dos Reis
Edinburgh, UK David Siska
Edinburgh, UK Łukasz Szpruch
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On the Monotone Stability Approach
to BSDEs with Jumps: Extensions,
Concrete Criteria and Examples

Dirk Becherer, Martin Büttner and Klebert Kentia

Abstract We show a concise extension of the monotone stability approach to
backward stochastic differential equations (BSDEs) that are jointly driven by aBrow-
nian motion and a randommeasure of jumps, which could be of infinite activity with
a non-deterministic and time-inhomogeneous compensator. The BSDE generator
function can be non-convex and needs not satisfy global Lipschitz conditions in the
jump integrand. We contribute concrete sufficient criteria, that are easy to verify, for
results on existence and uniqueness of bounded solutions to BSDEs with jumps, and
on comparison and a-priori L∞-bounds. Several examples and counter examples are
discussed to shed light on the scope and applicability of different assumptions, and
we provide an overview of major applications in finance and optimal control.
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2 D. Becherer et al.

1 Introduction

We study bounded solutions (Y, Z ,U ) to backward stochastic differential equations
with jumps

Yt = ξ +
∫ T

t
fs(Ys−, Zs,Us) ds −

∫ T

t
Zs dBs −

∫ T

t

∫
E
Us(e) μ̃(ds, de) ,

which are jointly driven by a Brownian motion B and a compensated random mea-
sure μ̃ = μ − νP of some integer-valued random measure μ on a probability space
(�,F ,P). This is an extension of the classical BSDE theory onWiener space towards
BSDEs which involve jumps (JBSDEs), that are driven by the compensated random
measure μ̃, and do evolve on non-Brownian filtrations. Such JBSDEs do involve
an additional stochastic integral with respect to the compensated jump measure μ̃
whose integrand U , differently from Z , typically takes values in an infinite dimen-
sional function space instead of an Euclidean space.

Comparison theorems for BSDEswith jumps require more delicate technical con-
ditions than in the Brownian case, see [4, 15, 54]. The starting point for our article
will be a slight generalization of the seminal (Aγ)-condition for comparison due to
[54]. Our first contribution are extensions of comparison, existence and uniqueness
results for bounded solutions of JBSDEs to the case of infinite jump activity for a
family (2.6) of generators, that do not need to be Lipschitz in the U -argument. This
shows how the monotone stability approach to BSDEs with jumps, pioneered by
[44] for one particular generator, permits for a concise proof in a setting, that may
be of particular appeal in a pure jump case without a Brownian motion, see Corol-
lary 4.12.While the strong approximation step for this approach is usually laborious,
we present a compact proof with a S1-closedness argument and more generality of
the generator in the U -argument for infinite activity of jumps. To be useful towards
applications, our second contribution are sufficient concrete criteria for comparison
and wellposedness that are comparably easy to verify in actual examples, because
they are formulated in terms of concrete properties for generator functions f from
a given family (2.6) w.r.t. to basically Euclidean arguments, instead of assuming
inequalities to hold for rather abstract random processes or fields. This is the main
thrust for the sufficient conditions of the comparison results in Sect. 3 (see Theo-
rem 3.9 and Proposition 3.11, compared to Proposition 3.1 or the result by [54] and
respective enhancements [38, 52, 57]) and of the wellposedness Theorem 4.13 (in
comparison to Theorem 4.11, whose conditions are more general but more abstract).
A third contribution are the many examples and applications which illustrate the
scope and applicability of our results and of the, often technical, assumptions that
are needed for JBSDE results in the literature. Indeed, the range of the imposed com-
binations of several technical assumptions is often not immediately clear. We believe
that more discussion of examples and counter examples may help to shed light on
the scope and the differences of some assumptions prevailing in the literature, and
might also caution against possible pitfalls.



On the Monotone Stability Approach to BSDEs with Jumps … 3

The approach in this paper can be described in more detail as follows: The com-
parison results will provide basic a-priori estimates on the L∞-norm for the Y -
component of the JBSDE solution. This step enables a quick intermediate result on
existence and uniqueness for JBSDEs with finite jump activity. To advance from
here to infinite activity, we approximate the generator f by a monotone sequence of
generators for which solutions do exist, extending the monotone stability approach
from [37] and (for a particular JBSDE) [44]. For the present paper, the compensator
ν(ω, dt, de) of μ(ω, dt, de) can be stochastic and does not need to be a product mea-
sure like λ(de) ⊗ dt , as it would be natural e.g. in a Lévy-process setting, but it is
allowed to be inhomogeneous in that it can vary predictably with (ω, t). In this sense,
ν is only assumed to be absolutely continuous to some reference product measure
λ ⊗ dt with λ being σ-finite, see Eq. (2.1). Such appears useful, but requires some
care in the specification of generator properties in Sect. 2. For the filtrationwe assume
that μ̃ jointly with B (or alone) satisfies the property of weak predictable representa-
tion for martingales, see (2.2). As explained in Example 2.1, such setup permits for
a range of stochastic dependencies between B and μ̃, which appear useful for mod-
eling of applications, and encompasses many interesting driving noises for jumps
in BSDEs; This includes Lévy processes, Poisson random measures, marked point
processes, (semi-)Markov chains or much more general step processes, connecting
to a wide range of literature, e.g. [3, 14, 15, 17, 25–27].

The literature on BSDE started with the classical study [50] of square inte-
grable solutions to BSDEs driven solely by Brownian motion B under global Lips-
chitz assumptions. One important extension concerns generators f which are non-
Lipschitz but have quadratic growth in Z , for which [37] derived bounded solutions
by pioneering a monotone stability approach, and [56] by a fixed point approach.
Square integrable solutions under global Lipschitz conditions for BSDEs with jumps
from a Poisson random measures are first studied by [4, 55]. There is a lot of devel-
opment in JBSDE theory recently. See for instance [2, 22, 38, 39, 49] for results
under global Lipschitz conditions on the generator with respect to on (Z ,U ). In the
context of non-Lipschitz generators that are quadratic (also in Z , with exponential
growth in U ), JBSDEs have been studied to our knowledge at first by [44] using
a monotone stability approach for a specific generator that is related to exponen-
tial utility, by [23] using a quadratic-exponential semimartingale approach from [6],
and by [40] or [35] with again different approaches, relying on duality methods or,
respectively, the fixed-point idea of [56] for quadratic BSDEs. For extensive surveys
of the active literature with more references, let us refer to [38, 57], who contribute
results on L p-solutions for generators, being monotone in the Y -component, that
are very general in many aspects. Their assumptions on the filtrations or generator’s
dependence on (Y, Z) are for instance more general than ours. But the present paper
still contributes on other aspects, noted above. For instance, [57] assumes finite activ-
ity of jumps and a Lipschitz continuity in U . More relations to some other related
literature are being explained in many examples throughout the paper, see e.g. in
Sect. 5. Moreover, it is fair to say that results in the JBSDE literature often involve
combinations of many technical assumptions; To understand the scope, applicability
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and differences of those assumptions, it appears helpful to discuss concrete examples
and applications.

The paper is organized as follows. Section 2 introduces the setting and mathe-
matical background. In Sects. 3, 4, we prove comparison results and show existence
as well as uniqueness for bounded solutions to JBSDEs, both for finite and infinite
activity of jumps. Last but not least, Sect. 5 surveys key applications of JBSDEs in
finance. We discuss several examples to shed light on the scope of the results and of
the underlying technical assumptions, and discuss connections to the literature.

2 Preliminaries

This section presents the technical framework, sets notations and discusses key con-
ditions. First we recall essential facts on stochastic integrationw.r.t. randommeasures
and on bounded solutions for Backward SDEs which are driven jointly by Brownian
motions and a compensated random measure. For notions from stochastic analysis
not explained here we refer to [28, 31].

Inequalities between measurable functions are understood almost everywhere
w.r.t. an appropriate reference measure, typically P or P ⊗ dt . Let T < ∞ be a finite
time horizon and (�,F , (Ft )0≤t≤T ,P) a filtered probability space with a filtration
F = (Ft )0≤t≤T satisfying the usual conditions of right continuity and completeness,
assumingFT = F andF0 being trivial (under P); Thus we can and do take all semi-
martingales to have right continuous paths with left limits, so-called càdlàg paths.
Expectations (under P) are denoted by E = EP. We will denote by AT the transpose
of a matrixA and simply write x y := xT y for the scalar product for two vectors x, y
of same dimensionality. Let H be a separable Hilbert space and denote by B(E) the
Borel σ-field of E := H\{0}, e.g. H = R

l , l ∈ N, or H = �2 ⊂ R
N. Then (E,B(E))

is a standard Borel space. In addition, let B be a d-dimensional Brownian motion.
Stochastic integrals of a vector valued predictable process Z w.r.t. a semimartingale
X , e.g. X = B, of the same dimensionality are scalar valued semimartingales starting
at zero and denoted by

∫
(0,t] ZdX = ∫ t

0 ZdX = Z • Xt for t ∈ [0, T ]. The predictable
σ-field on � × [0, T ] (w.r.t. (Ft )0≤t≤T ) is denoted by P and P̃ := P ⊗ B(E) is the
respective σ-field on �̃ := � × [0, T ] × E .

