Stress Echocardiography

Stress Echocardiography

Fifth, Completely Revised and Updated Edition

Eugenio Picano MD, PhD

Director General Institute of Clinical Physiology of Pisa National Research Council 1st Fisiologia Clinica Via G. Moruzzi, 1 56124 Pisa Italy

ISBN: 978-3-540-76465-6 e-ISBN: 978-3-540-76466-3

DOI: 10.1007/978-3-540-76466-3

Library of Congress Control Number: 2008940140

© 2009 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Product liability: The publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature.

Cover design: Frido Steinen-Broo, eStudio Calamar, Spain

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

This book has a past. Its various editions parallel the growth of stress echocardiography within the scientific community and the clinical arena. The first edition in 1991 consisted of 100 pages, which increased to 200 in the second (1994), 300 in the third (1997), nearly 500 pages in the fourth, and finally more than 600 in the current fifth edition. The general perception of stress echocardiography has changed in the cardiology community. No longer a promising innovation viewed with a mixture of suspicion and attraction, it is now an established technique with the huge potential to resolve the present paradox of saving health care money while at the same time improving diagnostic standards. In a cardiological climate where inappropriate, redundant, and often risky imaging examinations proliferate, stress echocardiography offers the great advantage of being relatively low cost, free of biohazards for the patient, and causing no ecological stress on the planet. By choice and by necessity, modern, responsible diagnosis with cardiac imaging must be economical, ecological, and therefore usually echocardiographic. Another major change has taken place in stress echocardiography laboratories during the last 5 years, making a new edition of the book mandatory. For a long time, the scope and application of stress echocardiography remained focused on coronary artery disease. In the last few years, it has exploded in its breadth and variety of applications, enjoying the tremendous technological and conceptual versatility that this technique offers. Nowadays, in the stress echocardiography laboratory we assess not only left ventricular function, but also coronary artery flow, valve gradients, intraventricular pressures, and pulmonary hemodynamics. We stress not only coronary arteries, but also the valves, myocardium, vessels, alveolar-capillary barrier in the lung, and peripheral and pulmonary circulation. Ten years ago, only patients with known or suspected coronary artery disease entered the stress echocardiography laboratory, and only regional wall motion was assessed. Now, we evaluate coronary artery disease as well as cardiomyopathy, valvular heart disease, children with congenital heart disease, and patients with incipient or advanced vascular disease. For each patient, we can tailor a dedicated stress with a specific method to address a particular diagnostic question. Thirty years ago, Harvey Feigenbaum - one of the founding fathers of modern echocardiography – stated that it is not possible to understand the cardiac patient without the help of resting transthoracic echocardiography. After 30 years, we can safely state that it is not possible to understand the cardiac patient without the help of stress echocardiography. The book was single authored in the first edition, and then enjoyed many distinguished contributors in its subsequent editions, up to the record number of 29 contributors in the present edition. They come from 15 countries spanning four continents and represent, in

vi Preface

my opinion, some of the best available knowledge and expertise in their respective fields. I am proud and honored that they accepted the invitation to be a part of this project. At the same time, I aimed to avoid the fragmentation, gaps, and inconsistencies of a multiauthor text; therefore, I painfully decided to draft the first version of each chapter – then asked for corrections, revisions, cuts, additions, and integrations from more knowledgeable contributors. To all of them and to the junior and senior colleagues who have worked with me over the last 30 years – far too many to be mentioned here – *grazie*.

Pisa, February 2009

Eugenio Picano

Contents

Basic Principles, Methodology and Pathophysiology Stress Echocardiography: A Historical and Societal Perspective 3 Eugenio Picano 1.1 Dawn of the Stress Echocardiography Era: From Experimental Studies to the Monodimensional Approach..... 3 1 2 Second-Generation Stress Echocardiography: Pharmacological Stresses in the 2D Era 5 1.3 Third-Generation Stress Echocardiography Today: Coronary Flow Reserve and Dual Imaging 7 Cardiac Imaging and Its Guidelines.... 9 1.4 Cardiac Imaging and the Radiation-Induced Biorisks..... 1.5 11 1.6 Cardiac Imaging and the Regulatory Framework 1.7 Cardiac Imaging in the Age of Sustainability: The "Eco-Eco-Echo" Diagnosis 15 References.... 16 2 Anatomical and Functional Targets of Stress Testing 19 Eugenio Picano 2.1 Pathways of Ischemia. 19 2.2 Epicardial Coronary Arteries..... 19 2.3 Fixed Stenosis 20 2.4 Dynamic Stenosis 21 2.5 Myocardium and Small Coronary Vessels..... 21 2.6 The Target of Ischemia: The Subendocardial Layer..... 23 2.7 The Diagnostic "Gold Standard": Pure Gold?..... 23 References 28 3 Symptoms and Signs of Myocardial Ischemia..... 31 Eugenio Picano 3.1 Chest Pain 31 Electrocardiographic Changes 3.2 33

