

Edited by Yukihiko Ozaki, Marek Janusz Wójcik,
and Jürgen Popp

Molecular Spectroscopy

A Quantum Chemistry Approach

Molecular Spectroscopy

Molecular Spectroscopy

A Quantum Chemistry Approach

Edited by

Yukihiro Ozaki

Marek Janusz Wójcik

Jürgen Popp

Volume 1

WILEY-VCH

Molecular Spectroscopy

A Quantum Chemistry Approach

Edited by

Yukihiro Ozaki

Marek Janusz Wójcik

Jürgen Popp

Volume 2

WILEY-VCH

Editors***Yukihiro Ozaki***

Kwansei Gakuin University
Department of Chemistry
2-1 Gakuen
Kobe Sanda Campus
669-1337 Sanda, Hyogo
Japan

Marek Janusz Wójcik

Jagiellonian University
Faculty of Chemistry
Gronostajowa 2
30-387 Kraków
Poland

Jürgen Popp

Leibniz-Institut für Photonische Technol
Albert-Einstein-Str. 9
07745 Jena
Germany

Cover Image: Kindly provided by
Yukihiro Ozaki, Kwansei Gakuin
University, Japan; © Sirinarth
Mekvorawuth/EyeEm/Getty Images
(Background)

■ All books published by **Wiley-VCH**
are carefully produced. Nevertheless,
authors, editors, and publisher do not
warrant the information contained in
these books, including this book, to
be free of errors. Readers are advised
to keep in mind that statements, data,
illustrations, procedural details or other
items may inadvertently be inaccurate.

Library of Congress Card No.:
applied for

British Library Cataloguing-in-Publication**Data**

A catalogue record for this book is
available from the British Library.

**Bibliographic information published by
the Deutsche Nationalbibliothek**

The Deutsche Nationalbibliothek lists
this publication in the Deutsche
Nationalbibliografie; detailed
bibliographic data are available on the
Internet at <<http://dnb.d-nb.de>>.

© 2019 Wiley-VCH Verlag GmbH &
Co. KGaA, Boschstr. 12, 69469
Weinheim, Germany

All rights reserved (including those of
translation into other languages). No
part of this book may be reproduced in
any form – by photoprinting,
microfilm, or any other means – nor
transmitted or translated into a
machine language without written
permission from the publishers.
Registered names, trademarks, etc. used
in this book, even when not specifically
marked as such, are not to be
considered unprotected by law.

Print ISBN: 978-3-527-34461-1
ePDF ISBN: 978-3-527-81462-6
ePub ISBN: 978-3-527-81460-2
oBook ISBN: 978-3-527-81459-6

Cover Design: Wiley
Typesetting SPi Global, Chennai, India
Printing and Binding

Printed on acid-free paper

10 9 8 7 6 5 4 3 2 1

Contents to Volume 1

Preface *xiii*

1	Interpretability Meets Accuracy in Computational Spectroscopy: The Virtual Multifrequency Spectrometer	<i>1</i>
	<i>Vincenzo Barone and Cristina Puzzarini</i>	
1.1	Introduction	2
1.2	The Virtual Multifrequency Spectrometer	3
1.2.1	The VMS Framework	3
1.2.2	The VMS Framework: Spectroscopies and Theoretical Background	4
1.2.2.1	Rotational Spectroscopy	4
1.2.2.2	Vibrational Spectroscopy	5
1.2.2.3	Vibronic Spectroscopy	8
1.2.2.4	Magnetic Spectroscopy	10
1.2.3	The VMS Framework: Quantum Chemical Methods	12
1.3	The VMS Framework at Work	14
1.3.1	Rotational Spectroscopy	14
1.3.2	Vibrational Spectroscopy	16
1.3.3	Vibronic Spectroscopy	19
1.3.4	Magnetic Spectroscopy	22
1.4	The VMS Framework: Applications	25
1.4.1	A Complete Spectroscopic Characterization: The Glycine Case Study	26
1.4.2	Vibrational Spectroscopy of a Chiral Molecule: The Methyloxirane Case Study	28
1.4.3	From Molecular Structure to Electronic Spectrum: The Pyrimidine Case Study	30
1.4.4	EPR Spectrum in Different Solvents: The TOAC Case Study	35
1.5	Conclusions	37
	Acknowledgments	38
	References	38
2	Excited State Dynamics in NTChem	<i>43</i>
	<i>Takehiro Yonehara, Noriyuki Minezawa, and Takahito Nakajima</i>	
2.1	NTChem	43
2.2	Electron Dynamics in a Molecular Aggregate Under a Light Field	44