Let μ be an integer-valued random measure with compensator ν = νP (under P)
which is taken to be absolutely continuous to λ ⊗ dt for a σ-finite measure λ on
(E,B(E)) satisfying

∫
E 1 ∧ |e|2λ(de) < ∞ with some P̃-measurable, bounded and

non-negative density ζ, such that

ν(dt, de) = ζ(t, e)λ(de) dt = ζt dλ dt, (2.1)

with 0 ≤ ζ(t, e) ≤ cν P ⊗ λ ⊗ dt-a.e. for some constant cν > 0. Note that L2(λ)

and L2(ζtdλ) are separable Hilbert spaces since λ (and λt := ζt dλ) is σ-finite and
B(E) is finitely generated. Since the density ζ can vary with (ω, t), the compensator
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ν can be time-inhomogeneous and stochastic. Such permits for a richer dependence
structure for (B, μ̃); For instance, the intensity and distribution of jump heights
could vary according to some diffusion process. Yet, it also brings a few technical
complications, e.g. function-valued integrand processes U from L2(μ̃) (as defined
below) for the JBSDE need not take values in one given L2-space (for a.e. (ω, t)),
like e.g. L2(λ) if ζ ≡ 1, and the specifications of the domain and of the measurability
for the generator functions should take account of such.

For stochastic integration w.r.t. μ̃ and B we define sets of R-valued processes

S p := S p(P) :=
{
Y càdlàg : |Y |p :=

∥∥∥ sup
0≤t≤T

|Yt |
∥∥∥
L p(P)

< ∞
}

for p ∈ [1, ∞] ,

L2 (̃μ) :=
{
U P̃-measurable : ‖U‖2L2 (̃μ)

:= E

( ∫ T

0

∫
E

|Us(e)|2 ν(ds, de)
)

< ∞
}

,

and the set of Rd -valued processes

L2(B) :=
{
θ P-measurable : ‖θ‖2L2(B) := E

( ∫ T

0
‖θs‖2 ds

)
< ∞

}
,

where μ̃ = μ̃P = μ − ν denotes the compensated measure of μ (under P). Recall
that for any predictable function U , E(|U | ∗ μT ) = E(|U | ∗ νT ) by the definition of
a compensator. If (|U |2 ∗ μ)1/2 is locally integrable, then U is integrable w.r.t. μ̃,
andU ∗ μ̃ is defined as the purely discontinuous local martingale with jump process( ∫

E Ut (e)μ({t}, de))
t
by [31, Definition II.1.27] noting that ν is absolutely continu-

ous to λ ⊗ dt . For Z ∈ L2(B) andU ∈ L2(μ̃)we recall that Z • B andU ∗ μ̃ = (U ∗
μ̃t )0≤t≤T with U ∗ μ̃t = ∫ t

0

∫
E Us(e) μ̃(ds, de) are square integrable martingales by

[31, Theorem II.1.33]. For Z , Z ′ ∈ L2(B) and U,U ′ ∈ L2(μ̃) we have for the pre-
dictable quadratic covariations that

〈
U ∗ μ̃,U ′ ∗ μ̃

〉
t = ∫ t

0

∫
E Us(e)U ′

s(e) ν(ds, de) by

[31, Theorem II.1.33],
〈 ∫

Z dB,
∫
Z ′ dB〉t = ∫ t

0 ZT
s Z

′
s ds and

〈 ∫
Z dB,U ∗ μ̃

〉
t = 0

by [31, Theorem I.4.2].
We denote the space of square integrable martingales by M2 and its norm by

‖·‖M2 with ‖M‖M2 = E(M2
T )

1/2. We recall [28, Theorem 10.9.4] that the subspace
of BMO(P)-martingales BMO(P) contains any square integrable martingale M with
uniformly bounded jumps and bounded conditional expectations for increments of
the quadratic variation process:

sup
0≤t≤T

∥∥∥E(
(MT − Mt )

2 |Ft
)∥∥∥

L∞(P)
= sup

0≤t≤T

∥∥E(〈M〉T − 〈M〉t |Ft
)∥∥

L∞(P)
≤ const < ∞.

We will assume that the continuous martingale B and the compensated mea-
sure μ̃ of an integer-valued random measure μ (or μ̃ alone, see Example 2.1 and
Corollary 4.12 with trivial B = 0) jointly have the weak predictable representation
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property (weak PRP) w.r.t. the filtration (Ft )0≤t≤T , in the sense that every square
integrable martingale M has a (unique) representation, i.e.

for all M ∈ M2 there exists Z ,U such that M = M0 +
∫

Z dB +U ∗ μ̃ , (2.2)

with (unique) Z ∈ L2(B) and U ∈ L2(μ̃). Let us note that in the literature [31,
III.§4c] or [28, XIII.§2] the weak representation property is defined as a decomposi-
tion like (2.2) for any local martingaleM with integrands Z ,U being integrable in the
sense of local martingales. Such clearly implies our formulation above. Indeed, for
a (locally) square integrable martingale M in such a decomposition both integrands
must be at least locally square integrable and 〈M〉 = ∫ |Z |2 dt + |U |2 ∗ ν by strong
orthogonality of the stochastic integrals. Then E[〈M〉T ] < ∞ implies that Z , U are
in the respective L2-spaces. We exemplify how (2.2) connects with a wide literature.

Example 2.1 The weak predictable representation property (2.2) holds in the cases
below. Cases 1.–4. are well known from classical theory [28], see [7, Example 2.1]
for details.

1. Let X be a Lévy process with X0 = 0 and predictable characteristics
(α,β, ν) (underP). Then the continuousmartingale part Xc (rescaled to a Brown-
ian motion if β �= 0, or being trivial if β = 0) and the compensated jumpmeasure
μ̃X = μX − ν of X have the weak PRP w.r.t. the usual filtration FX generated by
X . An example for a Lévy process of infinite activity is the Gamma process.
One can add that weak PRP even holds in the sense of Theorem III.4.34 from
[31] for the more general class of PII-processes with independent increments.
This class encompasses the more familiar Lévy processes without requiring time-
homogeneity or stochastic continuity.

2. Assume that B and μ̃ satisfy (2.2) underP. LetP′ be an equivalent probabilitymea-
sure with density process Z . Then the Brownian motion
B ′ := B − ∫

(Z−)−1 d〈Z , B〉 and μ̃′ := μ − νP
′
have the weak PRP (2.2) also

w.r.t. P′ under the same filtration. This offers plenty of scope to construct exam-
ples where W and μ̃ are not independent, based on other examples.

3. Let B be a Brownian motion independent of a step process X (in the sense of [28,
Chap. 11]). Then B and μ̃, the compensated measure of the jump measure μX of
X , have theweak PRPw.r.t. the usual filtration generated by X and B. An example
for a step process is a multivariate (non-explosive) point process, as appearing in
[17].

4. A (semi-)Markov chain X , possibly time-inhomogeneous, is a step process. Thus
weak PRP (2.2) holds for a filtration generated by a Brownian motion and an
independent Markov chain, relating later results to literature [3, 15, 16] on
BSDEs driven by compensated random measures of the respective pure-jump
(semi-)Markov processes. Markov chains X on countable state spaces can be
chosen [15] to take values in the set of unit vectors {ei : i ∈ N} of the sequence
space �2 ⊂ R

N, with jumps �X taking values ei − e j , i, j ∈ N.
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5. The pure jump martingale U ∗ μ̃ (for U ∈ L2(μ̃)) may be written as a series
of mutually orthogonal martingales. More precisely, assume that the compen-
sator coincides with the product measure λ ⊗ dt , i.e. ζ = 1. Let (un)n∈N be an
orthonormal basis (ONB) of the separableHilbert space L2(λ)with scalar product
〈u, v〉 := ∫

E u(e)v(e)λ(de). LetUt = ∑
n∈N〈Ut , un〉un be the basis expansion of

Ut for U ∈ L2(μ̃), t ≤ T . Then it holds (inM2)

U ∗ μ̃ =
∑
n∈N

∫ ·

0
〈Ut , u

n〉
∫
E
un(e) μ̃(dt, de) =:

∑
n∈N

∫ ·

0
αn
t dL

n
t =

∑
n∈N

αn • Ln,

(2.3)
for αn

t := 〈Ut , un〉 and Ln := un ∗ μ̃. Indeed, setting Fn
t := ∑n

k=1〈Ut , uk〉uk =∑n
k=1 αk

t u
k one sees that ‖∑∞

k=1 |αk |2‖L1(P⊗dt) ≤ ‖U‖2L2 (̃μ)
< ∞. By dominated

convergence one obtains as n → ∞
‖Fn −U‖2L2 (̃μ)

= E

( ∫ T

0

∫
E

|Fn
t (e) −Ut (e)|2λ(de) dt

)
= E

( ∫ T

0

∞∑
k=n+1

|αk
t |2 dt

)
→ 0.

