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Preface

The course “Fluid mechanics of planets and stars” was held at the International
Centre for Mechanical Sciences in Udine, Italy, from April 16 to 20, 2018. It was
part of the research project FLUDYCO, supported by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
program.

The scientific focus of this course was the dynamics of planetary and stellar fluid
layers, including atmospheres, oceans, iron cores, convective and radiative zones in
stars, etc. Our first motivation for organizing this school came from the following
ascertainment: this scientific domain is by its essence interdisciplinary and
multi-method. But while much effort has been devoted to solving open questions
within the various communities of Mechanics, Applied Mathematics, Engineering,
Physics, Planetary and Earth Sciences, Astrophysics, and while much progress has
been made within each enclosed domain using theoretical, numerical, and experi-
mental approaches, cross-fertilizations have remained marginal. The objective of
this CISM School was to go beyond this state, by providing participants with a
global introduction and an up-to-date overview of relevant studies, fully addressing
the wide range of involved disciplines and methods.

44 participants attended the 35 lectures given by 6 lecturers, chosen so as to cover
the widest possible range of skills and knowledge in fundamental mechanics as well
as geo- and astrophysical applications. Professor Gordon Ogilvie from University of
Cambridge (UK) was in charge of the theme “Waves in fluids and in stellar interi-
ors”. Dr. Daniel Lecoanet from Princeton University (USA) focused on the
dynamics and interactions of convective and radiative zones in stars. Professor Bruce
Sutherland from University of Alberta (Canada) provided an overview of instabil-
ities in atmospheres and oceans. Dr. Michael Le Bars from CNRS (France) reviewed
numerous instabilities in planetary interiors. Dr. Renaud Deguen from University
Claude Bernard (France) discussed various aspects of the fluid mechanics of plan-
etary cores. And finally, Dr. Benjamin Favier from CNRS (France) offered a large
overview of various aspects of turbulences. All lectures were stimulating, of the top
scientific level, and entertaining, while simultaneously highlighting the many

v



connections between different fields and communities. The six chapters of this book
summarize this intense, but scientifically enlightening week.

Before starting, let us thank all the people from the International Centre for
Mechanical Sciences, and especially its highly qualified and sympathetic secre-
tariat, who allowed us to focus on science and made this week highly enjoyable for
all participants.

Marseille, France Michael Le Bars
Princeton, USA Daniel Lecoanet
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Chapter 1
Internal Waves and Tides in Stars
and Giant Planets

Gordon I. Ogilvie

Abstract Internal waves play an important role in tidal dissipation in stars and giant
planets. This chapter provides a pedagogical introduction to the studyof astrophysical
tides, with an emphasis on the contributions of inertial waves and internal gravity
waves.

Introduction to Internal Waves

Internal waves are those restored by Coriolis or buoyancy forces in rotating or stably
stratified fluids. In stars and giant planets, internal waves can propagate at frequencies
that are much lower than those of acoustic or surface gravity waves and are usually
more suitable for excitation by tidal forcing when the body has a close orbital com-
panion. I begin this chapter with an exploration of some of the basic properties of
internal waves, using the simplest possible models.

Plane Inertial Waves

Consider an unbounded, inviscid, incompressible fluid that is rotating uniformlywith
angular velocity �. In the rotating frame, arbitrary velocity perturbations u to this
basic state satisfy the equation of motion and incompressibility condition

Du
Dt

+ 2� × u = −∇q, ∇ · u = 0,

where D/Dt = ∂/∂t + u · ∇ is the Lagrangian time derivative and q is the pressure
perturbation divided by the density. Initially neglecting the nonlinear term u · ∇u,
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2 G. I. Ogilvie

Fig. 1.1 Illustration of the
fluid motion in a plane
inertial wave

k
θ

Ω

let us seek plane-wave solutions with wavevector k and angular frequency ω:

u = Re
[
ũ ei(k·x−ωt)

]
, q = Re

[
q̃ ei(k·x−ωt)

]
.

