Udo Blum

Plant-Plant Allelopathic Interactions III

Partitioning and Seedling Effects of Phenolic Acids as Related to their Physicochemical and Conditional Properties

Plant-Plant Allelopathic Interactions III

Udo Blum

Plant-Plant Allelopathic Interactions III

Partitioning and Seedling Effects of Phenolic Acids as Related to their Physicochemical and Conditional Properties

Udo Blum Department of Plant & Microbial Biology North Carolina State University Raleigh, NC, USA

ISBN 978-3-030-22097-6 ISBN 978-3-030-22098-3 (eBook) https://doi.org/10.1007/978-3-030-22098-3

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG. The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The first volume (Blum 2011) contains a retrospective analysis of the author's research program at North Carolina State University on plant-plant allelopathic interactions involving simple phenolic acids such as cinnamic and benzoic acids and their potential role in the inhibition of broadleaf weed emergence in cover crop debris no-till crop systems. It was written for researchers, students, farmers, as well as layman interested in science, reduced tillage, and plant-plant allelopathic interactions. The second volume (Blum 2014) contains a detailed description and discussion of the underlying features, issues, and suppositions associated with seed and seedling laboratory bioassays presented in the first volume. It is, however, broader in scope and substance in that the information provided is relevant to all watersoluble compounds released to soil by putative allelopathic living plants and their litter and residues. It updates and expands the practical guidelines for designing laboratory bioassays provided previously in the literature with the hope that the designs of future seed and seedling bioassays would become more relevant to field systems. It was written specifically for researchers and their graduate students interested in studying plant-plant allelopathic interactions, although a layman interested in science may also find it beneficial in understanding the benefits and limitations of laboratory bioassays in exploring the causes and effects of putative allelopathic compounds.

This volume continues the retrospective analysis but goes beyond that in an attempt to understand how phenolic acids are partitioned in seedling-solution and seedling-microbe-soil-sand culture systems and how their effects on seedlings may be related to the actual and conditional physicochemical properties of simple phenolic acids. It does this by presenting hypothetical analyses for the relationships between physicochemical properties and conditional properties of phenolic acids, such as cinnamic and benzoic acids, and the behavior of phenolic acids in seedling-solution culture systems and seedling-microbe-soil-sand culture systems. Hypothetical in that the raw data was not always readily available and thus published means, data points generated by regression analyses and data points for published figures were also utilized in combination with published physicochemical properties of phenolic acids to establish these relationships.

viii Preface

Specifically, it explores the quantitative source-sink relationships of phenolic acids in cucumber seedling-solution and cucumber seedling-microbe-soil-sand systems. It contains the following:

- (a) Chapter 1 describes the potential relationships, where they may exist, for direct transfer of organic compounds between plants, plant communication, and allelopathic interactions, defines the boundaries for allelopathic interactions, summarizes terminology, and outlines standard approaches to the study of allelopathic interactions.
- (b) Chapter 2 describes sources, sinks, turnover rates, modifying elements and identity, mobility, distribution, states, and effects of the potential allelopathic compounds.
- (c) Chapter 3 describes the conceptual models for system sources (inputs) and partitioning (sinks) of hydrophilic, hydrophobic, and volatile organic compounds for seedling-microbe-soil systems and the physicochemical properties of organic compounds with an emphasis on phenolic acids that may be useful in understanding and quantifying the behavior of individual organic compounds, actually molecules, in seedling-microbe-soil systems.
- (d) In Chap. 4, the author explores the potential roles of solution pH, pK_a of phenolic acids, and pH-pK_a relationships in modifying the behavior of cucumber seedlings (*Cucumis sativus*) treated with simple phenolic acids and/or mixtures of simple phenolic acids in solution culture.
- (e) In Chap. 5, the author explores the potential roles of log P (hydrophobicity), log D (pH-adjusted log P), and molecular structures of phenolic acids in modifying the behavior of cucumber seedlings (*Cucumis sativus*) treated with phenolic acids and/or phenolic acid mixtures in solution culture.
- (f) In Chap. 6, the author explores whether the conditional properties of K_d and K_{oc} (sorption coefficients) for phenolic acids could assist in determining how phenolic acids are partitioned in sterilized Cecil and Portsmouth A and B horizon soils and compares the merit of using sorption K_d and K_{oc} values based on the batch equilibrium and desorption techniques with that of sorption K_d and K_{oc} values based on water, neutral EDTA, and/or Mehlich III extractions.
- (g) Chapter 7 describes how biological processes, such as microbial utilization and root and/or mycorrhizal uptake, may influence the available (reversibly sorbed and free) phenolic acids in Cecil and Portsmouth A and B horizon soil and soilsand systems.
- (h) Chapter 8 describes the source (input)-sink relationships, processes, mechanisms, and causes and effects of phenolic acids, such as ferulic acid, *p*-coumaric acid, *p*-hydroxybenzoic acid, and/or vanillic acid, by means of a conceptual and hypothetical sub-models for a cucumber seedling-solution culture system.

(i) Chapter 9 describes how conceptual sub-models for soil and soil-sand-culture bioassays in conjunction with quantitative relationships described in the previous chapters and the literature may be used to model how various system elements of soil and soil-sand cultures can potentially modify or control the actions and effects of simple phenolic acids on cucumber seedlings.

- (j) Chapter 10 describes the physicochemical and biotic partitioning of phenolic acids in Cecil soil and Cecil soil-sand systems plus or minus microorganisms and cucumber seedlings (*Cucumis sativus*) treated with phenolic acids with an emphasis on *p*-coumaric acid and presents quantitative data for how phenolic acids may be partitioned in hypothetical cucumber seedling-microbe-Cecil A horizon soil-sand systems. The hypothetical models for the two types of systems are provided, a continuous-input column system and a multiple-input cup system.
- (k) Chapter 11 describes the physicochemical and biotic partitioning of phenolic acids in Portsmouth A and B horizon soil and soil-sand systems plus or minus microorganisms and cucumber seedlings (*Cucumis sativus*) and the ways that various system elements, such as soil type, pH, and phenolic acid mixtures, affect this partitioning and/or seedling behavior and provides quantitative data for ways that phenolic acids may be partitioned in a hypothetical cucumber seedling-microbe-Portsmouth B soil-sand model system treated with ferulic acid.
- (1) In Chap. 12, the author reexamines the underlying assumptions of the conceptual and hypothetical models of this volume and attempts to answer the questions: Can physicochemical properties of phenolic acids be used as tools to help understand the complex behavior of phenolic acids and the ultimate effects of phenolic acids on sensitive seedlings? What insights do laboratory bioassays and the conceptual and hypothetical models of laboratory systems provide us concerning the potential behavior and effects of phenolic acids in field systems? What potential role may phenolic acids play in broadleaf weed seedling emergence in wheat debris no-till cover crop systems?