Isometry implies that the stochastic integrals Fn ∗ μ̃ converge to U ∗ μ̃ in M2,
proving (2.3).
In particular, we see how the PRP (2.2) w.r.t. a random measure can be rewritten
as series of ordinary stochastic integrals w.r.t. scalar-valued strongly orthogonal
martingales Ln ,which are in fact Lévyprocesseswith deterministic characteristics
(0, 0,

∫
un(e)λ(de)). In this sense, the general condition (2.2) links well with

results on PRP and BSDEs for Lévy processes in [46, 47] who study a specific
Teugels martingale basis consisting of compensated power jump processes for
Lévy processes which satisfy exponential moment conditions. For a systematic
analysis of related PRP results, comprising general Lévy processes, see [20, 21].

6. Previous arguments could extend to the general case with ζ �≡ 1 in (2.1). To this
end, suppose Un to be in L2(μ̃) such that for all t ≤ T the sequence (Un

t )n∈N is
ONB of L2(λt ) for dλt = ζtdλ with scalar product 〈u, v〉t := ∫

E u(e)v(e) ζ(t, e)
λ(de). Analogously to case 5. above, with αn

t := 〈Ut ,Un
t 〉t and Ln := Un ∗ μ̃

one gets equalities of martingales (inM2)

U ∗ μ̃ =
∑
n∈N

∫ ·

0
〈Ut ,U

n
t 〉t

∫
E
Un

t (e) μ̃(dt, de) =:
∑
n∈N

αn • Ln .

To proceed, we now define a solution of the Backward SDE with jumps to be a
triple (Y, Z ,U ) of processes in the space S p × L2(B) × L2(μ̃) for a suitable p ∈
(1,∞] that satisfies

Yt = ξ +
∫ T

t
fs(Ys−, Zs ,Us) ds −

∫ T

t
Zs dBs −

∫ T

t

∫
E
Us(e) μ̃(ds, de), 0 ≤ t ≤ T,

(2.4)
for given data (ξ, f ), consisting of a FT -measurable random variable ξ and a gen-
erator function ft (y, z, u) = f (ω, t, y, z, u). The values p will be specified below
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in the respective results, although a particular focus will be on bounded BSDE solu-
tions (i.e. p = ∞). Because we permit ν to be time-inhomogeneous with a bounded
but possibly non-constant density ζ in (2.1), it does not hold in general thatUt takes
values a.e. in one space L2(λ) forU ∈ L2(μ̃). This requires some extra consideration
about the domain of definition and measurability of f , as the generator function f
needs to be defined for u-arguments from a suitable domain, which cannot be some
fixed L2-space in general (and needs to be larger than L2(λ)), as integrability of
u = Ut (ω, ·) over e ∈ E may vary with (ω, t). On suitable larger domains, one typ-
ically may have to admit for f to attain non-finite values. To this end, let us denote
by L0(B(E),λ) the space of all B(E)-measurable functions with the topology of
convergence in measure and define

|u − u′|t :=
( ∫

E
|u(e) − u′(e)|2 ζ(t, e)λ(de)

) 1
2
, (2.5)

for functions u, u′ in L0(B(E),λ). Terminal conditions ξ for BSDEconsidered in this
paper will be taken to be square integrable ξ ∈ L2(FT ) and often even as bounded
ξ ∈ L∞(FT ). Generator functions f : � × [0, T ] × R × R

d × L0(B(E),λ) → R

are always taken to be P ⊗ B(Rd+1) ⊗ B(L0(B(E),λ))-measurable. Main Theo-
rems 3.9 and 4.13 are derived for families of generators having the form

ft (y, z, u) := f̂t (y, z) +
∫
A
gt(y, z, u(e), e)ζ(t, e)λ(de) (where finitely defined)

(2.6)

and ft (y, z, u) := ∞ elsewhere, ormore specially (for a g-component not depending
on y, z)

ft (y, z, u) := f̂t (y, z) +
∫
A
gt(u(e), e) ζ(t, e)λ(de) (where finitely defined)

(2.7)

and ft (y, z, u) := ∞ elsewhere, for a B(E)-measurable set A and component func-
tions f̂ , g where f̂ : � × [0, T ] × R

1+d → R is P ⊗ B(Rd+1)-measurable and
g : � × [0, T ] × R

1+d × R × E → R isP ⊗ B(Rd+2) ⊗ B(E)-measurable.Clearly
statements for generators of the form (2.6) are also true for those of the (more partic-
ular) form (2.7). (In)finite activity relates to generators with λ(A) < ∞ (respectively
λ(A) = ∞). A simple but useful technical Lemma clarifies how we can (and always
will) choose a bounded representative for U in a BSDE solution (Y, Z ,U ) with
bounded Y .

Lemma 2.2 Let (Y, Z ,U ) ∈ S∞ × L2(B) × L2(μ̃) be a solution of some JBSDE
(2.4) with data (ξ, f ). Then there exists a representative U ′ of U, bounded pointwise
by 2|Y |∞, such that U ′ = U in L2(μ̃) and P ⊗ dt-a-e., and (Y, Z ,U ′) solves the
BSDE (ξ, f ).
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Proof We reproduce a brief argument sufficient to our general setting, similarly
to e.g. [44, Corollary 1] or [7, proof of Theorem 3.5]. Use that μ(ω, dt, de) =∑

s≥0 1D(ω, s) δ(s,βs (ω))(dt, de) for an optional E-valued process β and a thin set
D, since μ is an integer-valued random measure [31, II.§1b]. Clearly the jump
�Yt (ω)=(Yt − Yt−)(ω)=∫

E Ut (ω, e)μ(ω; {t}, de) is equal to1D(ω, t)Ut (ω,βt (ω))

and bounded by 2|Y |∞. For U ′
t (ω, e) := Ut (ω, e)1D(ω, t)1{βt }(e), we have

Ut (ω,βt (ω)) = U ′
t (ω,βt (ω)) on D, and

∑
s≥0 1D(ω, s)|Us −U ′

s |2(ω,βs(ω)) = 0
implies E[|U −U ′|2 ∗ νT ] = E[|U −U ′|2 ∗ μT ] = 0. Since U = U ′ in L2(μ̃) and
Ut = U ′

t in L0(B(E),λ), the BSDE is solved by (Y, Z ,U ′). �

Under these conditions, we can and will take U to be bounded by twice the
norm of Y ; Defining |U |∞ := ess sup(ω,t,e)|Ut (e)| for U ∈ L2(μ̃) yields |U |∞ ≤
2|Y |∞ for any bounded BSDE solution (Y, Z ,U ). The next lemma notes that the
stochastic integrals of bounded JBSDE solutions are BMO-martingales when some
truncated generator function is bounded from above (below) by +(−)〈M〉 for a
BMO-martingale M ; Moreover, their BMO-norms depend only on |Y |∞, the BMO-
norm of M and the horizon T . See [36, Lemma 1.3] for details of the proof, and note
that BMO-properties of integrals of (bounded) BSDEs are of course a well-studied
topic, cf. [42] and references therein.

Lemma 2.3 Let (Y, Z ,U ) ∈ S∞ × L2(B) × L2(μ̃) be a bounded solution to the
BSDE (ξ, f ). Assume there is M ∈ BMO(P) such that

∫ T
t fs(Ys−, Zs,Us) ds ≤

〈M〉T − 〈M〉t or − ∫ T
t fs(Ys−, Zs,Us) ds ≤ 〈M〉T − 〈M〉t . Then

∫
Z dB and U ∗ μ̃

are BMO-martingales and their BMO-norms (resp. L2-norms) are bounded by a
constant depending on |Y |∞ and ‖M‖BMO(P) (resp. on |Y |∞, ‖M‖M2 ).