Choosing axes such that � = � ez , we obtain the algebraic equations

−iωũx − 2�ũ y = −ikx q̃,

−iωũ y + 2�ũx = −ikyq̃,

−iωũz = −ikzq̃,

ik · ũ = 0,

for which a non-zero solution exists if the dispersion relation

ω2 = 4�2

(
k2

z

k2
x + k2

y + k2
z

)

is satisfied. This can be written in the form ω = ±2� cos θ, where θ is the angle
between k and �.

These plane inertial waves (Fig. 1.1) are in fact exact solutions of the nonlinear
equations (although a superposition of plane waves is not); the u · ∇u term vanishes
because u ⊥ k.

Plane Internal Gravity Waves

Now consider a stratified atmosphere in a uniform gravitational field −g ez . In the
Boussinesq approximation (which is valid for highly subsonic motions on scales that
are small compared to the scale height of the atmosphere), an ideal fluid satisfies the
equations
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Du
Dt

= −∇Q + B ez,
DB

Dt
= 0, ∇ · u = 0,

where Q is a modified pressure and

B = g

(
ρ0 − ρ

ρ0

)

is a buoyancy variable, proportional to the difference between a constant reference
density ρ0 and the actual density ρ of the fluid.

An equilibrium atmosphere is a solution depending only on z, in which u = 0,
Q = Q(z) and B = B(z), with d Q/dz = B. Arbitrary perturbations u, q and b to
this basic state satisfy the nonlinear equations

Du
Dt

= −∇q + b ez,
Db

Dt
+ N 2uz = 0, ∇ · u = 0,

where N 2 = d B/dz is the square of the buoyancy frequency.
In the case of uniform stable stratification, N 2 is a positive constant. Initially

neglecting the nonlinear terms u · ∇u and u · ∇b, let us seek plane-wave solutions

u = Re
[
ũ ei(k·x−ωt)

]
,

etc., leading to the algebraic equations

−iωũx = −ikx q̃, −iωũ y = −ikyq̃, −iωũz = −ikzq̃ + b̃,

−iωb̃ + N 2ũz = 0, ik · ũ = 0.

A non-zero solution exists if the dispersion relation

ω2 = N 2

(
k2

x + k2
y

k2
x + k2

y + k2
z

)

is satisfied. This can be written in the form ω = ±N sin θ, where θ is the angle
between k and g.

These plane internal gravity waves are also exact solutions of the nonlinear equa-
tions; the u · ∇u and u · ∇b terms vanish because u ⊥ k.

Properties of Internal Waves

There is a close similarity between the dispersion relations of inertial and internal
gravity waves. These internal waves have properties that are opposite to those of
acoustic or electromagnetic waves, being strongly anisotropic and dispersive. Their
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frequency is independent of the magnitude k = |k| of the wavevector and depends
only on its direction k̂ = k/k. This means that the group velocity ∂ω/∂k is per-
pendicular to k and is proportional to the wavelength 2π/k. The frequency is also
bounded (by 2� or N , respectively), resulting in a dense or continuous spectrum
when suitable boundary conditions are imposed.

Linear inertial waves satisfy the differential equation

∂2

∂t2
∇2q + 4�2 ∂2q

∂z2
= 0.

If the time-dependence e−iωt is assumed, this reduces to Poincaré’s equation,

ω2∇2q = 4�2 ∂2q

∂z2
. (1.1)

In frequency range −2� < ω < 2�, this equation is hyperbolic in the spatial coor-
dinates. Its characteristic curves or surfaces are inclined at a constant angle θ to the
plane perpendicular to the rotation axis, where ω = ±2� cos θ, and coincide with
the rays determined from the dispersion relation and group velocity. However, when
we seek modal solutions in a contained fluid, the boundary conditions are specified
on a closed surface, which is generally unsuitable for a hyperbolic equation because
of the way information is propagated along the characteristics from one part on the
boundary to another. The problem is generally ill-posed and smooth modal solutions
may not exist; similar considerations apply to internal gravity waves.