The third volume was written specifically for researchers and their students interested in understanding how a range of simple phenolic acids and potentially other putative allelopathic compounds released from living plants and their litter and residues may affect soil chemistry, microbial biology, and seedling behavior in seedling-solution and seedling-microbe-soil-sand culture systems.

Note 1: Because of the dynamics of the Internet, any web addresses or links contained in this volume may have changed since its publication and may no longer be valid. The reader will find some subject matter and data from references repeated in several chapters. This is because the chapters are written to be stand-alone as much as possible. Thus, the subject matter and references are described or discussed more than once but each time in the context of the topic of the chapter.

x Preface

Note 2: Correction – In Volume 1 (Blum 2011) for Fig. 2.25 and Fig. 3.19, the units for the colony-forming units (CFU) should have been CFU/g root dry weight instead of CFU/g soil.

Raleigh, NC, USA 3/19/2019

Udo Blum

References

Blum U (2011) Plant-plant allelopathic interactions: phenolic acids, cover crops and weed emergence. Springer, Dordrecht

Blum (2014) Plant-plant allelopathic interactions II: laboratory bioassays for water-soluble compound with an emphasis on phenolic acids. Springer, Cham

Acknowledgments

It appears appropriate for the final volume of this series to recognize the funding sources and the contributions of all the faculty members, technicians, graduate and undergraduate students, and family members who contributed to making this series possible. I have thus included slightly modified acknowledgments for both the first and second volume.

Volume I (Blum 2011)

Although my research interests in allelopathy have been a primary focus for most of my academic career, I did take several excursions into other research areas (e.g., air pollution biology and salt marsh ecology) before returning full time to the subject matter of allelopathy. In retrospect, these excursions turned out to be extremely beneficial to my understanding of stress physiology and ecosystem biology, the important insights needed when studying plant-plant allelopathic interactions. My teaching of beginning and advanced undergraduate botany courses and graduate courses in plant physiology, ecology, plant physiological ecology, and root ecology also proved to be invaluable in my pursuit of understanding the mechanisms of plant-plant allelopathic interactions by providing me with an opportunity to develop a much more in-depth appreciation of plant morphology, anatomy, physiology, and population biology and soil physics, chemistry, and microbiology.

Equally as important as a solid understanding of plant, microbial, and soil biology and chemistry was an appreciation of the scientific method. The importance of the scientific method as a tool for studying biological systems was instilled within me by EL Rice, my PhD mentor at The University of Oklahoma, and was reinforced by my teaching of botany courses using the Socratic method at both the University of Oklahoma and at North Carolina State University.

I also want to acknowledge the help of several statisticians at North Carolina State University who over the years provided me with the opportunity to develop and refine my skills in experimental design, data analysis, and modeling. In particular, I would like to express my appreciation to Professors RJ Monroe, JO Rawlings, and TM Gerig of the Department of Statistics.

xii Acknowledgments

Along the way, there were numerous faculty members, graduate and undergraduate students, and technicians who influenced, shaped, and reshaped my research program in allelopathy. A deep felt thank you to all of them. In particular, I would like to express my appreciation to faculty members C Brownie, RC Fites, TM Gerig, F Louws, LD King, SR Shafer, SB Weed, TR Wentworth, and AD Worsham; visiting scientist S-W Lyu; technicians/graduate students BR Dalton and K Klein; graduate students MF Austin, CL Bergmark, FL Booker, LJ Flint, AB Hall, LD Holappa, M Kochhar, ME Lehman, JV Perino, KJ Pue, J Rebbeck, JR Shann, K Staman, ER Waters, and AG White; and the assistance of CG Van Dyke in processing the samples and taking the electron micrographs of microbial populations on cucumber root surfaces.

I would also like to acknowledge the following organizations for providing research support and/or funding: the North Carolina Agricultural Research Service, USDA Competitive Research Grants Program, Southern Region Low-Input Agricultural Systems Research and Extension Program, North Carolina Agricultural Foundation Graduate Research Assistantship Program, and Departments of Botany (now Plant Biology and Microbial Biology), Crop Science, Soil Science, and Statistics.

Finally, I wish to thank MA Blum, SO Duke, JR Troyer, JD Weidenhamer, and AD Worsham for editing and reviewing and for the thoughtful and constructive comments.

Volume II (Blum 2014)

I wish to thank RG Belz, MA Blum, AN Blum, LF Grand, SO Duke, JD Weidenhamer, LA Weston, AD Worsham, and D Xie for editing and reviewing and for the thoughtful and constructive comments; A Blum Grady for the following illustrations, Figs. 1.1, 2.1, 3.1, 4.4, and 4.5; and the Department of Plant and Microbial Biology and the College of Agriculture and Life Sciences at North Carolina State University for their support. I would like to especially acknowledge the contribution of my wife, Mary Ann, and our two daughters, Amy and Nicole, for their continued support throughout the years and for their contributions to this volume. I also wish to acknowledge the contributions of the faculty, students, and technicians at North Carolina State University and the researchers worldwide who over the years contributed to the research upon which this volume is based. Writing this volume was truly a cooperative venture. Finally, in the previous volume (see Blum 2011) under acknowledgments, I neglected to specifically acknowledge the contributions of TM Gerig, C Brownie, and JO Rawlings for their help in the statistical analysis and modeling of data described in that volume and to also include FL Booker under the list of the faculty members who influenced, shaped, and reshaped my research program in allelopathy.

For volume (Volume III)

I would like to acknowledge the contributions of the following: MA Blum and several anonymous reviewers for editing and reviewing and for the thoughtful and constructive comments, the assistance of CG Van Dyke in processing the samples

Acknowledgments xiii

and taking the electron micrographs of microbial populations on cucumber root surfaces and for the support provided by the Department of Plant and Microbial Biology and the College of Agriculture and Life Sciences.