viii Contents

	3.3	Alterations in Left Ventricular Function	33
	3.4	Perfusion Abnormalities	34
	3.5	The Paradigm Challenged: The Alternative Ischemic Cascade	35
	3.6	Equations in the Diagnosis of Ischemia	38
	3.7	A New Diagnostic Variable: Coronary Flow Reserve	39
		References	40
4	Ratio	nal Basis of Stress Echocardiography	43
•		Recchia and Eugenio Picano	13
	4.1	Biochemical Basis	43
	4.2	Physiological Heterogeneity of Myocardial Function	44
	4.3	Regional Flow-Function Relationship in Myocardial Ischemia	48
	4.4	Postischemic Recovery of Contractile Function	49
	4.5	Determinants of Regional Dysfunction	51
	4.6	Clinical Basis	53
	Refere	ences	53
5	Patho	ogenetic Mechanisms of Stress	57
•		nio Picano	σ,
	5.1	Ischemia and Vasospasm	57
	5.2	Increased Demand	60
	5.3	Flow Maldistribution.	62
	5.4	Exercise-Simulating Agents: Scientific Fact or Fancy Definition?	65
	5.5	New Pharmacological Stresses	67
	5.6	The Atropine Factor in Pharmacological Stress Echocardiography	67
	5.7	The Combined Stress Approach	67
	5.8	Vasodilatory Power and the Hierarchy of Testing	69
	5.9	The Fosbury Flop and the Classic Straddle in the	
		Stress Echocardiography Laboratory	70
	Refere	ences	71
6	Echo	cardiographic Signs of Ischemia	75
	Euger	nio Picano	
	6.1	The Main Sign of Ischemia with 2D Echocardiography:	75
	6.1.1	Regional Asynergy	75
	6.2	Stress Echocardiography in Four Equations	79
	6.2.1	False-Negative Results	80
	6.3	False-Positive Responses	81
	6.3.1	"False" Stress Echocardiography Results:	
		Anatomic Lies and Prognostic Truths?	83
		References	86

Contents

7	_	nentation of the Left Ventriclenio Picano	9
	7.1	The 17 Secure Medal	9
	7.1	The 17-Segment Model.	
	7.2	Assignment of Segments to Coronary Arterial Territories Left Ventricular Function in a Number	9
	7.3		9
	7.4	Artifactual Pseudoasynergies	9
	7.5	Matching Between TTE and TEE Segments.	9
	7.6	Left Ventricular Segments: Matching Between	1.0
		2D and 3D Imaging	10
		References	10
8	•	amic and Pharmacologic Right Heart Stress Echocardiography: ht Ventricular Function, Right Coronary Artery Flow,	
	Puli	monary Pressure, and Alveolar–Capillary Membrane	
	Test	ing in the Echocardiography Laboratory	10
	Eug	enio Picano, Ekkehard Grünig, Alberto San Román,	
	Kwa	an Damon, and Nelson B. Schiller	
	8.1	Regional Right Ventricular Function in Coronary Artery Disease	10
	8.2	Measurement of Global Right Ventricular Function by	
		Planimetry and Descent of the Right Ventricular Base	10
	8.3	Coronary Flow Reserve of the Right Coronary Artery	11
	8.4	Pulmonary Hemodynamics	11
	8.5	Ultrasound Lung Comets	11
	8.6	Conclusion	11
		References	11
9	Cor	onary Flow Reserve	12
		sto Rigo, Jorge Lowenstein, and Eugenio Picano	
	9.1	Historical Background and Physiological Basis	12
	9.2	Coronary Flow Reserve in the Echocardiography Laboratory	12
	9.3	Methodology of Coronary Flow Reserve Testing	13
	9.4	Coronary Flow Reserve: The Diagnostic Results	13
	9.5	The Prognostic Value of Coronary Flow Reserve	13
	9.6	Targets, Tips, and Traps in Coronary Flow Reserve	13
	9.7	Coronary Flow Reserve in the Stress Echocardiography	
		Laboratory: Here to Stay	13
		References	14

x Contents

10		ology and Training Requirementsio Picano	145
	10.1	General Test Protocol	145
	10.2	Imaging Equipment and Techniques	147
	10.3	Training Requirements	148
	10.4	The Most Frequent Mistakes	152
		References	154
Sec	tion 2	Stresses: How, When and Why	
11	Exerci	ise Echocardiography	159
	Luc A	. Piérard and Eugenio Picano	
	11.1	Historical Background	159
	11.2	Pathophysiology	160
	11.3	Exercise Techniques	163
	11.4	Safety and Feasibility	165
	11.5	Diagnostic Results for Detection of Coronary Artery	
		Disease and Myocardial Viability	166
	11.6	Prognostic Value	167
	11.7	Indications and Contraindications to	
		Exercise Stress Echocardiography	169
		References	170
12	Dobut	amine Stress Echocardiography	175
	Eugen	io Picano	
	12.1	Historical Background	175
	12.2	Pharmacology and Pathophysiology	175
	12.3	Methodology	176
	12.4	Feasibility and Safety	178
	12.5	Diagnostic Results for Detection of Coronary Artery Disease	179
	12.6	Identification of Myocardial Viability	180
	12.7	Prognostic Value	181
	12.8	Indications and Contraindications	182
		References	183
13		idamole Stress Echocardiography	189
	Eugen	io Picano	
	13.1	Historical Background	189
	13.2	Pharmacology and Pathophysiology	192
	13.3	Methodology	193

Contents xi

	13.4	Feasibility and Safety
	13.5	Diagnostic Results for Detection of Coronary Artery Disease
	13.6	Viability
	13.7	Prognostic Value
	13.8	Indications and Contraindications
		References
14	Adono	sine Stress Echocardiography
14		io Picano, Miodrag Ostojic, and Rodolfo Citro
	Lugen	to Ficano, who drag Ostojic, and Rodono Citro
	14.1	Historical Background
	14.2	Pharmacology and Pathophysiology
	14.3	Methodology
	14.4	Tolerability and Safety
	14.5	Diagnostic Accuracy for Detection of Coronary Artery
		Disease and Myocardial Viability
	14.6	Prognostic Value
	14.7	Indications and Contraindications
		References
15	D	Ctore February
15	-	s Stress Echocardiographyio Picano
	Eugen	io ricalio
	15.1	Historical Background
	15.2	Pathophysiology
	15.3	Methodology
	15.4	Clinical Results and Comparison with Other
		Stress Echocardiography Tests
	15.5	Limitations and Indications
		References
16	Ergon	ovine Stress Echocardiography
_		e Diagnosis of Vasospastic Angina
		wan Song and Eugenio Picano
	16.1	Basic Considerations
	16.2	Protocol
	16.3	Noninvasive Diagnosis of Coronary Artery Spasm: Clinical Data
	16.4	Special Safety Considerations
	16.5	Clinical Impact
		References