Internal Wave Beams

An internal wave beam can be formed from a superposition of waves with the same
ω and k̂, but different k. Consider inertial waves:

Du
Dt

+ 2� × u = −∇q, ∇ · u = 0.

For waves of frequency ω = 2� cos θ, the beam is inclined at an angle θ to the
horizontal. Introduce coordinates parallel (ξ) and perpendicular (η) to the beam in
the xz plane, with � = � ez (Fig. 1.2):

ξ = x cos θ + z sin θ, η = x sin θ − z cos θ.

In these coordinates, we can find solutions with uη = 0 that are independent of ξ and
y, oscillating at frequency ω and satisfying

∂uξ

∂t
− ωuy = 0,

∂uy

∂t
+ ωuξ = 0, −ωuy tan θ = −∂q

∂η
.
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Fig. 1.2 Coordinates
parallel and perpendicular to
an internal wave beam

Ω

ξ

η

θ

Any complex beam profile uξ = Re
[
U (η) e−iωt

]
allows an exact nonlinear solution.

When a small viscosity ν is included, a monochromatic beam spreads as it prop-
agates, and is accompanied by a small transverse velocity uη. It is described approx-
imately by

(uξ, uη, uy, q) = Re

[(
∂�

∂η
,−∂�

∂ξ
,−i

∂�

∂η
,−iω� tan θ

)
e−iωt

]
,

where�(ξ, η) is a streamfunction that variesmore rapidlywith η thanwith ξ. Viscous
spreading of the beam along its length is described by the equation

∂�

∂ξ
= iλ

∂3�

∂η3
, λ = ν

ω tan θ
,

which can be derived by an asymptotic expansion of the solution in the limit of
small viscosity. If λ > 0, then waves propagating in the +ξ direction have negative
transversewavenumbers kη < 0 and are attenuated in the+ξ direction. As ξ → +∞,
a generic beam tends towards a similarity solution proportional to

∫ 0

−∞
eλk3ξeikη dk = (λξ)−1/3 f (η̃),

where

f (η̃) =
∫ ∞

0
e−k̃3e−i k̃η̃ dk̃, k̃ = −(λξ)1/3k, η̃ = η(λξ)−1/3

is a complex function (Moore and Saffman 1969) describing the transverse structure
of the spreading beam in a dimensionless similarity variable (Fig. 1.3). The width of
the beam is proportional to ξ1/3, where ξ ismeasured along the beam from its (virtual)
source. This type of structure is commonly seen in problems in which internal waves
are generated by periodic forcing, as described below in the section ‘Forced Internal
Waves’.
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Fig. 1.3 Complex wave
profile across a spreading
internal wave beam. The real
and imaginary parts of f (η̃)

are shown as solid and
dashed curves

Fig. 1.4 Formation of a
singularity at the critical
latitude through reflection of
inertial waves from a sphere.
Rays incident from the top
right are blue and rays
reflected from the sphere are
red

Reflections and Singularities

When a beam of internal waves reflects from a boundary, preservation of the fre-
quency and therefore of the angle between k and� (or g) means that the reflection is
generally non-specular and leads to focusing or defocusing of the beam. Reflection
of inertial waves from a sphere creates a singularity at the critical latitude (at which
the rays are tangent to the boundary) through this focusing effect (Fig. 1.4).

In a closed container in which the boundaries are not all parallel or perpendicular
to � (or g), internal waves are generically focused into stable limit cycles known as
wave attractors (Maas and Lam 1995). A simple example is a square container that
is tilted with respect to the axis of rotation (or gravity). In the left panel of Fig. 1.5,
for the purposes of illustration, the tilt angle is arctan(1/3) and the wave frequency
has been chosen to be 1/

√
2 of the maximum frequency so that the rays propagate at
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Fig. 1.5 Left: Formation of a wave attractor through focusing reflections. The dashed line indicates
the axis of rotation (or gravity). The figure is oriented so that the rays propagate either horizontally
or vertically. Right: Variation of the attractor with wave frequency