References

Blum U (2011) Plant-plant allelopathic interactions: phenolic acids, cover crops and weed emergence. Springer, Dordrecht

Blum (2014) Plant-plant allelopathic interactions II: laboratory bioassays for water-soluble compound with an emphasis on phenolic acids. Springer, Cham

Contents

1.1		sPlant Interactions
1.1		
	1.1.1	Direct Transfers of Compounds Between Plants
	1.1.2	
	1.1.3	
1.0	1.1.4	r
1.2		ng the Boundaries of Plant-Plant Allelopathic
		ctions
	1.2.1	
	4.0.0	and Physicochemical Environment
	1.2.2	Boundaries for Plant-Plant Allelopathic Interactions
	1.2.3	89
1.3		aches
Refe	erences.	
Gen	eral Ba	ckground for Plant-Plant Allelopathic Interactions
Gen 2.1	eral Ba Introd	
Gen 2.1	eral Ba Introd Source	ackground for Plant-Plant Allelopathic Interactions
Gen 2.1	eral Ba Introd Source	ackground for Plant-Plant Allelopathic Interactions uctiones of Available (Free) Organic Compounds Field Environment
Gen 2.1	Introd Source in the 2.2.1	ackground for Plant-Plant Allelopathic Interactions uctiones of Available (Free) Organic Compounds Field Environment
Gen 2.1	Introd Source in the 2.2.1	ckground for Plant-Plant Allelopathic Interactions
Gen 2.1	Introd Source in the 2.2.1 2.2.2	ckground for Plant-Plant Allelopathic Interactions uction es of Available (Free) Organic Compounds Field Environment Living Plants Litter, Residues, and Organic Matter Residual Available Organic Compounds
Gen 2.1	Introd Source in the 2.2.1 2.2.2	ckground for Plant-Plant Allelopathic Interactions uction es of Available (Free) Organic Compounds Field Environment Living Plants Litter, Residues, and Organic Matter Residual Available Organic Compounds and Recalcitrant Organic Matter
Gen 2.1	Introd Source in the 2.2.1 2.2.2 2.2.3	ckground for Plant-Plant Allelopathic Interactions uction es of Available (Free) Organic Compounds Field Environment. Living Plants Litter, Residues, and Organic Matter Residual Available Organic Compounds and Recalcitrant Organic Matter Formation of Available Secondary, Tertiary, Etc.
Gen 2.1 2.2	Introd Source in the 2.2.1 2.2.2 2.2.3	ckground for Plant-Plant Allelopathic Interactions uction es of Available (Free) Organic Compounds Field Environment Living Plants Litter, Residues, and Organic Matter Residual Available Organic Compounds and Recalcitrant Organic Matter Formation of Available Secondary, Tertiary, Etc. Organic Compounds
	Introd Source in the 2.2.1 2.2.2 2.2.3 2.2.4 Sinks	ckground for Plant-Plant Allelopathic Interactions uction es of Available (Free) Organic Compounds Field Environment. Living Plants Litter, Residues, and Organic Matter Residual Available Organic Compounds and Recalcitrant Organic Matter Formation of Available Secondary, Tertiary, Etc.

xvi Contents

	2.4.1	Source (Input)-Sink Relationships
	2.4.2	Turnover Rates of Available Organic Compounds
2.5	When	Is an Organic Compound an Allelopathic Compound?
2.6		fied Putative Allelopathic (IPA) Compounds
	2.6.1	Effects for Identified Putative Allelopathic (IPA)
		Compounds
	2.6.2	Modifying Elements for the Effects of IPA Compounds
	2.6.3	Time Frame for Effects of IPA Compounds
	2.6.4	Mobility and Distribution of IPA Compounds
		in the Environment
	2.6.5	Fractions of IPA Compounds
	2.6.6	Available/Active Fractions, Uptake, Depletion,
		Turnover Rates and Residual Concentrations
2.7	Mode	ling
		8
		l Models for the Input and Partitioning of Organic
		ls in Seedling-Microbe-Soil Systems and Physicochemical
		of Organic Compounds with an Emphasis
		c Acids
3.1		uction
3.2		es (Inputs) and Transport
	3.2.1	Hydrophilic Organic Molecules (All Non-Gaseous
		Water-Soluble Molecules No Matter
		Their Classification)
	3.2.2	Hydrophobic Organic Molecules (All Non-Gaseous
		Water-Insoluble Molecules No Matter
		Their Classification)
	3.2.3	Volatile Organic Molecules (All Gaseous Molecules
		No Matter Their Classification)
3.3	Sinks	
	3.3.1	Hydrophilic Organic Molecules (All Non-Gaseous
		Water-Soluble Molecules No Matter Their
		Classification)
	3.3.2	Hydrophobic Organic Molecules (All Non-Gaseous
		Water-Insoluble Molecules No Matter Their
		Classification)
	3.3.3	Volatile Organic Molecules (All Gaseous Volatile
	5.5.5	Molecules No Matter Their Classification)
3.4	Conce	eptual Models for Source (Potential Inputs)-Sink
3.4		
2.5		onships
3.5		cochemical Properties for Individual Organic
	Comp	ounds with an Emphasis on Phenolic Acids

Contents xvii

	3.6	Linkages Between Physicochemical Properties					
		of Organic Compounds					
	Refe	erences					
4	Sim	ple Phenolic Acids in Solution Culture I: pH and pK _a					
	4.1	Introduction					
	4.2	Simple Phenolic Acids					
	4.3	Physicochemical Properties of Phenolic Acids					
		in Solution Culture					
	4.4	pK _a Values of Phenolic Acids					
	4.5	Calculating Neutral and Negative Fractions					
	4.6	Depletion (Uptake) of Neutral and Negative Fractions					
		of Individual Phenolic Acids					
	4.7	Effects of Neutral Fractions of Individual Phenolic Acids					
		on Growth					
	4.8	Neutral Fractions and Mixtures of Phenolic Acids					
	4.9	The Neutral Fraction vs the Negative Fraction					
		as Causative Agents					
		Final Comments					
	Refe	erences					
5	Sim	Simple Phenolic Acids in Solution Culture II: Log P, Log D					
		and Molecular Structure					
	5.1	Introduction					
	5.2	Log P					
	5.3	Log D (pH Adjusted Log P)					
	5.4	Potential Roles of Log P and Log D					
		5.4.1 Log P and Individual Phenolic Acids					
		5.4.2 Outliers					
		5.4.3 Log D and Individual Phenolic Acids					
		5.4.4 Log P and Concentrations of the Neutral Molecules					
		5.4.5 Mixtures of Phenolic Acids					
	5.5	Molecular Structure					
	5.6	Role of Microorganisms					
	5.7	Final Comments					
	Refe	erences					
6	Sim	ple Phenolic Acids in Soil Culture I: Sorption, K _d and K _{oc}					
U	6.1	Introduction					
	6.2	Sorption and Sorption Coefficients					
	0.2	6.2.1 Definitions					
		6.2.2 Sorption of Phenolic Acids in Soil Systems					
		6.2.3 Soil-Water (K _d) and Soil Organic Carbon-Water (K _{oc})					
		Coefficients					
		Coefficients					