xii Contents

17		ventilation Testio Picano	241
	17.1	Pathophysiology	241
	17.2	Protocol	241
	17.3	Diagnostic Value	242
	17.4	Diagnostic Value and Clinical Guidelines	243
		References	245
18		ng of Ischemic Response	247
	Eugen	io Picano	
	18.1	Degree of Asynergy	249
	18.2	Extent of Asynergy	249
	18.3	Ischemia-Free Stress Time	251
	18.4	Slow or Incomplete Recovery	253
	18.5	False Friends of Stress-Induced Ischemia Severity:	
		Arrhythmias and Hypotension	253
	18.6	The Fourth Coordinate: Perfusion and/or Coronary Flow Reserve	254
	18.7	Conclusion	254
		References	255
19	_	ostic Results and Indications	259
	19.1	Stress Echocardiography Versus Other Diagnostic Tests	261
	19.2	Stress Echocardiography and the Effects of Medical Therapy	265
	19.3	Contraindications to Stress Testing	266
	19.4	Indications for Stress Testing	268
	19.5	Inappropriate Use of Stress Testing	269
		References	270
20	Myoca	ardial Viability	273
	Luc P	iérard and Eugenio Picano	
	20.1	Historical Background	273
	20.2	Pathophysiology Behind Viability Imaging	274
	20.3	Nuclear and Magnetic Resonance Techniques for the	
		Identification of Myocardial Viability	276
	20.4	Resting Echocardiography	278
	20.5	Myocardial Contrast Echocardiography	279
	20.6	Tissue Characterization and Myocardial Velocity Imaging	280
	20.7	Dobutamine Stress Echocardiography	280
	20.8	Alternative Stress Echocardiography Methods	282
	20.9	The Clinical Value of Myocardial Viability:	
		Critical or Luxury Information?	283

Contents xiii

	20.10	The Prognostic Value of Myocardial Viability:	•
		A Moonlight Serenade	286
	20.11	Myocardial Viability in Context	287
		References	289
21	U	ostic Flowcharts	295
	Lugem	o i realio	
	21.1	Step 1: Clinical Picture	295
	21.2	Step 2: Exercise Electrocardiography Stress Test	296
	21.3	Step 3: Stress Imaging Testing	298
	21.4	Step 4: Testing for Vasospasm	300
		References	301
22	Progno	osis	303
	U	o Picano	202
	22.1	Left Ventricular Function	303
	22.2	Myocardial Viability	304
	22.3	Inducible Ischemia	306
	22.4	Pathophysiological Heterogeneity of Different Events	308
	22.5	Practical Implications	309
	22.5.1	Comparison of Invasive and Noninvasive Approaches	312
		References	313
Sec	tion 3	New Technologies and New Diagnostic Targets	
23		ltrasound Technologies for Quantitative Assessment	
		Ventricular Function	319
	Thoma	s H. Marwick, Adrian C. Borges, and Eugenio Picano	
	23.1	Spatial and Temporal Heterogeneity of	
		Left Ventricular Contraction	320
	23.2	M-mode Echocardiography and Longitudinal Function	324
	23.3	Anatomical M-mode	325
	23.4	Tissue Characterization	326
	23.5	Color Kinesis	326
	23.6	Tissue Doppler Imaging	327
	23.7	Strain-Rate Imaging	328
	23.8	Speckle Tracking	331
	23.9	Three-Dimensional Echocardiography	331
	23.10	Protechnology Bias: A Word of Caution	333
	23.11	Conclusion – Technology and Teaching	337
		References	338

xiv Contents

24		ast Stress Echocardiography	343
	Mark .	J. Monaghan and Eugenio Picano	
	24.1	Historical Background	343
	24.2	Pathophysiology of MCE	345
	24.3	Physics of Microbubbles and Modalities of Administration	347
	24.4	MCE Methodology	349
	24.5	Limitation of Stress MCE	353
	24.6	Contrast Stress Echocardiography: The Current Indications	355
		References	357
25	Diasto	olic Stress Echocardiography	361
		zio Galderisi and Eugenio Picano	
	25.1	Pathophysiological Basis of Diastolic Dysfunction	362
	25.2	The Echocardiography Assessment of Diastolic Function	365
	25.3	Clinical Results	366
	25.4	A Roadmap to the Future	369
		References	370
26	Endot	helial Function in the Stress Echocardiography Laboratory	375
		io Picano	
	26.1	Introduction	375
	26.2	Historical Background	376
	26.3	Physiology of Normal Endothelium	378
	26.4	Methodology of Endothelium-Dependent	
		Flow-Mediated Vasodilation	380
	26.5	Diagnostic Value of Endothelial Dysfunction for	
		Detection of Coronary Artery Disease	383
	26.6	Prognostic Value of Endothelial Dysfunction	385
	26.7	Clinical Implications and Future Perspectives	389
		References	390
Sec	tion 4	In Front of The Patient: Clinical Applications in Different	
		Patient Subsets	
27	_	al Subsets of Angiographically Defined Patients: Normal	
		ary Arteries, Single-Vessel Disease, Left Main Coronary Artery	205
		te, Patients Undergoing Coronary Revascularizationio Picano and Rosa Sicari	395
	27.1	Normal Coronary Arteries	395
	27.2	Single-Vessel Disease	396