45◦ with respect to the axis. For ease of visualization, the figure is oriented so that the
rays propagate either horizontally or vertically. Consider the blue rays propagating
towards the right; at each reflection (producing the red rays, then the green . . . ),
the width of the beam is halved and the rays are focused towards a square attractor.
As the wave frequency is varied in the range 1/

√
5 < ω/ωmax < 2/

√
5 (right panel,

where the axis is drawn vertically), the attractor maintains a continuous existence,
transforming through a family of parallelograms. The central member of the family
is the square attractor, which has a total focusing power of 16 (this being the factor by
which the width of the beam is reduced after a complete circuit). The outer extremes
of this family are the two diagonals of the box, each of which has a total focusing
power of 49.

The propagation of inertial waves in a uniformly rotating spherical shell involves
both critical-latitude singularities and wave attractors (Rieutord et al. 2001). As an
example of the complexity of this behaviour, Fig. 1.6 shows the frequency depen-
dence of a measure of the focusing power of the strongest attractor, in a spherical
shell with a radius ratio of 1/2. The bandwidth of each attractor is relatively small
because of the sensitivity of the trajectories of the waves to the angle of propagation
and therefore to the wave frequency.

Inertial Waves in a Sphere

Aproblem that can be solved analytically is to find inertial wavemodes in a uniformly
rotating, homogeneous, incompressible fluid in a spherical container. Despite the
ill-posedness of the eigenvalue problem, there does exist a complete set of modes
(Ivers et al. 2015), whose frequencies are dense in the interval −2� < ω < 2� and
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Fig. 1.6 Focusing power of the strongest inertial wave attractors in a spherical shell, as a function
of wave frequency. The quantity plotted is the natural logarithm of the focusing power, divided by
the number of reflections on the outer sphere; this picks out the strongest and shortest attractors.
The radius ratio of the shell is 1/2

whose eigenfunctions are orthogonal polynomial vector fields. Similar results hold
for an ellipsoidal container (Backus and Rieutord 2017), and appear plausible for a
Maclaurin spheroid, which is a self-gravitating, homogeneous, incompressible fluid
body with a free surface (Bryan 1889). Qualitatively similar modes have been found
analytically in certain non-uniform spheres (Wu 2005) and computed in polytropes
(Lockitch and Friedman 1999), both in a low-frequency approximation that excludes
acoustic and surface gravity waves.

There are numerous methods to describe these special solutions. One is to trans-
form Poincaré’s equation (1.1), for −2� < ω < 2�, into Laplace’s equation by
rescaling the z coordinate by an imaginary factor: (x̃, ỹ, z̃) = (x, y, iαz). The homo-
geneous solutions of this equation that are regular at the origin are of the form
q ∝ r̃ lY m

l (θ̃, φ̃), where r̃ = √
x̃2 + ỹ2 + z̃2 = √

x2 + y2 − α2z2 is the new radial
coordinate and Y m

l is a spherical harmonic. These solutions are polynomial in x̃ and
therefore in x. (The homogeneous solutions that are regular at infinity are of the
form q ∝ r̃−(l+1)Y m

l (θ̃, φ̃), but these involve negative powers of r̃ and therefore have
singularities on the cones r̃ = 0; as argued by Goodman and Lackner (2009), this
property explains why non-singular modes cannot be found in a spherical shell.)

It is also possible to find the modal solutions by directly calculating the radial
velocity in spherical polar coordinates (Ogilvie 2009). For example, in the case
m = 2 one separable solution has

ur ∝ rY 2
2

and another has

ur ∝ r3
[

Y 2
2 +

(
7ω2 + 7�ω − 2�2

6
√
3�2

)
Y 2
4

]
.



1 Internal Waves and Tides in Stars and Giant Planets 9

For free modes in a full sphere of radius R with a rigid outer boundary, ur must
vanish at r = R. This is possible using a linear combination of these solutions:

ur ∝ r(R2 − r2)Y 2
2 ,

when ω is one of the two roots of

7ω2 + 7�ω − 2�2 = 0, i.e. ω =
(

−1 ±
√
15

7

)
�

2
.