xviii Contents

Contents xix

		8.3.2	Depletion of Ferulic Acid, Vanillic Acid and an Equal-Molar Mixtures of Ferulic Acid	
			and Vanillic Acid and their Effects on Net	
			Phosphorous Uptake (See Lyu et al. 1990)	263
		8.3.3	Depletion of Ferulic Acid from Treatment Solutions	20.
		0.5.5	and Effects of Ferulic Acid on Absolute Rates of Leaf	
			Expansion as Modified by pH over a 48-Hr Treatment	
			Period (See Blum et al. 1985b)	270
	8.4	Final	Comments	27
			Comments	27
)			cal Soil-Culture System Sub-Models	28
	9.1		uction	28
	9.1		res of Soil and Soil-Sand Cultures	28
	9.2	9.2.1	The Basic Systems	28:
		9.2.1	Media, Roots, Microorganisms, Treatment Solutions	20.
		9.2.2	and Effects	28
	9.3	Measi	urements, Coefficients and Relationships	29
	7.5	9.3.1	Determining Depletion, Sorption and Residual	2)
		7.5.1	Concentrations of Phenolic Acids in Soil	
			and Soil-Sand Systems	29
		9.3.2	Sorption, K_d , K_f and K_{oc} Coefficients	29
		9.3.3	pK _a , Log P and Log D	29:
		9.3.4	Colony-Forming Units (CFU) of Microorganisms	29:
		9.3.5	Seedling Effects	29
		9.3.6	Cause and Effect Relationships	29
	9.4		thetical Models: Fundamentals of Cecil	2)
	· · ·	• •	ortsmouth Soil Systems	29
		9.4.1	Phenolic Acid Input.	29
		9.4.2	Processes That Determine Available	
		J	and Unavailable Phenolic Acids	29
		9.4.3	Available (Free and Reversibly Sorbed)	
			and Unavailable (Lost) Phenolic Acids	31
		9.4.4	Seedling Effects and Some Modifying Factors	32
	9.5		nary of System Processes and Protocols for Developing	
			itative Hypothetical Models	33.
		9.5.1	Essential Elements and Properties	
			of Seedling-Microbe-Soil-Sand Systems	33.
		9.5.2	System Features and Protocols for Developing	
			Hypothetical Black Box Models	33
	Refe	erences	13/pen12011 2011 12011	33
^				20.
0	_		ve Hypothetical System Models for Cecil	~ .
	Soil	-Nand S	Systems	34

xx Contents

	10.1	Introdu	ction	345	
	10.2	The Sy	stems and Their Hypothetical Models	345	
		10.2.1	Continuous-Input Column Open Systems	346	
		10.2.2	Single and Multiple Input Closed Systems	362	
	Refer	ences		404	
11	Quan	titative	Hypothetical System Model for a Portsmouth		
			il-Sand System	407	
	11.1		ction	407	
	11.2		ative Data Available for Portsmouth Soil		
		and Soi	il-Sand Systems	408	
		11.2.1	Physicochemical Processes in Soil	408	
		11.2.2	Physicochemical Processes, Microbial Populations		
			and Utilization of Phenolic Acids		
			in Soil-Sand Systems	408	
		11.2.3	Rhizosphere Microbial Populations and Utilization		
			of Phenolic Acids in Cucumber Seedling-Soil-		
			Sand Systems	416	
		11.2.4	Seedling Inhibition	421	
	11.3	Hypoth	netical Model for Portsmouth Soil-Sand Systems	431	
		11.3.1	Systems	432	
		11.3.2	Potential Modifiers of Black Box Values	445	
	Refer	ences		449	
12	Epilo	g: Assur	nptions, Models, Hypotheses and Conclusions	451	
	12.1				
	12.2			451 452	
		12.2.1	Solubility and Vapor Pressure	452	
		12.2.2	pK _a	453	
		12.2.3	Log P.	454	
		12.2.4	Molecular Structure	457	
		12.2.5	Sorption Coefficients (K _d , K _f and K _{oc})	457	
		12.2.6	Can Physicochemical Properties of Phenolic Acids		
			Be Used as Tools to Help Understand the Complex		
			Behavior of Phenolic Acids and the Ultimate Effects		
			of Phenolic Acids on Sensitive Seedlings?	458	
	12.3	Other T	Cools	460	
		12.3.1	Soil Extractions	460	
		12.3.2	Plate-Dilution Frequency Technique	461	
		12.3.3	Leaf Area and Leaf Area Expansion	462	
		12.3.4	Water Utilization and Evapotranspiration	463	
	12.4	Assum	ptions for Model Systems	464	
		12.4.1	Assumption for Nutrient-Culture Systems	464	
		12.4.2	Assumptions for Continuous-Input Systems	465	
		12.4.3	Assumptions for Single or Multiple Input		
			Closed-Cup Systems	468	

Contents xxi

	12.5	Summa	ary of Observations for Seedling-Microbe-Soil Systems	471
		12.5.1	Physicochemical Processes	471
		12.5.2	Root Uptake and Microbial Utilization	471
		12.5.3	Effects of Phenolic Acids on Non-mycorrhizal	
			Seedlings	472
		12.5.4	Partitioning of Phenolic Acids in	
			Seedling-Microbe-Soil-Sand Systems	473
	12.6	What I	nsights Do the Laboratory Bioassays and the Conceptual	
		and Hy	pothetical Models of Laboratory Systems Provide	
		Us Cor	ncerning the Potential Behavior and Effects	
		of Pher	nolic Acids in Field Systems?	475
		12.6.1	Similarities for Laboratory and Field Systems	475
		12.6.2	Differences Between Laboratory and Field Systems	476
		12.6.3	Treatment Concentrations and Dose	
			in Laboratory Systems	478
		12.6.4	Potential Effects of Phenolic Acids on Weeds	
			in Wheat Debris No-Till Crop Systems	479
	Refer	ences		484
Nar	ne Ind	ex		487
		_		
Sub	riect In	ıdex		493