Contents xv

	27.3	Left Main Coronary Artery Disease	397
	27.4	Patients Undergoing Coronary Revascularization	398
		References	400
		TOTO TOTO TOTO	100
28	Cnoolo	l Subsets of Electrocardiographically Defined Patients:	
20	•	~ · ·	
		undle Branch Block, Right Bundle Branch Block,	
		Fibrillation	405
	Eugeni	o Picano and Lauro Cortigiani	
	28.1	Left Bundle Branch Block	405
	28.2	Right Bundle Branch Block	406
	28.3	Atrial Fibrillation	407
		References	410
		TCTCTCTCCC5	110
29	Specia	l Subsets of Clinically Defined Patients: Elderly,	
47	_	· · · · · · · · · · · · · · · · · · ·	
		n, Outpatients, Chest Pain Unit, Noncardiac	410
		ar Surgery	413
	Rosa S	icari, Gigliola Bedetti, and Eugenio Picano	
	29.1	Elderly Patients	413
	29.2	Women	414
	29.3	Outpatients	415
	29.4	Chest Pain Unit Patients	415
	29.5	Noncardiac Vascular Surgery	420
		References	422
30	Microv	vascular Disease	429
		G. Camici and Eugenio Picano	,
	1 4010 4	o. Camier and Eugemo I ream	
	30.1	Background	429
	30.1		432
		Pathophysiology of Microvascular Angina	
	30.3	Stress Echocardiographic Findings in Cardiac Syndrome X	436
	30.4	The Prognostic Heterogeneity of Chest Pain with	
		Angiographically Normal Coronary Arteries	43′
	30.5	The Diagnostic Flow Chart in Microvascular Angina	443
		References	444
31	Hyper	tension	447
	Eugeni	o Picano	
	-		
	31.1	Background	447
	31.2	Pathophysiology	447
	31.3	Diagnosis of Coronary Artery Disease	449
	31.4	Prognostic Stratification	450
	31.4		
		References	453

xvi Contents

32	Diabet	es	457		
	Eugeni	o Picano and Lauro Cortigiani			
	32.1	Pathophysiology	457		
	32.2	Diagnosis of Coronary Artery Disease	458		
	32.3	Prognostic Stratification	459		
	32.4	The Diagnostic Flow Chart in Diabetics	460		
		References	462		
33	Stress	Echocardiography in Dilated Cardiomyopathy	465		
	Eugeni	o Picano			
	33.1	Incipient or Latent Cardiomyopathy	466		
	33.2	Dilated Cardiomyopathy	468		
	33.3	Differentiation Between Ischemic and Nonischemic			
		Dilated Cardiomyopathy	470		
	33.4	Stress Echocardiography and Cardiac Resynchronization Therapy	471		
		References	475		
34	Stress Echocardiography in Hypertrophic Cardiomyopathy				
		io Picano			
	34.1	Background	479		
	34.2	Pathophysiology	480		
	34.3	Stress Echocardiographic Findings in HCM	482		
	34.4	Conclusion	484		
		References	485		
35	Stress	Echocardiography After Cardiac Transplantation	487		
		o Picano, Tonino Bombardini, and Giorgio Arpesella			
	35.1	Background	487		
	35.2	Pharmacological Stress Echocardiography			
		for Detection of Acute Rejection	488		
	35.3	Pharmacological Stress Echocardiography			
		for Detection of Chronic Rejection	489		
	35.4	Pharmacological Stress Echocardiography			
	/ -	for Recruitment of Donor Hearts	493		
	35.5	Conclusions	494		
		References	494		

Contents xvii

36	The E	Emerging Role of Exercise Testing and Stress	
	Echo	cardiography in Valvular Heart Disease	499
	Euger	nio Picano, Philippe Pibarot, Patrizio Lancellotti,	
	Jean I	Luc Monin, and Robert O. Bonow	
	36.1	Aortic Stenosis	501
	36.2	Aortic Regurgitation	507
	36.3	Mitral Stenosis	507
	36.4	Mitral Regurgitation	509
	36.5	Prosthetic Heart Valves	511
	36.6	Coronary Artery Disease and Coronary Flow Reserve	514
	36.7	Conclusions	516
		References	516
37	Stress	Echocardiography in Children	523
	Euger	nio Picano and Michael Henein	
	37.1	Pediatric Coronary Artery Disease	523
	37.2	Transplant Coronary Artery Disease	525
	37.3	Transposition of Great Arteries After Surgical Repair	526
	37.4	Valve and Intraventricular Gradients	528
	37.5	Contractile Reserve	528
	37.6	Coronary Flow Reserve	530
	37.7	Conclusions	531
		References	532
Sec	tion 5	Comparison with Other Imaging Techniques	
38		Echocardiography Versus Stress Perfusion Scintigraphy	539
	Thom	as H. Marwick and Eugenio Picano	
	38.1	Nuclear Cardiology, the Land of Our Fathers	539
	38.2	SPECT, PET, and PET-CT Imaging: Advantages and Limitations	539
	38.3	MPI vs. Stress Echocardiography	540
	38.4	Current Clinical Indications	542
	38.5	The Elephant in the Room – Radiation Safety	543
	38.6	Conclusion	546
		References	548
39	Stress	s Echocardiography Versus Cardiac CT	553
	Euger	nio Picano and William Wijns	
	39.1	Cardiac Imaging in the CTA Era	553
	39.2	Advantages and Limitations of Cardiac CTA	555
	39.3	Stress Echocardiography vs. Cardiac CTA	556

xviii Contents

	39.4 39.5	Current Clinical Indications. Conclusions. References.	559 560 563
40	Stress	Echocardiography Versus Stress CMR	569
	Eugeni	o Picano and Juerg Schwitter	
	40.1	Coronary Artery Disease Detection by CMR:	
		The Rich Cardiologist's Super Stress Echocardiography?	569
	40.2	Stress CMR: Advantages and Limitations	570
	40.3	Stress Echocardiography vs. Stress CMR	572
	40.4	Clinical Implications	576
		References	579
41		priateness in the Stress Echocardiography Laboratory o Picano	585
	41.1	The Ulysses Syndrome in the Cardiac Imaging Laboratory	586
	41.2	Appropriateness in Stress Echocardiography	590
		References	594
Ind	ex		597