These are two of the lowest order inertial modes of a full sphere.

Instabilities of Internal Waves

If internal waves exceed a critical amplitude, they break and are strongly dissipated.
In the case of a stably stratified atmosphere with a plane internal gravity wave, the
total buoyancy is

B = N 2z + Re
[
b̃ ei(k·x−ωt)

]
+ constant.

The vertical gradient
∂B

∂z
= N 2 + Re

[
ikzb̃ ei(k·x−ωt)

]

becomes inverted at some phase if |kzb̃| > N 2 (Fig. 1.7). This leads to a local convec-
tive instability that generates small-scale motions and causes the wave to break. The
breaking criterion is equivalent to |kz ξ̃z| > 1, where ξ is the displacement, related to
the velocity perturbation by u = ∂ξ/∂t .

Similarly, for a plane inertialwave, the vertical component of the absolute vorticity
is

2� + Re
[
i(kx ũ y − kyũx ) ei(k·x−ωt)

]

and becomes inverted at some phase if |kx ũ y − kyũx | > 2�, leading to a local inertial
instability. The breaking criterion is again equivalent to |kz ξ̃z| > 1. Since ∇ · ξ =
0 for internal waves, |kz ξ̃z| is equal to |kh · ξ̃h|, where ‘h’ denotes the horizontal
components.

Internal wave beams undergo similar breaking instabilities when the amplitude
exceeds a critical value (Jouve and Ogilvie 2014; Dauxois et al. 2018). This is par-
ticularly relevant when the amplitude is increased by a focusing reflection.

Plane internal waves in an unbounded or periodic domain are in fact unstable at
any non-zero amplitude in the absence of dissipation (Phillips 1981, and references
therein). The parametric subharmonic instability involves the destabilization of a pair
of secondary plane waves through their coupling with the primary wave. Parametric
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Fig. 1.7 Contours of z + A cos(x + z) for A = 0.0 (top left), 0.5, 1.0 and 1.5 (bottom right). The
last case illustrates the overturning of stable stratification by a plane internal wave of sufficient
amplitude

resonance occurs if the wavevectors of the three waves sum to zero and similarly
for their frequencies, within some tolerance that depends on the amplitude of the
primary wave. Owing to the denseness of the spectrum, this condition can always
be achieved. However, this type of instability relies on the spatial periodicity of the
waves and does not apply to single beams in the same way.

Forced Internal Waves

We have seen that internal waves fill a restricted range of the spectrum of oscilla-
tion frequencies in a rotating or stably stratified fluid system, and that the waves
may involve singularities. What happens when a system with a dense or continu-
ous spectrum of internal waves is forced at a frequency within that range? For the
application to astrophysical tides, we are interested in the total dissipation rate and
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Fig. 1.8 Variation of the dissipation rate (on a logarithmic scale) with forcing frequency, when a
rotating fluid in a square domain is subjected to a large-scale body force in the linear regime. The
blue and red curves are for frictional damping coefficients γ = 0.01� and 0.001�, respectively.
Left: untilted case, showing classical resonances with separable normal modes in the frequency
range of inertial waves. Right: tilted case, showing robust dissipation in wave attractors of finite
bandwidth

its dependence on the forcing frequency, especially in the limit that the dissipation
coefficients of the fluid are very small.

Figure 1.8 shows the linear response of a rotating fluid in a square container to
periodic forcing. The body force is harmonic in time and has a uniform curl. A scale-
independent frictional damping is applied to the fluid motion; similar results can be
expected for scale-dependent viscous damping. The response curves show the total
dissipation rate in a steady state versus the forcing frequency, for two values of the
damping coefficient γ.

In the left panel, the rotation axis is aligned with the container and the response is
dominated by resonances with normal modes, which have a rectangular structure and
can be obtained by separation of variables. Each mode contributes a Lorentzian peak
to the dissipation rate, with a height∝ γ−1 and a width∝ γ, like a damped harmonic
oscillator. In the limit of small γ, the response shows a forest of very narrow peaks,
although the frequency-averaged dissipation rate is independent of γ. As expected,
the resonances occur at frequencies less than 2�.