3 Comparison Theorems and A-Priori-Estimates

The stage for the main comparison Theorem 3.9 and the a-priori-L∞-estimate of
Proposition 3.11 in this section is set by the next proposition. Its line of proof follows
the seminal Theorem 2.5 by [54], with slight generalizations that are needed in the
sequel. Just some details for the change of measure argument are elaborated a bit
differently, measurable dependencies of the random field γ are specified in more
detail, and less is assumed on the generators. Instead of imposing specific conditions
on the generators which imply existence of solutions, we only insist that we have
solutions and impose a generalized (Aγ)-condition as explained in Example 3.8.

Proposition 3.1 Let (Y i , Zi ,Ui ) ∈ S∞ × L2(B) × L2(μ̃) be solutions to the BSDE
(2.4) for data (ξi , fi ), i = 1, 2. Assume that f2 is Lipschitz continuous w.r.t. y and z.
Let γ : � × [0, T ] × R

d+3 × E → [−1,∞)with (ω, t, y, z, u, u′, e) �→ γ
y,z,u,u′
t (e)
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be a P ⊗ B(Rd+3) ⊗ B(E)-measurable function such that for γ := γY 2−,Z2,U 1,U 2
it

holds

f2(t, Y
2
t−, Z2

t ,U1
t ) − f2(t, Y

2
t−, Z2

t ,U2
t ) ≤

∫
E

γt (e) (U1
t (e) −U2

t (e)) ζ(t, e) λ(de), P ⊗ dt-a.e.

(3.1)
and the stochastic exponential E(

∫
β dB + γ ∗ μ̃) is a martingale for β from (3.2).

Then a comparison result holds, that means that the inequalities ξ1 ≤ ξ2 and
f1(t,Y 1

t−, Z1
t ,U

1
t ) ≤ f2(t,Y 1

t−, Z1
t ,U

1
t ), P ⊗ dt-a.e., together imply Y 1

t ≤ Y 2
t for all

t ≤ T .

In results like the above, in [54] and further enhancements [38, 52, 57], the key
assumption needed for comparison is the existence of an abstract random field γ such
that inequalities are satisfied between processes. In contrast, the subsequent results of
this section offer sufficient criteria for comparison that can be verified more easily by
checking concrete dependencies w.r.t. to basically Euclidean arguments for generator
functions f of the type (2.6). See also [24] for a simpler version in a setting with a
jump measure of Lévy-type on E = R

1 \ {0} and ζ ≡ 1.

Proof We define ξ̂ := ξ1 − ξ2, Ŷ := Y 1 − Y 2, Ẑ := Z1 − Z2 and Û := U 1 −U 2.
The processes

αs := 1{Y 1
s−�=Y 2

s−}
f2(s,Y 1

s−, Z1
s ,U

1
s ) − f2(s,Y 2

s−, Z1
s ,U

1
s )

(Y 1
s− − Y 2

s−)
,

βs := 1{Z1
s �=Z2

s }
f2(s,Y 2

s−, Z1
s ,U

1
s ) − f2(s,Y 2

s−, Z2
s ,U

1
s )

‖Z1
s − Z2

s ‖2
(Z1

s − Z2
s ) (3.2)

and Rt := exp(
∫ t
0 αs ds) are bounded due to the Lipschitz assumption on f2. As in

[54], applying Itô’s formula to RŶ between τ ∧ t and τ ∧ T for some stopping times
τ yields

(RŶ )τ∧t = (RŶ )τ∧T +
∫ τ∧T

τ∧t
Rs

(
f1(s,Y

1
s−, Z1

s ,U
1
s ) − f2(s,Y

2
s−, Z2

s ,U
2
s )

)
ds

−
∫ τ∧T

τ∧t
Rs Ẑs dBs −

∫ τ∧T

τ∧t

∫
E
RsÛs(e) μ̃(ds, de) −

∫ τ∧T

τ∧t
Rsαs Ŷs− ds.

Set M := ∫
RẐ dB + (RÛ ) ∗ μ̃ and N := ∫

β dB + γ ∗ μ̃. Then
dQ := E(N )T dP defines an absolutely continuous probability by the martingale
property of the stochastic exponential E(N ) ≥ 0; cf. [28, Lemma 9.40]. By Girsanov
L := M − 〈M, N 〉 is a local Q-martingale, and the inequality

f1(s, Y
1
s−, Z1

s ,U1
s ) − f2(s, Y

2
s−, Z2

s ,U2
s ) ≤ αs Ŷs− + βs Ẑs +

∫
E

γs (e)Ûs (e) ζs (e) λ(de)P ⊗ ds-a.e.

implies (RŶ )τ∧t ≤ (RŶ )τ∧T − (Lτ
T − Lτ

t ). (3.3)
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Localizing L along a sequence of stopping times τn ↑ ∞ and taking conditional
expectations, we obtain EQ

(
(RŶ )t∧τ n

∣∣Ft
) ≤ EQ

(
(RŶ )τ n∧T

∣∣Ft
)
for each n ∈ N.

Dominated convergence yields the estimate Rt Ŷt ≤ EQ

(
RT ξ̂

∣∣Ft
) ≤ 0 and thus

Y 1
t ≤ Y 2

t . �
Remark 3.2 1. Switching roles of f1 and f2, one gets that if f1 is Lipschitz in

y,z and satisfies (3.1) instead of f2, then ξ1 ≤ ξ2 and f1(t,Y 2
t−, Z2

t ,U
2
t ) ≤

f2(t,Y 2
t−, Z2

t ,U
2
t ) imply Y 1

t ≤ Y 2
t .

2. The result of Proposition 3.1 remains valid (with a similar proof) if one requires
that the Y -components of JBSDE solutions to compare are in S2 instead of S∞,
and the stochastic exponential E(β • B + γ ∗ μ̃) is in S2. However, as it is stated,
Proposition 3.1 is exactly what we will need to apply in the sequel to derive, e.g.,
Proposition 4.3 and Theorem 4.13.

Example 3.3 Sufficient conditions for E(γ ∗ μ̃) to be a martingale are, for instance,

1. �(γ ∗ μ̃) > −1 and E
(
exp(〈γ ∗ μ̃〉T )

) = E
(
exp

( ∫ T
0

∫
E |γs(e)|2 ν(ds, de)

))
<

∞; see [51, Theorem9]. This holds i.p. if
∫
E |γs(e)|2 ζ(s, e)λ(de) < const. < ∞

P ⊗ ds-a.e. and γ > −1.
2. �(γ ∗ μ̃) ≥ −1 + δ for δ > 0 and γ ∗ μ̃ is a BMO(P)-martingale due to Kaza-

maki [33].
3. �(γ ∗ μ̃) ≥ −1 and γ ∗ μ̃ is a uniformly integrable martingale and E

(
exp(〈γ ∗

μ̃〉T )
)

< ∞; see [41, Theorem I.8]. Such a condition is satisfiedwhenγ is bounded
and |γ| ≤ ψ, P ⊗ dt ⊗ λ-a.e. for a function ψ ∈ L2(λ) and ζ ≡ 1. The latter is
what is required for instance in the comparison Theorem 4.2 of [52].

Note that under above conditions, also the stochastic exponential E(
∫

βdB + γ ∗
μ̃) for β bounded and predictable is a martingale, as it is easily seen by Novikov’s
criterion.

Let us also refer to [14, Sects. 19 and A.9] for related so-called balance conditions
on generators for JBSDE comparison by change of measure arguments.

In the statement of Proposition 3.1, the dependence of the process γ on the BSDE
solutions is not needed for the proof as the same result holds if γ is just a predictable
process such that the estimate on the generator f2 and the martingale property (3.1)
hold. The further functional dependence is needed for the sequel, as required in the
following

Definition 3.4 We say that an R-valued generator function f satisfies condition
(Aγ) if there is a P ⊗ B(Rd+3) ⊗ B(E)-measurable function γ : � × [0, T ] ×
R

d+3 × E → (−1,∞) given by (ω, t, y, z, u, u′, e) �→ γ
y,z,u,u′
t (e) such that for all

(Y, Z ,U,U ′) ∈ S∞ × L2(B) × (L2(μ̃))2 with |U |∞ < ∞, |U ′|∞ < ∞ it holds for
γ := γY−,Z ,U,U ′

ft (Yt−, Zt ,Ut )− ft (Yt−, Zt ,U
′
t )≤

∫
E
γt (e)(Ut (e) −U ′

t (e))ζ(t, e)λ(de), P ⊗ dt-a.e.

and E(
∫

βdB + γ ∗ μ̃) is a martingale for every bounded and predictable β.
(3.4)
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We will say that f satisfies condition (A′
γ) if the above holds for all bounded U

and U ′ with additionally U ∗ μ̃ and U ′ ∗ μ̃ in BMO(P).