2.2.1	Theoretical Background	45
2.2.1.1	Overview of Electron Dynamics Calculation	45
2.2.1.2	Schemes Based on Multistate Multi-electron Wavefunctions	46
2.2.1.3	Schemes Based on the Electron Density Matrix	48
2.2.2	Group Diabatic Fock Scheme	49
2.2.2.1	Group Diabatic Fock Matrix	49
2.2.2.2	Transformation of Observable, Fock, and Density Matrices	50
2.2.2.3	Time Propagation of Density Matrix in GD Representation	51
2.2.2.4	Initial Density Matrix: Local Excitation and Electron Filling	51
2.2.3	Numerical Demonstration	52
2.2.3.1	Charge Migration Dynamics: NPTL-TCNE Dimer	53
2.2.3.2	Unpaired Electron Dynamics: 20-mer Ethylene	54
2.3	Trajectory Surface Hopping Molecular Dynamics Simulation	59
2.3.1	Theoretical Background	60
2.3.1.1	Conical Intersection	60
2.3.1.2	Nonadiabatic Molecular Dynamics Simulation	61
2.3.1.3	Electronic Structure Method	62
2.3.2	Theoretical Method	63
2.3.2.1	TSH Approach	63
2.3.2.2	LR-TDDFT	63
2.3.2.3	Nonadiabatic Coupling	64
2.3.3	Example: Photodynamics of Coumarin	65
2.3.3.1	Computational Details	66
2.3.3.2	Results and Discussion	66
2.3.4	Future Direction	69
2.3.4.1	Effects of Environment	69
2.3.4.2	Accurate Description of S_0/S_1 Crossing	69
2.3.4.3	Spin-Forbidden Transition	70
2.4	Summary	70
	Acknowledgment	72
	References	72
3	Quantum Chemistry for Studying Electronic Spectroscopy and Dynamics of Complex Molecular Systems	79
	<i>Hyun Woo Kim, Kyungmin Kim, Soo Wan Park, and Young Min Rhee</i>	
3.1	Overview of Quantum Chemical Tools for Studying Electronic Spectroscopy	80
3.2	Examples: Quantum Chemical Calculations of Simple Systems	88
3.3	Spectral Line Shape	93
3.4	Examples: Complex Systems	95
3.4.1	Single Chromophore Case: Retinal in Rhodopsin	95
3.4.1.1	Isolated Retinal: Early Studies	96
3.4.1.2	Retinal in Protein: Absorption Predictions	97
3.4.1.3	MD Simulations with QM/MM	99
3.4.1.4	Rhodopsin Variants	100
3.4.1.5	2D Electronic Spectra	100
3.4.2	Multiple Chromophore Case: Bacteriochlorophylls in LH2	102

3.4.2.1	Excited State Energies	103
3.4.2.2	Coupling Between Excited States	104
3.4.2.3	Dynamics Simulations	105
	References	107
4	Theoretical and Experimental Molecular Spectroscopy of the Far-Ultraviolet Region	119
	<i>Masahiro Ehara and Yusuke Morisawa</i>	
4.1	Introduction	119
4.2	Method	120
4.2.1	Theory and Computational Details	120
4.2.2	ATR-FUV Spectroscopy	123
4.3	Results and Discussion	124
4.3.1	FUV Spectra of <i>n</i> -Alkanes in the Liquid and Solid Phases	124
4.3.2	Amides	130
4.3.3	Nylons	136
4.4	Summary	141
	References	142
5	Weight Averaged Anharmonic Vibrational Calculations: Applications to Polypeptide, Lipid Bilayers, and Polymer Materials	147
	<i>Kiyoshi Yagi, Hiroki Otaki, Pai-Chi Li, Bo Thomsen, and Yuji Sugita</i>	
5.1	Introduction	147
5.2	Method	149
5.2.1	Weight Average Method	149
5.2.2	Electronic Structure Calculations for a Cluster and Local Modes	150
5.2.3	Vibrational Quasi-degenerate Perturbation Theory	151
5.2.4	Computational Procedure	153
5.3	Applications	153
5.3.1	Pentapeptide: SIVSF	153
5.3.2	Sphingomyelin Bilayer	157
5.3.3	Hydration of Nylon 6	160
5.4	Concluding Remarks and Outlook	163
	Acknowledgments	164
	References	165
6	Chiral Recognition by Molecular Spectroscopy	171
	<i>Magdalena Pecul and Joanna Sadlej</i>	
6.1	Introduction	171
6.2	The Physical Manifestation of Optical Activity in Chiroptical Spectroscopic Methods: Theory of the Chiroptical Properties	172
6.2.1	General Background	173
6.2.2	Calculations of VCD Spectra	173
6.2.2.1	Practical Simulation of VCD Spectra	173
6.2.3	Calculations of ROA Spectra	175