In the right panel, the rotation axis is tilted by arctan(1/3) as considered in the
section ‘Reflections and Singularities’. Now the dissipation rate shows a sequence
of smooth, broad ridges. Each is associated with a wave attractor, occupying a cer-
tain band of frequency, the broadest of which is the one shown in Fig. 1.5. Within
each band, the dissipation rate has a smooth dependence on frequency and becomes
independent of γ in the limit γ → 0. This behaviour was noted and explained by
Ogilvie (2005) using an asymptotic analysis that separates the essentially inviscid
large-scale dynamics from the dissipative behaviour on small scales close to the
attractor. Large-scale forcing generates waves that are focused towards the attractor
and carry a certain energy flux towards it. Provided that there is a mechanism to
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Fig. 1.9 A beam of internal
waves (red curves) that
achieves a balance between
focusing by a wave attractor
(blue lines) and viscous
spreading

dissipate wave energy on small scales, the attractor absorbs this flux rather like a
black hole, without feedback on the large scales. If the dissipation coefficients are
lowered, then the waves must undergo more focusing reflections to reach the scale
on which they can be dissipated.

Numerical simulations of the tilted square with a viscous fluid (Jouve and Ogilvie
2014) confirm this behaviour in the linear regime. The physics of the forced wave
attractor is illustrated in Fig. 1.9. A spreading beam of the type discussed in the
section ‘InternalWave Beams’, with a virtual source outside the container, is focused
at each reflection in a way that compensates exactly for the viscous spreading. The
simulations can also explore the nonlinear regime inwhich the inertial waves become
unstable, and it is found that approximately the same total dissipation rate is obtained
in the nonlinear regime as if the instability did not occur. As the waves are focused
towards the attractor, they reach a length scale on which they become unstable before
they can be dissipated directly by viscosity; the instability merely provides an alter-
native channel of dissipation, by diverting energy into secondary waves of smaller
scale that are dissipated more easily by viscosity.

Interiors of Stars and Giant Planets

Interior Models

The interior structure of stars, and their evolution as a result of nuclear reactions,
is fairly well understood and described by spherically symmetric, hydrostatic mod-
els that neglect rotation and magnetic fields. The structure of the Sun inferred from
such models is largely confirmed by helioseismology. It consists of a stably stratified
core in which energy is transported by radiation, surrounded by an unstably strat-
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Fig. 1.10 Variation of the squared buoyancy frequency with fractional radius in a standard solar
model (Christensen-Dalsgaard et al. 1996). In the logarithmic plot (right), the dashed curve indicates
the negative values estimated in the convective zone

Fig. 1.11 Variation of the solar rotational frequency �/2π with radius and latitude, as deduced
from helioseismology. Credit: NSO/GONG

ified envelope in which convection dominates. The radial profile of the buoyancy
frequency is shown in Fig. 1.10. The distribution of radiative and convective zones
varies considerably with the mass and age of the star.

The interior rotation of the Sun has also been deduced from helioseismology,
using the rotational splitting of acoustic mode frequencies (Thompson et al. 1996).
The latitudinal differential rotation seen at the surface through themotion of sunspots
continues nearly to the base of the convective zone (Fig. 1.11).

The interior structure of giant planets, even within the solar system, is much
less well understood. Not only are there very few seismological constraints but the
interior physics is alsomore complicated and less certain. Nevertheless, considerable
progress has been made recently in modelling the interiors of Jupiter and Saturn (e.g.
Helled 2019), and Saturn’s rings have been used as a seismometer for the planet
(French et al. 2019, and references therein).
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Waves and Instabilities in a Stratified, Rotating Body

Basic equations and basic state. The basic equations for an ideal, compressible
fluid in cylindrical polar coordinates (r,φ, z) are