Clearly, existence and applicability of a suitable comparison result for solutions to
JBSDEs implies their uniqueness. In other words, if there exists a bounded solution
for a generator being Lipschitz w.r.t. y and z which satisfies (Aγ) or (A′

γ), we obtain
that such a solution is unique.

Example 3.5 The natural candidate for γ for generators f of the form (2.6) is given
by

γ y,z,u,u′
s (e) = gs(y, z, u, e) − gs(y, z, u′, e)

u − u′ 1A(e)1{u �=u′}, (3.5)

which isP ⊗ B(Rd+3) ⊗ B(E)-measurable since g is. Assuming absolute continuity
of g in u, we can express γ

y,z,u,u′
s (e) = ∫ 1

0
∂
∂u
gs(y, z, tu + (1 − t)u′, e) dt 1A(e), by

noting that

(u − u′)
∫ 1

0

∂

∂u
gs (y, z, tu + (1 − t)u′, e) dt 1A(e) =

∫ 1

0

∂

∂t

[
(gs (y, z, tu + (1 − t)u′, e))

]
dt 1A(e).

For generators of type (2.7) the γ simply is

γ y,z,u,u′
s (e) =

∫ 1

0

∂

∂u
gs(tu + (1 − t)u′, e)dt 1A(e).

Definition 3.6 We say that a generator f satisfies condition (Afin) or (Ainfi) (on a
set D) if

1. (Afin): f is of the form (2.6) with λ(A) < ∞, is Lipschitz continuous w.r.t.
y and z uniformly in (t,ω, u), and the map u �→ g(t, y, z, u, e) is absolutely
continuous (in u) for all (ω, t, y, z, e) (in D ⊆ � × [0, T ] × R × R

d × E), i.e.
g(t, y, z, u, e) = g(0) + ∫ u

0 g′(t, y, z, x, e)dx , with density function g′ being
strictly greater than −1 (on D) and locally bounded (in u) from above, uniformly
in (ω, t, y, z, e).

2. (Ainfi): f is of the form (2.7), is Lipschitz continuous w.r.t. y and z uniformly
in (t,ω, u), and the map u �→ gt(u, e) is absolutely continuous (in u) for all
(ω, t, e) (in D), i.e. g(t, u, e) = g(0) + ∫ u

0 g′(t, x, e)dx , with density function g′
being such that for all c ∈ (0,∞) there exists K (c) ∈ R and δ(c) ∈ (0, 1) with
−1 + δ(c) ≤ g′(x) and |g′(x)| ≤ K (c)|x | for all x with |x | ≤ c.

Remark 3.7 Note that under condition (Ainfi) the density function g′ is neces-
sarily locally bounded, in particular with |g′(x)| ≤ K (c)c =: K̄ (c) < ∞ for all
x ∈ [−c, c]. Observe that the conditions are not requiring the function g to be convex
and moreover refrain from requiring it to be continuously differentiable in u. Both
can be helpful in application examplres, see Sect. 5.1.2.
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Example 3.8 Sufficient conditions for condition (Aγ) and (A′
γ) are

1. γ is a P ⊗ B(Rd+3) ⊗ B(E)-measurable function satisfying the inequality
in (3.4) and

C1(1 ∧ |e|) ≤ γ
y,z,u,u′
t (e) ≤ C2(1 ∧ |e|)

on E = R
l \ {0} (l ∈ N), for some C1 ∈ (−1, 0] and C2 > 0. In this case

exp(〈∫ βdB + γ ∗ μ̃〉T ) is clearly bounded and the jumps of
∫

βdB + γ ∗ μ̃ are
bigger than −1. Hence E (∫

βdB + γ ∗ μ̃
)
is a positive martingale [51, Theorem

9]. Thus Definition 3.4 generalizes the original (Aγ)-condition introduced by [54]
for Poisson random measures.

2. (Afin) is sufficient for (Aγ). This follows fromExample 3.3, (3.5) and λ(A) < ∞.
3. (Ainfi) is sufficient for (A′

γ). To see this, let u, u′ be bounded by c and γ be the

natural candidate in Example 3.5. Then |γ y,z,u,u′
s (e)| ≤ ∫ u

u′ |g′(x)|dx/(u − u′) ≤
K (c)(|u| + |u′|). Hence ∫

βdB + γ ∗ μ̃ is a BMO-martingale by the BMO-
property of U ∗ μ̃ and U ′ ∗ μ̃ with some lower bound −1 + δ for its jumps. And
E(

∫
βdB + γ ∗ μ̃) is a martingale by part 2 of Example 3.3.

4. Condition (Afin) above is satisfied if, e.g., f is of the form (2.6) with λ(A) < ∞,
is Lipschitz continuous w.r.t. y and z, and the map u �→ g(t, y, z, u, e) is contin-
uously differentiable for all (ω, t, y, z, e) (in D) such that the derivative is strictly
greater than −1 (on D ⊆ � × [0, T ] × R × R

d × E) and locally bounded (in u)
from above, uniformly in (ω, t, y, z, e).

5. Condition (Ainfi) is valid if for instance f is of the form (2.7), is Lipschitz contin-
uous w.r.t. y and z, and the map u �→ gt(u, e) is twice continuously differentiable
for all (ω, t, e) with the derivatives being locally bounded uniformly in (ω, t, e),
the first derivative being (locally) bounded away from −1 with a lower bound
−1 + δ for some δ > 0, and ∂g

∂u
(t, 0, e) ≡ 0.

As an application of the above, we can now provide simple conditions for com-
parison in terms of concrete properties of the generator function, which are easier
to verify than the more general but abstract conditions on the existence of a suitable
function γ as in Proposition 3.1 or the general conditions by [15]. Note that no con-
vexity is required in the z or u argument of the generator. The result will be applied
later to prove existence and uniqueness of JBSDE solutions.

Theorem 3.9 (Comparison Theorem) A comparison result between bounded BSDE
solutions in the sense of Proposition 3.1 holds true in each of the following cases:

1. (finite activity) f2 satisfies (Afin).
2. (infinite activity) f2 satisfies (Ainfi) and U 1 ∗ μ̃ and U 2 ∗ μ̃ are BMO(P)-

martingales for the corresponding JBSDE solutions (Y 1, Z1,U 1) and
(Y 2, Z2,U 2).

Proof This follows directly from Proposition 3.1 and Example 3.8, noting that rep-
resentation (3.5) in connection with condition (Afin) resp. (Ainfi) meets the sufficient
conditions in Example 3.3. �



14 D. Becherer et al.

Unlike classical a-priori estimates that offer some L2-norm estimates for the
BSDE solution in terms of the data, the next result gives a simple L∞-estimate for
the Y -component of the solution. Such will be useful for the derivation of BSDE
solution bounds and for truncation arguments.

Proposition 3.10 Let (Y, Z ,U ) ∈ S∞ × L2(B) × L2(μ̃) be a solution to the BSDE
(ξ, f ) with ξ ∈ L∞(FT ), f be Lipschitz continuous w.r.t. (y, z) with Lipschitz con-
stant K y,z

f and satisfying (Aγ) with f.(0, 0, 0) bounded.
Then |Yt | ≤ exp

(
K y,z

f (T − t)
)(|ξ|∞ + (T − t)| f.(0, 0, 0)|∞

)
for t ≤ T .

Proof Set (Y 1, Z1,U 1) = (Y, Z ,U ), (ξ1, f 1) = (ξ, f ), (Y 2, Z2,U 2) = (0, 0, 0)
and (ξ2, f 2) = (0, f ). Then following theproof ofProposition3.1,Eq. (3.3) becomes

(RY )τ∧t ≤ (RY )τ∧T +
∫ τ∧T

τ∧t
Rs fs(0, 0, 0) ds − (Lτ

T − Lτ
t ), t ∈ [0, T ],

for all stopping times τ where L := M − 〈M, N 〉 is inMloc(Q), M := ∫
RZ dB +

(RU ) ∗ μ̃ is in M2, N := ∫
β dB + γ ∗ μ̃ with γ := γ0,0,U,0 and the probability

measure Q ≈ P is given by dQ := E(N )T dP. Localizing L along some sequence
τ n ↑ ∞ of stopping times yields

EQ

(
(RY )τ n∧t

∣∣Ft
) ≤ EQ

(
(RY )τ n∧T +

∫ τ∧T

τ∧t
Rs fs(0, 0, 0) ds

∣∣Ft
)
.

By dominated convergence, we conclude that P-a.e

Yt ≤ EQ

( RT
Rt

ξ +
∫ T

t

Rs
Rt

fs (0, 0, 0) ds
∣∣∣Ft

)
≤ e

K y,z
f (T−t)(|ξ|∞ + (T − t)| f·(0, 0, 0)|∞

)
.