List of Contributors

Giorgio Arpesella

Dipartimento Cardiovascolare Universitá di Bologna Via Massarenti 9 40138 Bologna, Italy

Gigliola Bedetti

Cardiology Division Imola Hospital Via Montericco 4 40026 Imola, Italy

Tonino Bombardini

Associate Researcher Istituto di Fisiologia Clinica CNR, Via Moruzzi 1 56124 Pisa, Italy

Robert Bonow

Goldberg Professor of Medicine Division of Cardiology Northwestern University's Feinberg School of Medicine 676 St., Claire St., Suite 600 Chicago, IL 60611, USA

Adrian C. Borges

Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte Charité – Universitätsmedizin Schumannstr 20/21 10117 Berlin, Germany

Paolo G. Camici

Division of Clinical Sciences Hammersmith Hospital MRC Clinical Sciences Centre London SW7 2AZ, UK

Rodolfo Citro

Cardiology Imaging Unit San Luca Hospital Via F Cammarota Vallo della Lucania Salerno 84048, Italy

Lauro Cortigiani

Cardiac Imaging Lab, Lucca Hospital "Campo di Marte" Via dell'Ospedale 238 55100 Lucca, Italy

Kwan Damon

Division of Cardiology,
Department of Medicine
San Francisco Veterans Affairs Hospital
University of California San Francisco
San Francisco, CA 94143-0214, USA

Maurizio Galderisi

Department of Clinical and Experimental Medicine Federico II University Hospital Cardiology Unit Via Sergio Pansini, 5 80131 Naples Italy xx Contributors

Ekkehard Grünig

Pulmonary Hypertension Unit Department of Cardiology and Pneumology University Hospital Heidelberg INF 410 69120 Heidelberg, Germany

Michael Henein

Cardiology Department Heart Centre University Hospital 90185 Umea, Sweden

Patrizio Lancellotti

Department of Cardiology University Hospital Sart Tilman CHU Sart Tilman B35 4000 Liège, Belgium

Jorge Lowenstein

Cardiodiagnostic Department Investigaciones Médicas Viamonte 1871, CP 1056 Buenos Aires, Argentina

Thomas H. Marwick

University of Queensland Princess Alexandra Hospital Brisbane Queensland 4000, Australia

Mark J. Monaghan

Department of Cardiology, King's College Hospital Denmark Hill London SE5 9RS, UK

Jean-Luc Monin

Department of Cardiology Assistance Publique-Hôpitaux de Paris Henri Mondor Hospital 51 avenue De Lattre de Tassigny 94010 Créteil, France

Miodrag Ostojic

Cardiology Department University of Belgrade Belgrade Medical School Koste Todorovica 8 11000 Belgrade, Serbia

Philippe Pibarot

Laval Hospital Research Center Québec Heart Institute Laval University 2725, Chemin Sainte-Foy Québec, G1V-4G5, Canada

Luc A. Piérard

Department of Cardiology University Hospital Sart Tilman B-35 4000 Liège, Belgium

Fabio Recchia

Scuola Superiore Sant'Anna Piazza Martiri della Libertà 33 56127 Pisa, Italy

Fausto Rigo

Dipartimento Cardiovascolare Ospedale Civile di Mestre Via Ospedale 30170 Venezia (VE), Italy

Alberto San Román

Department of Cardiology Instituto de Ciencias del Corazón (ICOCOR), Hospital Clnico Ramón y Cajal, 3 47005 Valladolid, Spain

Nelson B. Schiller

Division of Cardiology Department of Medicine, Box 0214 San Francisco Veterans Affairs Hospital University of California San Francisco San Francisco, CA 94143-0214, USA Contributors xxi

Juerg Schwitter

University Hospital Zurich Clinic of Cardiology and Cardiac MR Center Raemistrasse 100 CH-8091 Zurich, Switzerland

Rosa Sicari

Institute of Clinical Physiology CNR Via Moruzzi, 1 56124 Pisa, Italy

Jae-Kwan Song

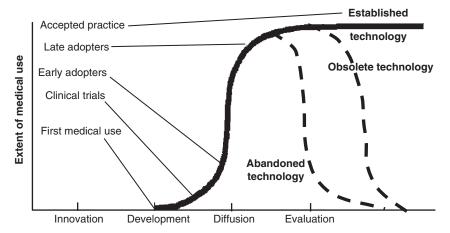
Echo Laboratory, Asan Medical Center Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 388-1, Pungnap-2dong, Songpa-gu Seoul, Republic of Korea

William Wijns

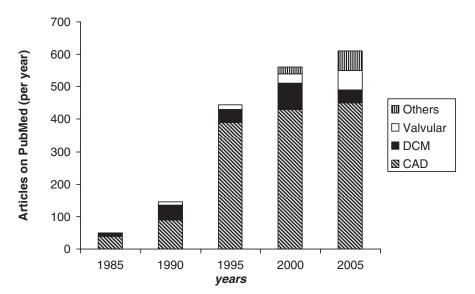
Cardiovascular Center OLV Hospital, Moorselbaan 164 9300 Aalst, Belgium

Section 1

Basic Principles, Methodology and Pathophysiology


Stress Echocardiography: A Historical and Societal Perspective

Eugenio Picano


Like many scientific innovations, in the last 30 years stress echocardiography has evolved from the status of "promising technique," embraced by a few enthusiastic supporters [1, 2] amid general skepticism [3], to "established technology" [4] accepted by the overwhelming majority of cardiologists [5], to finally play a pivotal role in general cardiology [6, 7] with specialty echocardiography guidelines [8, 9] (Fig. 1.1). An astounding increase in the amount of editorial space devoted to stress echocardiography in major journals and meetings testifies to its greater acceptance by cardiologists (Fig. 1.1) and to the progressive expansion of the diagnostic domain, from coronary artery disease to its currently increasing role in the characterization of cardiomyopathy and valvular heart disease patients [10] (Fig. 1.2). The growth of this technique can be schematically staged by decade, grossly corresponding to three major technological step-ups: its infancy, as a monodimensional approach only applied with exercise during the 1970s; adolescence, characterized by twodimensional echocardiography technology also applied with pharmacological stresses in the 1980s; young adulthood, when the methodology was reshaped with the addition of coronary flow reserve to standard wall motion analysis; and full maturity today, with deployment of the technique in the clinical arena to minimize the iatrogenic, legal, and social burdens that accompany the use of complementary and competing ionizing techniques such as scintigraphy and multislice computed tomography (MSCT) (Fig. 1.3).