Dur

Dt
− u2

φ

r
= −∂�

∂r
− v

∂ p

∂r
,

Duφ

Dt
+ ur uφ

r
= −1

r

∂�

∂φ
− v

r

∂ p

∂φ
,

Duz

Dt
= −∂�

∂z
− v

∂ p

∂z
,

D ln v

Dt
= − 1

γ

D ln p

Dt
= � = 1

r

∂(rur )

∂r
+ 1

r

∂uφ

∂φ
+ ∂uz

∂z
,

where
D

Dt
= ∂

∂t
+ ur

∂

∂r
+ uφ

r

∂

∂φ
+ uz

∂

∂z

is the Lagrangian time derivative, v = 1/ρ is the specific volume and γ is the first adi-
abatic exponent. The gravitational potential � is related to the density via Poisson’s
equation, ∇2� = 4πGρ.

Consider a steady, axisymmetric basic state representing a (differentially) rotating
star or giant plant, described by v(r, z), p(r, z), �(r, z) and uφ = r�(r, z), while
ur = uz = 0. This description neglects magnetic fields, convection, meridional cir-
culation, diffusion, etc. Nevertheless, the linear theory of this basic state contains a
rich theory of internal waves that is relevant to both free and forced oscillations of
stars and giant planets.

The basic equations are satisfied if

−r�2 = −∂�

∂r
− v

∂ p

∂r
,

0 = −∂�

∂z
− v

∂ p

∂z
.

The thermal wind equation is obtained by eliminating � by cross differentiating:

−r
∂�2

∂z
= ∂v

∂r

∂ p

∂z
− ∂v

∂z

∂ p

∂r
.

The basic state is called barotropic if the right-hand side

∂(v, p)

∂(r, z)
= eφ · (∇ p × ∇v)
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vanishes; otherwise, it is baroclinic. According to the fundamental thermodynamic
identity de = T ds − p dv (where e is specific internal energy, T is temperature and
s is specific entropy),

∂(v, p)

∂(r, z)
= ∂(s, T )

∂(r, z)
, ∇ p × ∇v = ∇T × ∇s.

Linearized equations. Now consider small perturbations, representing waves or
instabilities on this background. The linearized equations in the Cowling approxi-
mation (in which perturbations of the gravitational potential are neglected) are

Du′
r

Dt
− 2�u′

φ = −v′ ∂ p

∂r
− v

∂ p′

∂r
,

Du′
φ

Dt
+ u′

r

∂(r�)

∂r
+ u′

z

∂(r�)

∂z
+ �u′

r = −v

r

∂ p′

∂φ
,

Du′
z

Dt
= −v′ ∂ p

∂z
− v

∂ p′

∂z
,

Dv′

Dt
+ u′

r

∂v

∂r
+ u′

z

∂v

∂z
= v�′,

Dp′

Dt
+ u′

r

∂ p

∂r
+ u′

z

∂ p

∂z
= −γ p�′,

with
D

Dt
= ∂

∂t
+ �

∂

∂φ
, �′ = 1

r

∂(ru′
r )

∂r
+ 1

r

∂u′
φ

∂φ
+ ∂u′

z

∂z
.

Let us introduce theLagrangian displacement ξ,which is the difference in position
of a fluid element in the perturbed and unperturbed flows. It is related to the Eulerian
velocity perturbation u′ by

Dξ

Dt
= u′ + ξ · ∇u,

or, in components,

u′
r = Dξr

Dt
, u′

φ = Dξφ

Dt
− rξ · ∇�, u′

z = Dξz

Dt
,

and their divergences are related by

�′ = ∇ · u′ = D

Dt
(∇ · ξ).

Rewritten in terms of the Lagrangian displacement, the linearized equation of
motion has components
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D2ξr

Dt2
− 2�

Dξφ

Dt
+ 2r� ξ · ∇� = −v′ ∂ p

∂r
− v

∂ p′

∂r
,

D2ξφ

Dt2
+ 2�

Dξr

Dt
= −v

r

∂ p′

∂φ
,

D2ξz

Dt2
= −v′ ∂ p

∂z
− v

∂ p′

∂z
,

and we find by integration that

v′ = v

[
1

r

∂(rξr )

∂r
+ 1

r

∂ξφ

∂φ
+ ∂ξz

∂z

]
− ξr

∂v

∂r
− ξz

∂v

∂z
,

p′ = −γ p

[
1

r

∂(rξr )

∂r
+ 1

r

∂ξφ

∂φ
+ ∂ξz

∂z

]
− ξr

∂ p

∂r
− ξz

∂ p

∂z
.