Analogously, if we define N := ∫
β dB + γ̃ ∗ μ̃ with γ̃ := γ0,0,0,U , andQ equiv-

alent to P via dQ := E(N )T dP, we deduce that L := M − 〈M, N 〉 is in Mloc(Q)

and

(RY )τ∧t ≥ (RY )τ∧T +
∫ τ∧T

τ∧t
Rs fs(0, 0, 0) ds − (L

τ

T − L
τ

t ), t ∈ [0, T ],

for all stopping times τ . This yields the required lower bound. �

Again, we can specify explicit conditions on the generator function that are suf-
ficient to ensure the more abstract assumptions of the previous result.

Proposition 3.11 Let (Y, Z ,U ) ∈ S∞ × L2(B) × L2(μ̃) be a solution to the BSDE
(ξ, f ) with ξ in L∞(FT ), f being Lipschitz continuous w.r.t. (y, z) with Lipschitz
constant K y,z

f such that f.(0, 0, 0) is bounded. Assume that one of the following
conditions holds:
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1. (finite activity) f satisfies (Afin).
2. (infinite activity) f satisfies (Ainfi) and U ∗ μ̃ is a BMO(P)-martingale.

Then |Yt | ≤ exp
(
K y,z

f (T − t)
)(|ξ|∞ + (T − t)| fs(0, 0, 0)|∞

)
holds for all t ≤ T ,

in particular |Y |∞ ≤ exp
(
K y,z

f T
)(|ξ|∞ + T | fs(0, 0, 0)|∞

)
.

Proof This follows directly from Proposition 3.10 and Example 3.8, since f satisfies
condition (Aγ) (resp. (A′

γ)) using Eq. (3.5). �

In the last part of this section we apply our comparison theorem for more concrete
generators. To this end, we consider a generator f being truncated at bounds a < b
(depending on time only) as

f̃t (y, z, u) := ft
(
κ(t, y), z, κ(t, y + u) − κ(t, y)

)
, (3.6)

with κ(t, y) := (
a(t) ∨ y

) ∧ b(t). Next, we show that if a generator satisfies (Aγ)

within the truncation bounds, then the truncated generator satisfies (Aγ) everywhere.

Lemma 3.12 Let f satisfy (3.4) for Y,U such that

a(t) ≤ Yt−,Yt− +Ut (e),Yt− +U ′
t (e) ≤ b(t), t ∈ [0, T ]

and let γ satisfy one of the conditions of Example 3.3 for the martingale property
of E(γ ∗ μ̃). Then f̃ satisfies (3.4). Especially, if f satisfies (Afin) on the set where
a(t) ≤ y, y + u ≤ b(t) then f̃ is Lipschitz in (y, z), locallyLipschitz in u and satisfies
(Aγ).

Proof Using monotonicity of x �→ κ(t, x), we get that

f̃t (Yt−, Zt ,Ut ) − f̃t (Yt−, Zt ,U
′
t )

equals

ft
(
κ(t, Yt−), Zt , κ(t, Yt− +Ut ) − κ(t, Yt−)

) − ft
(
κ(t, Yt−), Zt , κ(t, Yt− +U ′

t ) − κ(t, Yt−)
)

≤
∫
E

γt (e)
(
κ(t, Yt− +Ut (e)) − κ(t, Yt− +U ′

t (e))
)
ζ(t, e)λ(de)

≤
∫
E

γt (e)
(
1{γ≥0,U≥U ′} + 1{γ<0,U<U ′}

)(
Ut (e) −U ′

t (e)
)
ζ(t, e) λ(de).

Settingγ∗ := γ
(
1{γ≥0,U≥U ′} + 1{γ<0,U<U ′}

)
wesee that the stochastic exponential

E( ∫
βdB + γ∗ ∗ μ̃

)
is a martingale for all bounded and predictable processes β and

f̃ satisfies (3.4). The latter claim easily follows from the fact that if f satisfies (Afin)

on a(t) ≤ y, y + u ≤ b(t) then f satisfies (3.4) on a(t) ≤ Yt−,Yt− +Ut (e),Yt− +
U ′

t (e) ≤ b(t) using Example 3.8. The Lipschitz properties of f̃ follow from the fact
that κ is a contraction and f is Lipschitz within the truncation bounds. �
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Concrete L∞-bounds for bounded solutions to BSDE (ξ, f ) with suitable f̂ -part
are provided by

Proposition 3.13 Let f be agenerator of the form (2.6)with
∣∣ f̂t (y, z)∣∣≤K1 + K2|y|

for some K1, K2 ≥ 0, gt(y, z, 0, e) ≡ 0 and ξ ∈ L∞(FT ) with c1 ≤ ξ ≤ c2 for some
c1, c2 ∈ R. Assume that there are solutions a and b to the ODEs
y′(t) = K1 + K2|y(t)|, y(T ) = c1 and y′(t) = −(K1 + K2|y(t)|), y(T ) = c2
respectively, such that a ≤ b on [0, T ]. If the truncated generator f̃ in (3.6) satisfies
(Aγ) and is Lipschitz in (y, z), then any solution (Ỹ , Z̃ , Ũ ) ∈ S∞ × L2(B) × L2(μ̃)

to the JBSDE (ξ, f̃ ) also solves the JBSDE (ξ, f ) and satisfies a(t) ≤ Ỹt ≤ b(t),
t ∈ [0, T ].
Proof We set Yt := κ(t, Ỹt ), Zt := Z̃t , Ut (e) := κ(t, Ỹt− + Ũt (e)) − κ(t, Ỹt−) and

f it (y, z, u) := f̂ it
(
κ(t, y), z

) +
∫
E
gt

(
κ(t, y), z, κ(t, y + u) − κ(t, y), e

)
ζ(t, e) λ(de)

with f̂ 1
t (y, z) := −(K1 + K2|y|), f̂ 2

t (y, z) := f̂t (y, z) and f̂ 3
t (y, z) := K1+K2|y|.

By the assumptions on the ODEs, we have that (a(t), 0, 0) solves the BSDE (c1, f 1)
and (b(t), 0, 0) solves the BSDE (c2, f 3). Taking into account that f̃ 1 ≤ f̃ 2 ≤ f̃ 3,
c1 ≤ ξ ≤ c2 and f̃ 2 satisfies (Aγ), comparison theorem Proposition 3.1 yields
a(t) ≤ Ỹt ≤ b(t). Hence, Y and Ỹ are indistinguishable, U = Ũ in L2(μ̃) and
(Ỹ , Z̃ , Ũ ) solves the BSDE (ξ, f ). �

In the next section, we apply these results to two situations: Using Corollary 4.4,
we give an alternative proof of Theorem 3.5 of [7] via a comparison principle instead
of an argument with stopping times. Moreover, the estimates in Corollary 4.6 are
applied to solve the power utility maximization problem via a JBSDE approach in
Sect. 5.2.

4 Existence and Uniqueness of Bounded Solutions

This section studies BSDE with jumps by the monotone stability approach. Building
on (straightforward) results for finite activity, the infinite activity case is treated by
monotone approximations.

4.1 The Case of Finite Activity

Definition 4.1 A generator function f satisfies condition (Bγ), if it is
Lipschitz continuous in (y, z), locally Lipschitz continuous in u (in the sense that
u �→ ft (y, z,−c ∨ u ∧ c) is Lipschitz continuous for any c ∈ (0,∞)), f.(0, 0, 0) is
bounded, and f satisfies condition (Aγ).
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The next result readily leads to Proposition 4.3, for A in (2.6) with λ(A) < ∞.

Proposition 4.2 Let ξ ∈ L∞(FT ) and f satisfies (Bγ). Then there exists a unique
solution (Y, Z ,U ) in S∞ × L2(B) × L2(μ̃) to the BSDE (ξ, f ). Moreover for all
t ∈ [0, T ], |Yt | is bounded by exp

(
K y,z

f (T − t)
)(|ξ|∞ + (T − t)| f.(0, 0, 0)|∞

)
.

Proof Consider the Lipschitz generator f ct (y, z, u) := ft
(
y, z, (u ∨ (−c)) ∧ c

)
with c > 0 and Lipschitz constant K f c . By classical fixed point arguments
and a-priori estimates (cf. e.g. [7, Propositions 3.2, 3.3]) there is a unique solution
(Y c, Zc,Uc) ∈ S2 × L2(B) × L2(μ̃) to the BSDE (ξ, f c); it satisfies

|Y c
t | ≤ CE

(
|ξ|2 +

∫ T

t
| f cs (0, 0, 0)|2 ds

∣∣∣Ft

)
≤ C

(|ξ|2∞ + T | f.(0, 0, 0)|2∞
)

< ∞,

for some constant C = C(T, K f c). Now Proposition 3.10 implies that |Y c
t |

is dominated by exp
(
K y,z

f (T − t)
)(|ξ|∞ + (T − t)| f.(0, 0, 0)|∞

)
for all c > 0.