Abbreviations

AGR Absolute rates of leaf expansion BE Batch equilibrium technique

BE-D Batch equilibrium-desorption technique

CAF Caffeic acid

Cecil A and/or B Cecil A and/or B horizon soil

CONC Concentration

CFU Colony-forming units

D Desorption

Debris Plant litter and residues

EDTA Ethylenediaminetetraacetic acid W-EDTA Water-EDTA extraction technique

FAST BAC Fast-growing bacteria

FER Ferulic acid GLU Glucose H Hydrogen

 $\begin{array}{lll} \mbox{HPLC} & \mbox{High-performance liquid chromatograph} \\ \mbox{IPA} & \mbox{Identified putative allelopathic compound} \\ \mbox{K}_{\mbox{\scriptsize d}} & \mbox{Soil sorption (distribution) coefficient} \end{array}$

K_{d,i} Soil sorption (distribution) coefficient for ionized

molecules

K_{d,n} Soil sorption (distribution) coefficient for neutral

molecules

K_f Soil Freundlich sorption coefficient
 K_i Concentration required for 50% inhibition

K_{oc} Soil organic carbon normalized soil-water partition

coefficient

K_{oc,i} Soil organic carbon normalized soil-water partition coef-

ficient for ionized molecules

K_{oc.n} Soil organic carbon normalized soil-water partition coef-

ficient for neutral molecules

xxiv Abbreviations

K_{om} Soil organic matter normalized soil-water partition

coefficient

K_{ow} Soil-water partition coefficient

Log D pH-adjusted log P

Log K_{oc} Log soil organic carbon normalized soil-water partition

coefficient

Log P Log n-Octanol-water partition coefficient

Log P_n Log n-Octanol-water partition coefficient of the neutral

fraction

MES 2-(N-morpholino) ethanesulfonic acid

MET Methionine

N-CONC Neutral concentration NUT Nutrient solution

OH Hydroxy OMe Methoxy

P n-Octanol-water partition coefficient

PHE Phenylalanine

pK_a Acid dissociation constant

PA Phenolic acids
PCO p-Coumaric acid
POH p-Hydroxybenzoic acid

Portsmouth A and/or B Portsmouth A and/or B horizon soil

PRO Protocatechuic acid

RGR Relative rates of leaf expansion

 $\begin{array}{ccc} SIN & Sinapic acid \\ SYR & Syringic acid \\ VAN & Vanillic acid \\ \Phi_n & Neutral fraction \end{array}$

List of Figures

Fig. 3.1	Soil inputs of non-volatile hydrophilic (all water soluble) organic molecules to a soil pool or soil pools from seeds, living plants and their litter and residues and by soil organisms. Broken lines	
	indicate water input, solid lines indicate movement	
	of water-soluble organic molecules to the soil pool or pools	
	and dotted lines indicate physical and biotic processes	53
Fig. 3.2	Inputs of non-volatile hydrophobic (water hating or insoluble)	
	organic molecules from seeds, living plants and their litter	
	and residues and by soil organisms into soil. Solid lines indicate	
	transfer of non-volatile hydrophobic (all water insoluble)	
	molecules into the soil adjacent to the source (boxes)	
	and dotted lines indicate physical and biotic processes	55
Fig. 3.3	Inputs of gaseous volatile hydrophilic and hydrophobic organic	
	molecules from seeds, living plants and their litter and residues	
	and by soil organisms into soil. Dark solid lines indicate transfer	
	of volatile molecules and dotted lines indicate physical	
	and biotic processes	57
Fig. 3.4	Partitioning of non-volatile hydrophilic (all water soluble)	
	molecules to soil sinks. Solid lines indicate losses, broken lines	
	indicate losses or gains and dotted lines indicate modifications	
	of all non-volatile water-soluble molecules by soil organisms	
	and by physicochemical processes	58
Fig. 3.5	Partitioning of non-volatile hydrophobic (water hating	
	or insoluble) organic molecules to soil sinks. Solid lines	
	indicate losses, broken lines indicate losses or gains	
	and dotted lines indicate modifications of all non-volatile	
	water-insoluble organic molecules by soil organisms	
	and by physicochemical processes	59

xxvi List of Figures

Fig. 3.6	Partitioning of gaseous volatile hydrophilic and hydrophobic organic molecules. Solid lines indicate losses from the atmosphere, the soil atmosphere and the soil solution, broken lines indicate losses or gains and dotted lines indicate modifications of all gaseous volatile hydrophilic and hydrophobic organic molecules within the atmosphere, the soil atmosphere and in the soil solution	61
Fig. 4.1	Some common simple plant phenolic acids, cinnamic acid derivatives on the <i>right</i> and benzoic acid derivatives on the <i>left</i> , where H equals hydrogen, OH equals hydroxy, and OMe equals methoxy. Figure duplicated by permission from Springer Customer Service Center GmbH: Springer Nature, Springer Science and Business Media B. V., Plant-plant allelopathic interactions: phenolic acids, cover crops and weed emergence, Blum (2011)	73
Fig. 4.2	Absolute rates of leaf expansion and % inhibition of absolute rates of leaf expansion of 16–18 day old cucumber seedlings treated with 0.25–1 mM ferulic acid (FER; $pK_a = 4.58$) or p -coumaric acid (PCO; $pK_a = 4.40$) solutions at 3 pH levels. The absolute rates of leaf expansion of the 0 mM treatments for the ferulic acid data sets were 40.04, 41.88 and 44.97 cm²/2 days and for the p -coumaric acid data sets were 42.75, 38.79 and 47.88 cm²/2 days at pH 5.5, 6.25 and 7, respectively. Data were generated using regressions in Table 2 and 3 of Blum et al. (1985). Regressions used by permission from Springer Customer Service Center GmbH: Springer Nature, J Chem Ecol 11:1567–1582, Effects of ferulic acid and p -coumaric acid in nutrient culture on cucumber leaf expansion as influenced by pH, Blum et al. (1985)	79
Fig. 4.3	Relative rates of leaf expansion and % inhibition of relative rates of leaf expansion of 16–18 day old cucumber seedlings treated with 0.25–1 mM ferulic acid (FER; pK _a = 4.58) or <i>p</i> -coumaric acid (PCO; pK _a = 4.40) solutions at 3 pH levels. The relative rates of leaf expansion of the 0 mM treatments for the ferulic acid data sets were 0.47, 0.45 and 0.42 cm²/2 days and for the <i>p</i> -coumaric acid data sets were 0.48, 0.46 and 0.44 cm²/cm²/2 days at pH 5.5, 6.25 and 7, respectively. Data were generated using regressions in Table 2 and 3 of Blum et al. (1985). Regressions used by permission from Springer Customer Service Center GmbH: Springer Nature, J Chem Ecol 11:1567–1582, Effects of ferulic acid and <i>p</i> -coumaric acid in nutrient culture on cucumber leaf	
	expansion as influenced by pH. Blum et al. (1985)	80