1.1 Dawn of the Stress Echocardiography Era: From Experimental Studies to the Monodimensional Approach

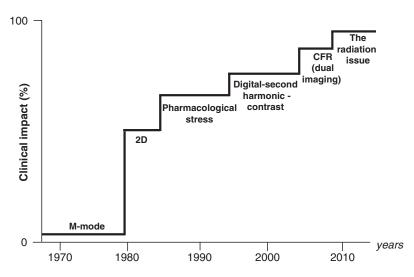

In 1935, Tennant and Wiggers showed that coronary occlusion resulted in almost instantaneous abnormality of wall motion [11]. Experimental studies performed some 40 years later with ultrasonic crystals [12] and two-dimensional echocardiography [13] on a canine model proved that during acute ischemia [12] and infarction [13] reductions in regional flow are closely mirrored by reductions in contractile function, setting the stage for the clinical use of ultrasonic methods in ischemic heart disease. The monodimensional (*M*-mode) technique

Fig. 1.1 The life cycle of a medical innovation, from promising technique (stress echocardiography in the 1980s) to established technology (stress echocardiography in the last 10 years). Various applications of stress echocardiography are all simultaneously present in today's stress echocardiography laboratory, but at different stages of maturity. The qualitative assessment of regional wall motion abnormalities for detection of coronary artery disease is clearly "established", but coronary flow reserve is still in the "early adopter" phase, while other applications (such as tissue characterization or myocardial velocity imaging with tissue Doppler or strain rate) have been discarded after the validation process and are now obsolete or have been abandoned for current clinical applications of stress echocardiography

Fig. 1.2 Stress echocardiography vital signs: the editorial golden age. *y-axis* indicates the number of published articles on stress echo; the *x-axis* indicates the year. DCM=dilated cardiomyopathy; CAD=coronary artery disease (From Medline Healthgate)

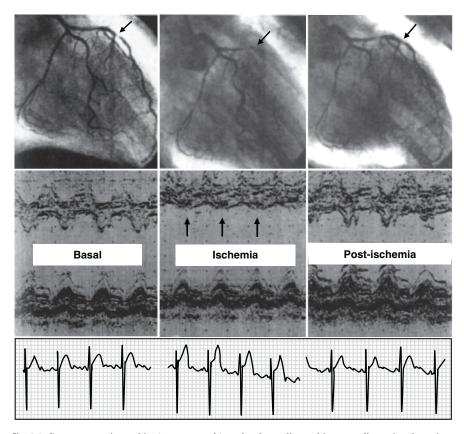


Fig. 1.3 The timeline of innovation in stress echocardiography. Quantum leaps in clinical impact are linked to technological improvements and cultural advancement. CFR = coronary flow reserve

was the only one available to cardiologists in the 1970s and nowadays appears largely inadequate for providing quality information when diagnosing myocardial ischemia. The timemotion technique sampling, according to an "ice-pick" view, greatly limited exploration to a small region on the left ventricle. Although this feature could hardly be reconciled with the strict regional nature of acute and chronic manifestations of ischemic heart disease. for the first time the monodimensional technique outlined echocardiography's potential in diagnosing transient ischemia. The very first reports describing echocardiographic changes during ischemia dealt with the use of M-mode in two different models of exercise-induced ischemia [14] and spontaneous vasospastic angina [15]. Landmark studies by Alessandro Distante of the Pisa echo laboratory recognized transient dyssynergy to be an early, sensitive, specific marker of transient ischemia, clearly more accurate than electrocardiogram (ECG) changes and pain (Fig. 1.4). The potential clinical impact of these observations became more obvious with the advent of the two-dimensional technique, which allowed exploration of all segments of the left ventricle with excellent spatial and temporal resolution, and was, therefore, ideally suited for searching for the regional and transient manifestations of myocardial ischemia. If the monodimensional technique was a bludgeon, then the two-dimensional technique was a bow – a more potent weapon, and much easier to use.

1.2 Second-Generation Stress Echocardiography: Pharmacological Stresses in the 2D Era

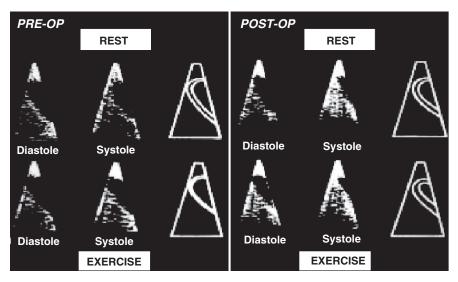

Once armed with the bow – the 2D technique – stress echocardiographers now had to find the arrows – the proper stresses. Exercise, although already on hand, was soon revealed to be a blunt arrow: what was the "mother of all tests" for the cardiologist was

Fig. 1.4 Coronary angiographic (*upper panels*) and echocardiographic monodimensional tracings (*lower panels*) during attacks of variant angina induced by ergonovine maleate. At baseline, left anterior descending coronary artery shows a tight stenosis (*left panel*); the artery is totally occluded by a complete vasospasm during ischemia (*middle panel*); and it is again open in the recovery phase (*right panel*). The corresponding three frames of an original *M*-mode recording document a fully reversible sequence of myocardial ischemia. The septum moves normally at rest (*left panel*) and is obviously akinetic during ischemia (*middle panel*). During the recovery phase (*right panel*), the previously ischemic wall exhibits a significant overshoot in motion and systolic thickening. (From [15])

at that time a disagreeable "stepmother" for the echocardiographer due to the technical difficulties and degraded quality of echocardiographic imaging during exercise. The problem was minimized with posttreadmill imaging, still the standard in the USA today [16]. An alternative approach, more popular in Europe, was the introduction of pharmacological stress echocardiography detecting myocardial ischemia [17] and viability [18].