Choosing c ≥ 2 exp
(
K y,z

f T
)(|ξ|∞ + T | f.(0, 0, 0)|∞

)
we get that (Y c, Zc,Uc)

with Y c ∈ S∞ solves the BSDE (ξ, f ) sinceUc is bounded by c. Uniqueness follows
by comparison. �

This leads to a preliminary result on bounded solutions if jumps are of finite
activity.

Proposition 4.3 Let ξ ∈ L∞(FT ) and let f satisfy (Afin) (recall Definition 3.6) with
f.(0, 0, 0) bounded. Then there exists a unique solution (Y, Z ,U ) in
S∞ × L2(B) × L2(μ̃) to the BSDE (ξ, f ). Moreover for all t ∈ [0, T ], |Yt | is
bounded by exp

(
K y,z

f (T − t)
)(|ξ|∞ + (T − t)| f.(0, 0, 0)|∞

)
.

Proof Noting that local Lipschitz continuity in u follows from the absolute con-
tinuity of g in u with locally bounded density function, the claim follows from
Propositions 3.11 and 4.2. �

Corollary 4.4 Let ξ ∈ L∞(FT ) and let f be a generator satisfying (Afin), with
gt(y, z, 0, e) ≡ 0 and | f̂t (y, z)| ≤ K1 + K2|y| for some K1, K2 ≥ 0. Set

b(t) =
{

(|ξ|∞ + K1
K2

) exp(K2(T − t)) − K1
K2

, K2 �= 0

|ξ|∞ + K1(T − t), K2 = 0.

Then there exists a unique solution (Y, Z ,U ) ∈ S∞ × L2(B) × L2(μ̃) to the BSDE
(ξ, f ) andmoreover |Yt | ≤ bt for t ∈ [0, T ]. Finally ∫

Z dB andU ∗ μ̃ areBMO(P)-
martingales.

Proof ByLemma3.12 and Proposition 4.3, there is a unique solution (Y, Z ,U ) in the
space S∞ × L2(B) × L2(μ̃) to the BSDE (ξ, f̃ ). By Proposition 3.13, it also solves
the BSDE (ξ, f ) and −b(t) ≤ Yt ≤ b(t), ∀t ∈ [0, T ]. Uniqueness follows from the
fact that one can apply the comparison Theorem 3.9 for generators satisfying (Afin).
The BMO property follows from Lemma 2.3. �
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Remark 4.5 Corollary 4.4 is similar to Theorem 3.5 in [7], but its proof is different: It
relies on previous comparison results for JBSDEs instead of stopping arguments. The
stochastic integrals of the BSDE solution are BMO-martingales under the assump-
tions for Lemma 2.3, which hold e.g. under the conditions for [7, Theorem 3.6]

Corollary 4.6 Let ξ ∈ L∞(FT )with ξ ≥ C for some constant C > 0, K ≥ 0 and set
a(t) := C exp(−K (T − t)) and b(t) = |ξ|∞ exp(K (T − t)), ∀t ∈ [0, T ]. Assume
f satisfies (Afin) for c ≤ y, y + u ≤ d for all c, d ∈ R with 0 < c < d, and that∣∣ f̂t (y, z)∣∣ ≤ K |y|and gt (y, z, 0, e) = 0. Then there exists a unique solution (Y, Z ,U )

∈ S∞ × L2(B) × L2(μ̃) to the BSDE (ξ, f ) with Y ≥ ε for some ε > 0. Moreover,
it holds a(t) ≤ Yt ≤ b(t) and

∫
Z dB and U ∗ μ̃ are BMO(P)-martingales.

Proof This can be shown with a similar argument for the uniqueness as above: Let
(Y ′, Z ′,U ′) be another solution to the BSDE (ξ, f ) with Y ′ ≥ ε for some ε > 0.
Then f satisfies (Afin) for a(t) ∧ ε ≤ y, y + u ≤ b(t) ∨ |Y ′|∞; hence the solutions
coincide by comparison. �

Example 4.7 As a special case of Corollary 4.6 to be applied in Sect. 5.2, setting
K := (

γ|ϕ|2∞
)
/
(
2(1 − γ)2

)
for some γ ∈ (0, 1) and some predictable and bounded

process ϕ we define

ft (y, z, u) := f̂t (y, z) +
∫
E
gt (y, u, e) ζ(t, e) λ(de)

:= γ

2(1 − γ)2
|ϕt |2y +

∫
E

(
1

1 − γ
((u(e) + y)1−γ yγ − y) − u(e)

)
ζ(t, e) λ(de).

From ∂g
∂y

(t, y, u, e) =
(
u+y
y

)1−γ + γ
1−γ

(
u+y
y

)−γ − 1
1−γ

, we see that f is Lips-

chitz in y within the truncation bounds. Moreover, g is continuously differen-

tiable with bounded derivatives and we have ∂g
∂u

(t, y, u, e) =
(
u+y
y

)−γ − 1 > −1,

for c ≤ y, y + u ≤ d.

4.2 The Case of Infinite Activity

For linear generators of the form
ft (y, z, u) := α0

t + αt y + βt z + ∫
E γt (e)u(e) ζ(t, e) λ(de), with predictable coeffi-

cients α0, α, β and γ, JBSDE solutions can be represented by an adjoint process. In
our context of bounded solutions, one needs rather weak conditions on the adjoint
process. This will be used later on in Sect. 5. The idea of proof is standard, cf. [36,
Lemma 1.23] for details.

Lemma 4.8 Let f be a linear generator of the form above and let ξ be in L∞(FT ).

1. Assume that (Y, Z ,U ) ∈ S∞ × L2(B) × L2(μ̃) solves the BSDE (ξ, f ). Suppose
that the adjoint process (�t

s)s∈[t,T ] := (exp(
∫ s
t αu du)E(

∫
βdB + γ ∗ μ̃)st )s∈[t,T ]
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is in S1 for any t ≤ T and α0 is bounded. Then Y is represented as
Yt = E

[
�t
T ξ + ∫ T

t �t
sα

0
s ds|Ft

]
.

2. Let α0, α, β and γ̃t := ∫
E |γt (e)|2 ζ(t, e)λ(de), t ∈ [0, T ], be bounded and

γ ≥ −1. Then there is a unique solution in S∞ × L2(B) × L2(μ̃) to the BSDE
(ξ, f ) and Part 1. applies.

Our aim is to prove existence and uniqueness beyond Proposition 4.3 for infi-
nite activity of jumps, that means λ(A) may be infinite in (2.6). To show Theorems
4.11 and 4.13, we use a monotone stability approach of [37]: By approximating a
generator f of the form (2.7) (with A such that λ(A) = ∞) by a sequence ( f n)n∈N
of the form (2.7) (with An such that λ(An) < ∞) for which solutions’ existence is
guaranteed, one gets that the limit of these solutions exist and it solves the BSDE
with the original data. As in [37], the monotone approximation approach is perceived
as being not easy in execution, a main problem usually being to prove strong conver-
gence of the stochastic integral parts for the BSDE. By Proposition 4.9 convergence
works for small terminal condition ξ. That is why we can not apply this Proposition
directly to data (ξ, f n)n∈N. Instead we sum (converging) solutions for small 1/N -
fractions of the desired terminal condition. This is inspired by the iterative ansatz
from [45] for a particular generator. For our generator family, we adapt and elaborate
proofs, using e.g. a S1-closeness argument for the proof of the strong approximation
step. Compared to [45], the analysis for our general family of JBSDEs adds clarity
and structural insight into what is really needed. It extends the scope of the BSDE
stability approach [37, 45], in particular with regards to non-Lipschitz dependen-
cies in the jump-integrand, while the proof shows comparable ease for the (usually
laborious) strong approximation step in the setup under consideration. Differently
to e.g. [23, 45, 57], no exponential transforms or convolutions are needed here, as
our generators are “quadratic” in U but not in Z . Despite similarities at first sight,
a closer look reveals that Theorem 4.11 is different from [35, Theorem 5.4], both in
the method of proof and in scope: They prove existence for small terminal condi-
tions by following the fixed point approach by [56], whereas we show stability for
small terminal conditions (Proposition 4.9) and apply a different pasting procedure,
approximating not only terminal data but also generators. Here wellposedness of the
approximating JBSDEs is obtained directly from classical theory by using compar-
ison and estimates from Sect. 3, which enable us to argue within uniform a-priori
bounds for the approximating sequence. Examples in Sect. 5 demonstrate that also
the scope of our results is different.