List of Figures xxvii

Fig. 4.4	Root uptake of ferulic acid (FER; $pK_a = 4.58$)	
	and p-hydroxybenzoic acid (POH; $pK_a = 4.48$) by 14–18 day	
	old cucumber seedlings treated with 0.1–1 mM of phenolic	
	acid solutions at 3 pH levels. Uptake based on 5-h depletion	
	of phenolic acids. Data were based on data points in Figures 5	
	and 6 of Shann and Blum (1987a). Data points used	
	by permission from Elsevier, Phytochem 26:2959–2964,	
	The uptake of ferulic and <i>p</i> -hydroxybenzoic acids	
	by Cucumis sativus, Shann and Blum (1987a)	82
Fig. 4.5	Leaf area of cucumber seedlings treated with 0.5 mM pH 5.0	
υ	solutions of <i>p</i> -coumaric acid (PCO), vanillic acid (VAN),	
	<i>p</i> -hydroxybenzoic acid (POH) and ferulic acid (FER) every	
	other day. Based on original raw data of Blum	
	and Gerig (2005)	86
Fig. 4.6	Root uptake of ferulic acid (p $K_a = 4.58$) and p-hydroxybenzoic	
116	acid (p $K_a = 4.48$) by 14–18 day old cucumber seedlings treated	
	with 0.1–1 mM phenolic acid solutions at 3 pH levels plotted	
	against the concentrations of the neutral and negative molecules	
	for the phenolic acids. Uptake based on 5-h depletion	
	of phenolic acids. Data were based on data points in Figure 5	
	and 6 of Shann and Blum (1987a). Data points used	
	by permission from Elsevier, Phytochem 26:2959–2964,	
	The uptake of ferulic and <i>p</i> -hydroxybenzoic acids	
	by <i>Cucumis sativus</i> , Shann and Blum (1987a)	95
Fig. 4.7	Root uptake of ferulic acid (FER; $pK_a = 4.58$)))
1 1g. 4.7	and p-hydroxybenzoic acid (POH; $pK_a = 4.48$) by 14–18 day	
	old cucumber seedlings treated with 0.1–1 mM of phenolic	
	acid solutions at 3 pH levels plotted against the concentrations	
	of the neutral or negative molecules for the phenolic acids.	
	Uptake determined by 5-h depletion of phenolic acids.	
	Data were based on data points in Figures 5 and 6 of Shann	
	and Blum (1987a). Data points used by permission from	
	Elsevier, Phytochem 26:2959–2964, The uptake of ferulic and <i>p</i> -hydroxybenzoic acids by <i>Cucumis sativus</i> , Shann	
		06
T: ~ 4.0	and Blum (1987a)	96
Fig. 4.8	Absolute rates of leaf expansion and % inhibition of absolute	
	rates of leaf expansion of 16–18 day old cucumber seedlings	
	treated with 0.25–1 mM ferulic acid (FER; $pK_a = 4.58$)	
	and p-coumaric acid (PCO; $pK_a = 4.40$) solutions at 3 pH	
	levels plotted against the concentrations of the neutral	
	molecules of the phenolic acids. The absolute rates	
	of leaf expansion for the 0 mM treatments for the ferulic	
	acid data sets were 40.04, 41.88 and 44.97 cm ² /2 days	
	and for the <i>p</i> -coumaric acid data sets were 42.75, 38.79	
	and 47.88 cm ² /2 days. Data were generated using regressions	

xxviii List of Figures

Ti. 10	by permission from Springer Customer Service Center GmbH: Springer Nature, J Chem Ecol 11:1567–1582, Effects of ferulic acid and <i>p</i> -coumaric acid in nutrient culture on cucumber leaf expansion as influenced by pH, Blum et al. (1985)	100
Fig. 4.9	Relative rates of leaf expansion and % inhibition of relative	
	rates of leaf expansion of 16–18 day old cucumber seedlings treated with 0.25–1 mM ferulic acid (FER; $pK_a = 4.58$)	
	and p-coumaric acid (PCO; pK _a = 4.40) solutions at 3 pH	
	levels plotted against concentrations of the neutral molecules	
	of the phenolic acids. The relative rates of leaf expansion	
	for the 0 mM treatments for ferulic acid data sets were 0.47,	
	0.45 and 0.42 cm ² /2 days and for p -coumaric acid data	
	sets were 0.48, 0.46 and 0.44 cm²/cm²/2 days. Data were	
	generated using regressions in Tables 2 and 3	
	of Blum et al. (1985). Regressions used by permission from	
	Springer Customer Service Center GmbH: Springer Nature,	
	J Chem Ecol 11:1567–1582, Effects of ferulic acid	
	and p-coumaric acid in nutrient culture on cucumber	
	leaf expansion as influenced by pH, Blum et al. (1985)	101
Fig. 4.10	Percent inhibition of absolute rates of leaf expansion	
	of 16–18 day old cucumber seedlings treated	
	with $0.25-1$ mM ferulic acid (FER; pK _a = 4.58)	
	and <i>p</i> -coumaric acid (PCO; $pK_a = 4.40$) solutions	
	at 3 pH levels plotted against the concentrations of the neutral	
	and negative molecules for the phenolic acids. Data were	
	generated using regressions in Tables 2 and 3 of Blum et al. (1985).	
	Regressions used by permission from Springer Customer Service	
	Center GmbH: Springer Nature, J Chem Ecol 11:1567–1582,	
	Effects of ferulic acid and <i>p</i> -coumaric acid in nutrient culture	
	on cucumber leaf expansion as influenced by pH,	102
Fig. 4.11	Blum et al. (1985)	102
rig. 4.11	of 16–18 day old cucumber seedlings treated with 0.25–1 mM	
	ferulic acid (FER; $pK_a = 4.58$) and <i>p</i> -coumaric acid	
	(PCO; $pK_a = 4.40$) solutions at 3 pH levels plotted against	
	the concentrations of the neutral and negative molecules of	
	the phenolic acids. Data were generated using regressions	
	in Tables 2 and 3 of Blum et al. (1985). Regressions used	
	by permission from Springer Customer Service Center GmbH:	
	Springer Nature, J Chem Ecol 11:1567–1582, Effects of ferulic	
	acid and <i>p</i> -coumaric acid in nutrient culture on cucumber	
	leaf expansion as influenced by pH, Blum et al. (1985)	103
Fig. 4.12	Total uptake of phenolic acid and equal-molar mixtures	
C	of phenolic acids by 10 day old cucumber seedlings treated	