Harmonic disturbances. Let us now consider free or forced harmonic disturbances
of the form

ξr = Re
[
ξ̃r (r, z) exp(−iωt + imφ)

]
,

etc., where ω is the wave frequency and m (an integer) is the azimuthal wavenumber.
Then, the Lagrangian derivative reduces to multiplication by −i ω̂, where ω̂ = ω −
m� is the intrinsic wave frequency: the wave frequency seen in the fluid frame.
Dropping the tildes and eliminating ξφ and v′ algebraically, we obtain

(−ω̂2 + A)ξr + Bξz = −v
∂ p′

∂r
+ vp′

γ p

∂ p

∂r
+ 2�

ω̂

v

r
mp′,

Cξr + (−ω̂2 + D)ξz = −v
∂ p′

∂z
+ vp′

γ p

∂ p

∂z
,

(
1 − m2v2

s

r2ω̂2

)
p′ = −γ p

[
1

r

∂(rξr )

∂r
+ m

r

2�

ω̂
ξr + ∂ξz

∂z

]
− ξr

∂ p

∂r
− ξz

∂ p

∂z
,

where vs = √
γ p/ρ is the adiabatic sound speed and the four coefficients are given

by

A = 4�2 + r
∂�2

∂r
−

(
∂v

∂r
+ v

γ p

∂ p

∂r

)
∂ p

∂r
,

B = r
∂�2

∂z
−

(
∂v

∂z
+ v

γ p

∂ p

∂z

)
∂ p

∂r
,

C = −
(

∂v

∂r
+ v

γ p

∂ p

∂r

)
∂ p

∂z
,

D = −
(

∂v

∂z
+ v

γ p

∂ p

∂z

)
∂ p

∂z
.
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According to the thermal wind equation, B = C and the coefficients form a sym-
metric matrix

M =
(

A B
C D

)
=

(
A B
B D

)
.

These can bewritten in terms of gradients of the specific angularmomentum � = r2�
and the specific entropy s (if the composition is uniform), as well as the effective
gravity g = −∇� + r�2 er = v∇ p:

A = 1

r3
∂�2

∂r
− δ

gr

cp

∂s

∂r
,

B = 1

r3
∂�2

∂z
− δ

gr

cp

∂s

∂z
= −δ

gz

cp

∂s

∂r
,

D = −δ
gz

cp

∂s

∂z
,

where we have used
(

∂ ln v

∂s

)

p

=
(

∂ ln v

∂ ln T

)

p

(
∂ ln T

∂s

)

p

= δ
1

cp

and note that δ = 1 for an ideal gas.
Our equations are reducible to a second-order partial differential equation (PDE)

for p′. Without writing this out in full, we can note that the structure of the second-
derivative terms is

(ω̂2 − D)
∂2 p′

∂r2
+ 2B

∂2 p′

∂r∂z
+ (ω̂2 − A)

∂2 p′

∂z2
+ · · · = 0,

implying that the PDE is hyperbolic when

B2 > (ω̂2 − A)(ω̂2 − D).

This is true for squared frequencies in the range

(A + D) − √
(A − D)2 + 4B2

2
< ω̂2 <

(A + D) + √
(A − D)2 + 4B2

2
, (1.2)

corresponding to inertia-gravity waves—internal waves that are restored by a com-
bination of inertial and buoyancy forces and generalize the waves discussed in the
sections ‘Plane Inertial Waves’ and ‘Plane Internal Gravity Waves’. The characteris-
tics of the hyperbolic PDE are generally curved, unlike those of Poincaré’s equation
for pure inertial waves in a uniformly rotating fluid.