In the late 1980s, multiple generations of ultrasound equipment evolved very rapidly, boosting image quality and offering the ability to image almost any patient. In two-dimensional exercise echocardiography, stress echocardiography sometimes was a "guess gram" (Fig. 1.5) and torture for the eyes. It was often repeated by eminent opinion leaders that you needed "magic eyes" and "magic machines" to obtain good results. The technique divided the echocardiographic community into two camps, "believers" and "skeptics"

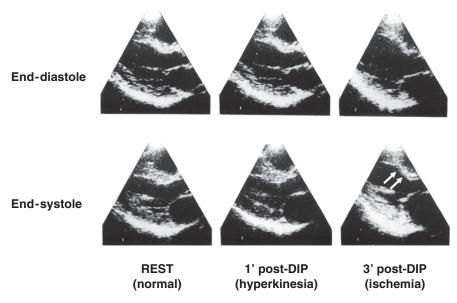
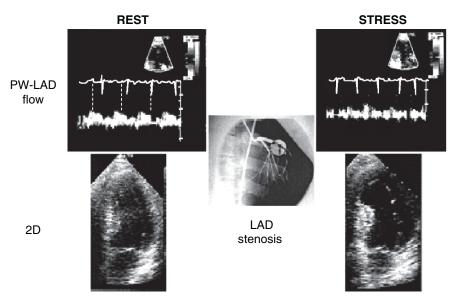


Fig. 1.5 Stress echocardiography in its infancy: not easy on the eyes. Exercise echocardiograms are shown before (*left panel*) and after (*right panel*) coronary artery bypass surgery. At that time (1979), image quality was so poor that even obtaining a single "typical example" for publication purposes was a challenge. (From [16])

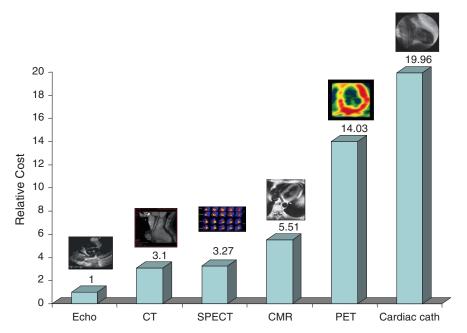
[3, 4], and never attained extensive clinical application. Things changed rapidly in the mid-1980s, with the evolution of imaging technology and the advent of pharmacological stresses, which were less technically challenging than exercise. In the 1990s, thanks to this methodological evolution, the technique was upgraded from research toy to clinical tool. The widespread use of this technique received wide-scale support and credibility; prospective multicenter studies provided effectiveness [19] and safety [20] data with pharmacological stress echocardiography. The same groups that proposed stress echocardiography in journals and meetings now introduced the technique into their clinical practice. Rather than the number of published articles, it was this compelling argument that convinced most laboratories to implement stress echocardiography in their own practice as well; the world described in journals eventually came to resemble real-life cardiology (Fig. 1.6).


1.3 Third-Generation Stress Echocardiography Today: Coronary Flow Reserve and Dual Imaging

For 20 years, throughout the 1980s and the 1990s, stress echocardiography remained virtually unchanged [1, 4, 5]. Certainly, there were obvious, continuous, subtle improvements in imaging technology. Digital echocardiographic techniques permitted the capture and synchronized display of the same view at different stages. The introduction of native tissue harmonic imaging, which increases lateral resolution and signal-to-noise ratio, clearly improved endocardial border detection. Intravenous contrast echocardiography with second-generation lung-crossing agents for endocardial border recognition allowed

Fig. 1.6 The birth of pharmacological stress echo. End-diastolic (*upper panels*) and end-systolic (*lower panels*) frames at baseline (*left panel*), during early hyperkinetic phase (*middle panel*, 1 min postdipyridamole infusion), and 3 min postdipyridamole infusion at peak ischemic effect (*right panel*) showing septal akinesia. The quality of the image (compared to Fig. 1.5) is dramatically improved thanks to the evolution of technology and the use of pharmacological instead of posttreadmill exercise echo. (Original images from [17])

cardiologists to study otherwise "acoustically hostile" patients and segments [8, 9]. To be honest, however, the last 20 years were also disappointing with regard to the three great unfulfilled promises of stress echocardiography: tissue characterization of the myocardial structure (scar vs. normal tissue); myocardial perfusion with myocardial contrast echocardiography (allowing perfusion to be coupled with function in the same stress); regional wall motion quantification with myocardial velocity imaging methods (turning the diagnosis of regional wall motion from an opinion into a quantifiable unit). At first, each of these targets appeared to be within reach, based on strong experimental data and encouraging clinical experiences, but they did not pass the test of multicenter studies and to date have not revealed any valuable clinic impact [8, 9]. Each of these objectives – tissue structure, myocardial perfusion, and regional function quantification - can be realized in a more effective and reproducible way with cardiovascular magnetic resonance (CMR) - with delayed contrast enhancement for scar detection, contrast imaging for myocardial perfusion, and tagging for wall motion objective quantification [5]. However, in the last 5 years, a major innovation changed the face and the diagnostic content of stress echocardiography: dual imaging of wall motion and coronary flow reserve with pulsed-Doppler imaging of the middistal left anterior descending coronary artery [21–23]. Imaging coronary flow reserve dramatically expands the prognostic potential of stress echocardiography, since in the absence of wall motion negativity, the patient subset with reduced coronary flow reserve has a less benign outcome and in patients with wall motion abnormality, those with reduced coronary flow reserve also have a more malignant prognosis (Fig. 1.7) [22, 23]. In the same