List of Figures xxix

Fig. 4.13	with 0.25–1 mM ferulic acid (FER), vanillic acid (VAN) and <i>p</i> -coumaric acid (PCO) and equal-molar mixtures of these phenolic acids plotted against total phenolic acid concentration and the concentration of the neutral molecules of the phenolic acids. Solutions were adjusted to pH 5.5. The pK _a value for ferulic acid = 4.58, for vanillic acid = 4.43 and for <i>p</i> -coumaric acid = 4.40. The apparent-average pK _a for ferulic acid + vanillic acid = 4.50, for ferulic acid + <i>p</i> -coumaric acid = 4.49 and for <i>p</i> -coumaric acid + vanillic acid = 4.41. Data from Table 1 of Lyu et al. (1990). Data used by permission from Springer Customer Service Center GmbH: Springer Nature, J Chem Ecol 16:2559–2567, Effects of mixtures of phenolic acids on phosphorous uptake by cucumber seedlings, Lyu et al. (1990)	107
119. 113	treated with 0.25–1 mM ferulic acid (FER), vanillic acid (VAN) and <i>p</i> -coumaric acid (PCO) and equal-molar mixtures of these phenolic acids plotted against total phenolic acid concentrations and the concentrations of the neutral molecules of the phenolic acids. Solution were adjusted to pH 5.5. The pK _a value for ferulic acid = 4.58, for vanillic acid = 4.43 and for <i>p</i> -coumaric acid = 4.40. The apparent-average pK _a for ferulic acid + vanillic acid = 4.50, for ferulic acid + <i>p</i> -coumaric acid = 4.49 and for <i>p</i> -coumaric acid + vanillic acid = 4.41. Data from Table 2 of Lyu et al. (1990). Data used by permission from Springer Customer Service Center GmbH: Springer Nature, J Chem Ecol 16:2559–2567, Effects of mixtures of phenolic acids on phosphorous uptake by cucumber seedlings, Lyu et al. (1990)	110
Fig. 5.1	Leaf area of 18 day old cucumber seedlings treated on alternate days starting with day 6 with 0.5 mM protocatechuic acid (log P = 0.86), syringic acid (log P = 1.04), caffeic acid (log P = 1.15), sinapic acid (log P = 1.24), vanillic acid (log P = 1.43), p-coumaric acid (Log P = 1.46), ferulic acid (log P = 1.51), and p-hydroxybenzoic acid (POH; log P = 1.58) plotted against log P values of the phenolic acids. Initial solution was pH 5.8. Data for analysis were generated using regressions in Table 1 of Blum et al. (1985a). Regressions used by permission from Springer Customer Service Center GmbH: Springer Nature, J Chem Ecol 11:619–641, Effects of various mixtures of ferulic acid and some of its microbial metabolic products on cucumber leaf expansion and dry matter in nutrient culture, Blum et al. (1985a)	123
Fig. 5.2	Leaf area of cucumber seedlings treated with 0.25 to 1 mM vanillic acid (VAN), <i>p</i> -coumaric acid (PCO), ferulic acid (FER)	

xxx List of Figures

	and <i>p</i> -hydroxybenzoic acid (POH) on alternate days starting with day 6 (based on original raw data for leaf area used by Blum and Gerig 2005). Mean ± Standard error for days 8 to 12 for each concentration plotted against log P. Sequence for leaf area from top to bottom for each log P is 0.25, 0.5, 0.75 and 1 mM. Values in parenthesis are log P values.	
	Initial solution was pH 5.0	128
Fig. 5.3	Leaf areas and absolute rates of leaf expansion of 0.5 mM	
	vanillic acid (log P = 1.43), p -coumaric acid (log P = 1.46)	
	and ferulic acid (log $P = 1.51$) treated cucumber seedlings	
	plotted against log P values of the phenolic acids (based	
	on original raw data for leaf area and absolute rates of leaf	
	expansion used by Blum and Gerig 2005). Seedlings	
	were treated on days 6, 8 and 10. The leaf areas for the 0 mM	
	treatments were 14.41 ± 0.30 , 19.46 ± 0.65 , 27.17 ± 1.47 ,	
	34.73 ± 2.08 and 40.76 ± 2.26 for days 8, 9, 10, 11 and 12,	
	respectively. The absolute rates of leaf expansion for the 0 mM	
	treatments were 5.05 ± 0.45 , 7.71 ± 0.88 , 7.56 ± 0.80	
	and 6.02 ± 0.50 for days 8, 9, 10 and 11 (actually 8–9, 9–10,	120
Fig. 5.4	10–11 and 11–12), respectively. Initial solution was pH 5.0 Leaf areas and absolute rates of leaf expansion of 0.5 mM	130
Fig. 5.4	vanillic acid (VAN; $\log P = 1.43$), p-coumaric acid (PCO;	
	log P = 1.46) and ferulic acid (FER; log P = 1.51) treated	
	cucumber seedlings (based on original raw data for leaf area	
	and absolute rates of leaf expansion used by Blum	
	and Gerig 2005). Seedlings were treated on days 6, 8 and 10.	
	The leaf areas for the 0 mM treatments were 14.41 ± 0.30 ,	
	19.46 ± 0.65 , 27.17 ± 1.47 , 34.73 ± 2.08 and 40.76 ± 2.26	
	for days 8, 9, 10, 11 and 12, respectively. The absolute rates	
	of leaf expansion for the 0 mM treatments were 5.05 ± 0.45 ,	
	7.71 ± 0.88 , 7.56 ± 0.80 and 6.02 ± 0.50 for days 8, 9, 10	
	and 11 (actually 8–9, 9–10, 10–11 and 11–12), respectively.	
	Initial solution was pH 5.0	131
Fig. 5.5	Percent inhibition of leaf areas and absolute rates of leaf	
	expansion of 0.5 mM vanillic acid (VAN; $\log P = 1.43$),	
	<i>p</i> -coumaric caid (PCO; $\log P = 1.46$) and ferulic acid	
	(FER; $log P = 1.51$) treated cucumber seedlings plotted against	
	log P (percent inhibition based on original raw data used	
	by Blum and Gerig 2005). Seedlings were treated on days 6,	
	8 and 10. Initial solution was pH 5.0	132
Fig. 5.6	Percent inhibition of leaf areas and absolute rates of leaf	
	expansion of 0.5 mM vanillic acid (VAN; $\log P = 1.43$),	
	<i>p</i> -coumaric acid (PCO; $\log P = 1.46$) and ferulic acid (FER;	
	log P = 1.51) treated cucumber seedlings plotted against day	
	(percent inhibition based on original raw data used by Blum	