In more detail, the task for the next Theorem 4.11 is to construct gener-
ators ( f k,n)1≤k≤N ,n∈N and solutions (Y k,n, Zk,n,Uk,n) to the BSDEs with data
(ξ/N , f k,n) for N large enough such that (Y k,n, Zk,n,Uk,n) converges if n → ∞
and (Y n, Zn,Un) := ∑N

k=1(Y
k,n, Zk,n,Uk,n) solves the BSDE (ξ, f n). In this case

(Y n, Zn,Un) converges and its limit is a solution candidate for the BSDE (ξ, f ). For
this program, we next show a stability result for JBSDE.

Proposition 4.9 Let (ξn) ⊂ L∞(FT ) with ξn → ξ in L2(FT ) and ( f n)n∈N be a
sequence of generators with f n. (0, 0, 0) = 0, ∀n, having property (Bγn ) such
that K y,z

f := supn∈N K y,z
f n < ∞. Denote by (Y n, Zn,Un) ∈ S∞ × L2(B) × L2(μ̃)
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the solution to the BSDE (ξ, f n) with Y n bounded by |ξ|∞ exp(K y,z
f n T ) and set

c̃ := |ξ|∞ exp(K y,z
f T ). Assume that Y n converges pointwise, (Zn,Un)→(Z ,U ) con-

vergesweakly inL2(B) × L2(μ̃)and | f nt (0, 0, u)| ≤ K̂ |u|2t + L̂ t for all n and u with
|u| ≤ 2c̃, K̂ ∈ R+ and L̂ ∈ L1(P ⊗ dt). Then (Zn,Un) converges to (Z ,U ) strongly
in L2(B) × L2(μ̃), if |ξ|∞ ≡ c̃ exp(−K y,z

f T ) ≤ exp(−K y,z
f T )/(80max{K y,z

f , K̂ }).
Proof We note that (Y n, Zn,Un) is uniquely defined by Proposition 4.2. To prove
strong convergence of (Zn)n∈N and (Un)n∈N we consider δY := Y n − Ym ,
δZ := Zn − Zm , δU := Un −Um and apply Itô’s formula for general semimartin-
gales to (δY )2 to obtain

(δY0)
2 = (δYT )2 +

∫ T

0
2δYs−( f ns (Yn

s−, Zn
s ,Un

s ) − f ms (Ym
s−, Zm

s ,Um
s ))ds

−
∫ T

0
‖δZs‖2ds − 2

∫ T

0
δYs−δZs dBs −

∫ T

0

∫
E
(δYs− + δUs(e))

2 − (δYs−)2 μ̃(ds, de)

−
∫ T

0

∫
E
(δYs− + δUs(e))

2 − (δYs−)2 − 2δYs−δUs(e) ν(ds, de).

Noting that the stochastic integrals are martingales one concludes that

E

( ∫ T

0
2δYs−( f ns (Y n

s−, Zn
s ,U

n
s ) − f ms (Ym

s−, Zm
s ,Um

s )) ds
)

= E

( ∫ T

0

∫
E

δUs(e)
2 ν(ds, de)

)
+ E

( ∫ T

0
‖δZs‖2 ds

)
− E

(
(δYT )2) + E((δY0)

2
)
.

(4.1)
Using the inequalities a ≤ a2 + 1/4, (a + b)2 ≤ 2(a2 + b2), (a + b + c)2 ≤
3(a2 + b2 + c2), the Lipschitz property of f n in y and z and the estimate for
f nt (0, 0, u), we have

| f ns (Yn
s−, Zn

s ,Un
s ) − f ms (Ym

s−, Zm
s ,Um

s )|
≤ K y,z

f n (|Yn
s−| + ‖Zn

s ‖) + K y,z
f m (|Ym

s−| + ‖Zm
s ‖) + K̂ |Un

s |2s + L̂s + K̂ |Um
s |2s + L̂s

≤ K1 + 2L̂s + K2(‖δZs‖2 + ‖Zn
s − Zs‖2 + ‖Zs‖2 + |δUs |2s + |Un

s −Us |2s + |Us |2s ),
(4.2)

where K1 := K y,z
f (2c̃ + 1/2) ∈ R, K2 := 5max{K y,z

f , K̂ } and | · |t is defined in (2.5).
Combing inequalities (4.1) and (4.2) yields

E

( ∫ T

0
‖δZs‖2 + |δUs |2s ds

)
≤ 2E

( ∫ T

0
|δYs−|(K1 + 2L̂s + K2(‖δZs‖2 + ‖Zn

s − Zs‖2 + ‖Zs‖2

+ |δUs |2s + |Un
s −Us |2s + |Us |2s )) ds

)
+ E

(
(ξn − ξm )2

)
.

Let us recall that the predictable projection of Y , denoted by Y p, is defined as the
unique predictable process X such that Xτ = E(Yτ |Fτ−) on {τ < ∞} for all pre-
dictable times τ . For Y n it holds (Y n)p = Y n−. This follows from
[31, Proposition I.2.35.] using thatY n is càdlàg, adapted and quasi-left-continuous, as
�Yτ = �U ∗ μ̃τ = 0 on {τ < ∞}holds for all predictable times τ thanks to the abso-
lute continuity of the compensator ν. Noting that 1 − 2K2|δYs−| ≥ 1 − 4K2c̃ ≥ 3/4
and setting Y := limn→∞ Y n we deduce by the weak convergence of (Zn)n∈N and
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(Un)n∈N, Y n− = (Y n)p ↑ (Y )p as n → ∞ and by Lebesgue’s dominated convergence
theorem
3

4
E

( ∫ T

0
‖Zn

s − Zs‖2 + |Un
s −Us |2s ds

)

≤ 3

4
lim inf
m→∞ E

( ∫ T

0
‖Zn

s − Zm
s ‖2 + |Un

s −Um
s |2s ds

)

≤ lim inf
m→∞ 2E

( ∫ T

0
|δYs−|(K1 + 2L̂s + K2(‖Zn

s − Zs‖2 + ‖Zs‖2 + |Un
s −Us |2s + |Us |2s )) ds

)

+ E
(
(ξm − ξn)2

)

= 2E
( ∫ T

0
|Yn

s− − (Ys)
p|(K1 + 2L̂s + K2(‖Zn

s − Zs‖2 + ‖Zs‖2 + |Un
s −Us |2s + |Us |2s )) ds

)

+ E
(
(ξ − ξn)2

)
.

Noting 3/4 − 2K2|Y n
s− − (Ys)p| ≥ 3/4 − 4K2c̃ ≥ 1/2, one obtains with dominated

convergence

1

2
lim sup
n→∞

E

( ∫ T

0
‖Zn

s − Zs‖2 + |Un
s −Us |2s ds

)

≤ lim sup
n→∞

2E
( ∫ T

0
|Yn

s− − (Ys)
p|(K1 + 2L̂s + ‖Zs‖2 + |Us |2s ) ds

)
+ E

(
(ξn − ξ)2

) = 0.

�

We will need the following result which is a slight variation of [37, Lemma 2.5].

Lemma 4.10 Let (Zn)n∈N be convergent inL2(B)and (Un)n∈N convergent inL2(μ̃).
Then there exists a subsequence (nk)k∈N such that

sup
nk

‖Znk‖ ∈ L2(P ⊗ dt) and sup
nk

|Unk
t |t ∈ L2(P ⊗ dt).

Proof The result for (Zn)n∈N is from [37] and the argument for (Un)n∈N is
analogous. �

Theorem 4.11 [Monotone stability, infinite activity] Let ξ ∈ L∞(FT )

and let ( f n)n be a sequence of generators satisfying condition (Bγn ) with
K y,z

f := supn∈N K y,z
f n < ∞. Assume that

1. there is (Ŷ , Ẑ , Û ) in S∞ × L2(B) × L2(μ̃) with Û bounded and
f nt (Ŷt−, Ẑt , Ût ) ≡ 0 for all n,

2. for all u ∈ L0(B(E),λ) with |u| ≤ |Û |∞ + 2|ξ|∞ exp(K y,z
f T ) there exists

K̂ ∈ R+ and a process L̂ ∈ L1(P ⊗ dt) such that | f nt (0, 0, u)| ≤ K̂ |u|2t + L̂ t for
each n ∈ N,

3. the sequence ( f n)n∈N converges pointwise and monotonically to a generator f ,