Fig. 1.7 The magical world of coronary flow reserve enters the stress echocardiography laboratory with pulsed Doppler, which allows assessment of coronary flow reserve on the middistal left anterior descending artery (visualized by color Doppler on *upper panel*). In this case, there is a normal coronary flow reserve, with a >2.5-fold increase in coronary flow velocity during stress (*right lower panel*) compared with rest (*left lower panel*). LAD, left anterior descending; PW, Pulsed Wave Doppler. (By courtesy of Fausto Rigo, Venice-Mestre [21])

setting, with the same stress, it is now possible to image function and flow simultaneously, and therefore catch two "birds" (flow and function) with one "stone" (vasodilator stress). Although coronary flow reserve is a technology-in-progress and has yet to reach its full maturity, it is now considered a new standard in the clinical application of stress echocardiography [24]. However, once again this quantum leap in the impact of stress echocardiography was the result of a conceptual rather than a technological step-up during the last 5 years: that is, the need to incorporate long-term radiation risk in the risk—benefit assessment of competing imaging techniques [5]. Medical, legal, and social arguments have boosted the use of stress echocardiography as the best way to optimize the risk—benefit ratio for the individual patient, minimize the risk of litigation due to unjustified long-term cancer risk, and nullify the oncological population burden of cardiac stress testing [5].

1.4 Cardiac Imaging and Its Guidelines

After 30 years of evolution, in the last 10 years stress echocardiography has reached its established rank in the diagnosis and prognosis of coronary artery disease, as officially certified by general cardiology [6, 7] and specialist guidelines [8, 9]. These guidelines unanimously conclude that nuclear cardiology and stress echocardiography provide

comparable information on key issues such as diagnostic accuracy for noninvasive detection of coronary artery disease, identification of myocardial viability, and prognostic stratification. In the recent American College of Cardiology (ACC)/American Heart Association (AHA) guidelines, the advantages listed for stress echocardiography include higher specificity, versatility, greater convenience, and lower cost. The advantages of stress perfusion imaging include higher technical success rate, higher sensitivity (especially for single-vessel disease involving the left circumflex artery), better accuracy when multiple resting left ventricular wall motion abnormalities are present, and a more extensive database in evaluation of the prognosis [6]. The European Society of Cardiology guidelines (2006) on stable angina conclude that "on the whole, stress echocardiography and stress perfusion scintigraphy, whether using exercise or pharmacological stress (inotropic or vasodilation), have very similar applications" [7]. However, the certified, comparable clinical performance cannot be construed as an argument for an opinion-driven choice of one technique over the other. The ACC /AHA Task Force (Committee on Management of Patients with Chronic Stable Angina) concluded that "the choice of which test to perform depends on issues of local expertise, available facilities and considerations of cost-effectiveness" [6]. The European Society of Cardiology concluded that "the choice as to which test is employed depends largely on local facilities and expertise." In the present era characterized by a quest for sustainability, the issues of relative cost (Fig. 1.8) [25], biological risk, and

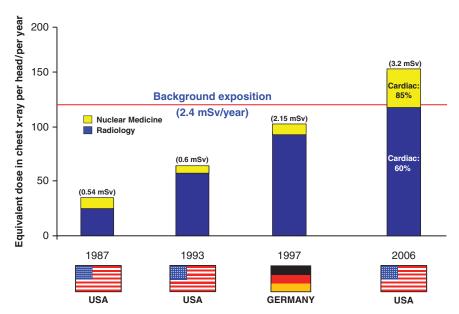


Fig. 1.8 Relative costs of cardiac imaging. CT=cardiac tomography; SPECT=single photon emission computed tomography; CMR=cardiac magnetic resonance; PET=positron emission tomography (Adapted and modified from [25])

environmental impact of stress-testing procedures – not even mentioned in the guidelines – should be included in the decision-making process, not only for cardiac stress testing, but for every imaging test in all branches of medicine, as clearly recommended by the European Commission Medical Imaging guidelines [26].

1.5 Cardiac Imaging and the Radiation-Induced Biorisks

Small individual risks multiplied by billions of examinations become significant population risks [27–31]. At least 10% of all cancers are due to diagnostic imaging, and at least half of them come from cardiac examinations (Fig. 1.9). Cardiac stress imaging contributes to these individual and population biorisks. On the individual level, the effective dose is expressed in millisievert (mSv). It provides an estimate of the whole-body dose and a measure of the biological effects. The dose of a single nuclear cardiology procedure ranges from 27 mSv (>1,500 chest X-rays) from a thallium scan to 10 mSv (500 chest X-rays) from a technetium-MIBI scan [32–34]. One millisievert corresponds to the dose equivalent of 50 chest X-rays (single postero–anterior projection = 0.02 mSv). According to the latest estimation of BEIR VII (2006), this exposure dose corresponds to an extra-lifetime risk of cancer per examination ranging from 1 in 500 (thallium) to 1 in 1,000 (sestamibi) [35, 36]. The typical effective dose of several common diagnostic procedures is reported in Table 1.1

Fig. 1.9 Annual effective dose received by an average US inhabitant (from [23], National Council on Radiation Protection and Measurements). The total dose is of 3.2 mSv per year: 2.4 mSv from natural and 0.4 mSv from man-made sources. (Updated from [27])