List of Figures xxxi

	and Gerig 2005). Seedlings were treated on days 6, 8 and 10. Initial solution was pH 5.0	133
Fig. 5.7	Leaf area and % inhibition of 0.5 mM vanillic acid (VAN), p -coumaric acid (PCO), ferulic acid (FER) and p -hydroxybenzoic acid (POH) treated cucumber seedlings (based on original raw data used by Blum and Gerig 2005). Seedlings were treated on days 6, 8, and 10. Values in parenthesis are log P values. The leaf areas for the 0 mM treatments were 13.23 ± 0.31 , 19.95 ± 0.57 , 26.67 ± 0.85 , 33.40 ± 1.14 and 40.12 ± 1.42 cm ² for days 8, 9, 10, 11 and 12, respectively. Initial solution	
Fig. 5.8	was pH 5.0	135
Fig. 5.9	Absolute rates of leaf expansion and % inhibition of 16 to 18 day old cucumber seedlings treated with 0.25 to 1 mM ferulic acid (FER) and p-coumaric acid (PCO) solutions at pH 5.5, 6.25 and 7.0. The order left to right of the log D values on the x axis are for pH 7.0, 6.25 and 5.5. The pK _a value for ferulic acid is 4.58 and for p-coumaric acid is 4.40. The absolute rates of leaf expansion for the 0 mM treatments for ferulic acid were 44.97, 41.88 and 40.04 and for p-coumaric acid were 47.88, 38.79 and 42.75 at pH 7, 6.25 and 5.5, respectively. Data for analysis were generated using regressions in Tables 2 and 3 of Blum et al. (1985b). Regressions used by permission from Springer Customer Service Center GmbH: Springer Nature, J Chem Ecol 11:1567–1582, Effects of ferulic and p-coumaric acids in nutrient culture on cucumber leaf expansion as influenced by pH, Blum et al. (1985b)	141
Fig. 6.1	Percent sorption of approximately 5 µmol/g of ferulic acid (FER), <i>p</i> -coumaric acid (PCO), <i>p</i> -hydroxybenzoic acid (POH) and vanillic acid (VAN) in sterilized Cecil A soil based on water, EDTA and Mehlich III extractions. Data based on regressions in Table 4 and data points in Fig 6 and 7 of Blum et al. (1994) and data points in Fig 1, 2, 3 and 4 of Dalton et al. (1989a). Initial phenolic acid solution added to soil was pH 5.0 or 5.5. Regressions and data from Blum et al.	

xxxii List of Figures

	used by permission from Springer Customer Service Center GmbH: Springer Nature, J Chem Ecol 20:341–359, Use of water and EDTA extractions to estimate available (free and reversibly bound) phenolic acids in Cecil soils, Blum et al. (1994). Data from Dalton et al. used by permission from Soil Science Society of America, Soil Sci. Soc. Amer. J. 53:757–762, Differential sorption of exogenously applied ferulic, <i>p</i> -coumaric, <i>p</i> -hydroxybenzoic, and vanillic acids in soil. Delton et al. (1080a)	175
Fig. 6.2	acids in soil, Dalton et al. (1989a)	175
	Society of America, Soil Sci. Soc. Amer. J. 53:757–762, Differential sorption of exogenously applied ferulic, p-coumaric, p-hydroxybenzoic, and vanillic acids in soil,	156
Fig. 6.3	Dalton et al. (1989a)	176
Fig. 6.4	Percent reversibly sorbed, irreversibly sorbed and total sorbed ferulic acid in sterilized Cecil A and B soils. Soils were treated with 1–3 µmol/g ferulic acid. Initial phenolic acid solution added to soil was pH 5.0. Data from Table 4 of Blum et al. (1999). Data used by permission from Taylor & Francis, Website: https://www.tandfonline.com, Crit Rev Plant Sci 18:673–693, Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils:	
	concepts vs. an experimental model, Blum et al. (1999)	180

List of Figures xxxiii

Fig. 6.5	Percent reversibly sorbed, irreversibly sorbed and total sorbed <i>p</i> -coumaric acid in sterilized Cecil A and B soils. Soils were treated with 1–3 μmol/g <i>p</i> -coumaric acid. Initial phenolic acid solution added to soil was pH 5.0. Data from Table 4 of Blum et al. (1999). Data used by permission from Taylor & Francis, Website: https://www.tandfonline.com, Crit Rev Plant Sci 18:673–693, Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. an experimental model, Blum et al. (1999)	181
Fig. 6.6	Percent reversibly sorbed, irreversibly sorbed and total sorbed <i>p</i> -hydroxybenzoic acid in sterilized Cecil A and B soils. Soils were treated with 1–3 µmol/g <i>p</i> -hydroxybenzoic acid. Initial phenolic acid solution added to soil was pH 5.0. Data from Table 4 of Blum et al. (1999). Data used by permission from Taylor & Francis, Website: https://www.tandfonline.com, Crit Rev Plant Sci 18:673–693, Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. an experimental	101
Fig. 6.7	model, Blum et al. (1999)	182
Fig. 7.1	The approximate μg of <i>p</i> -coumaric acid utilized by <i>p</i> -coumaric acid-utilizing colony-forming units (CFU)/30 min and the total approximate μg utilized/30 min for columns treated with 74.25 μg/30 min of <i>p</i> -coumaric acid plotted against the CFU of <i>p</i> -coumaric acid-utilizing microbes present in Cecil A soil columns (see Table 7.2; Blum et al. 1999a). Data used by permission from Cadiz University Press, Recent advances in allelopathy I: a science for the future by Macias et al. (eds), pp. 159–166, The fates and effects of phenolic acids in a plant-microbe soil system, Blum et al. (1999a)	208
Fig. 7.2	Log colony-forming units (CFU) of rhizosphere phenolic acid-utilizing bacteria of cucumber seedlings treated with 0.6 µmol/g of an equal-molar mixture of ferulic acid, <i>p</i> -coumaric acid, <i>p</i> -hydroxybenzoic acid and vanillic acid. Systems were treated on days 5, 7, 9 and 11. The pH of Cecil A soil-sand was 5.06. The pH of the solution added was 5.0. Carbon and/or energy source for the selection medium was 0.5 mM of the 4-way	