6.2.4	Calculations of ECD and CPL Spectra	176
6.2.5	Calculations of CPL Spectra	177
6.2.5.1	Spin-Forbidden Circular Dichroism and Circularly Polarized Phosphorescence (CPP)	177
6.2.6	Electronic Structure Methods, Basis Set Requirements, and Program Packages	179
6.2.6.1	Vibrational Optical Activity	180
6.2.6.2	Electronic Structure Methods: ECD, CPL, and CPP	181
6.2.6.3	The Basis Set Requirements: VCD, ROA, ECD, and CPL	181
6.2.6.4	Software	182
6.3	Selected Case Studies	182
6.3.1	Taking into Account Chemical Environment, Conformational Flexibility, and Vibrational Corrections in the Calculation of Chiroptical Spectra	182
6.3.1.1	Matrix-Isolation CD Spectra	183
6.3.1.2	Modeling of Solvent Effects in the Chiroptical Spectra	183
6.3.1.3	Environment-Induced CD and CPL Activity	184
6.3.1.4	Conformational Averaging of the Chiroptical Spectra	185
6.3.1.5	The Concept of Robustness	185
6.3.2	Modeling of Anharmonicity in VCD and ROA Spectra	186
6.3.2.1	Computational Approaches to Anharmonicity	186
6.3.2.2	The Role of Anharmonicity in VCD and ROA Spectra: Examples	186
6.3.3	The Induced VCD Intensity Monitored by Experimental or Calculated VCD Spectra	187
6.4	Perspective	189
	References	191
7	Quantum Approach of IR Line Shapes of Carboxylic Acids Using the Linear Response Theory	199
	<i>Paul Blaise, Olivier Henri-Rousseau, and Adina Velcescu</i>	
7.1	Introduction	199
7.2	The Characteristics of the Infrared Spectra of Hydrogen-Bonded Species	199
7.2.1	Recall on the General Features of the IR Spectra of Systems Containing Hydrogen Bonds	199
7.2.2	The Linear Response Theory	201
7.2.3	Conditions for a Quantitative Theory	202
7.3	The Strong Coupling Theory of Anharmonicity	203
7.3.1	Spectral Density	203
7.3.2	The Model for IR Spectra of Centrosymmetric Dimers	207
7.3.3	The Line Shape	208
7.3.4	Limit Situations	210
7.3.5	Examples	211
7.3.5.1	Acetic Acid	211
7.3.5.2	Formic Acid	211
7.4	Conclusion	212
	References	212

8	Theoretical Calculations Are a Strong Tool in the Investigation of Strong Intramolecular Hydrogen Bonds	215
	<i>Poul Erik Hansen, Aneta Jeziorska, Jarosław J. Panek, and Jens Spanget-Larsen</i>	
8.1	Introduction and Definition of Types of Intramolecular Hydrogen Bonds	215
8.2	Definitions of Strong Intramolecular Hydrogen Bonds	215
8.3	Calculation of Structural Parameters	217
8.4	Hydrogen Bond Strength	218
8.5	Calculation of Energies	220
8.6	Tautomerism	223
8.6.1	2D Approaches to Hydrogen Bond Potentials	223
8.6.2	Potential Energy and Free Energy Surfaces	223
8.7	Calculation of IR Spectra of Strongly Hydrogen-Bonded Systems	226
8.7.1	The Harmonic Approximation	226
8.7.2	Going Beyond the Harmonic Approximation	228
8.7.2.1	Simplified, Static Procedures	228
8.7.2.2	Advanced Calculations on Small Systems: Malonaldehyde and Acetylacetone	229
8.7.3	Larger Systems	232
8.7.3.1	Car–Parrinello Molecular Dynamics Simulations	232
8.8	NMR	234
8.8.1	Introduction	234
8.8.2	Calculation of OH Chemical Shifts	235
8.8.3	Estimation of Ring Current and Anisotropy Effects on OH Chemical Shifts	236
8.8.4	Estimation of Other Effects on OH Chemical Shifts	237
8.8.5	Calculation of Chemical Shifts in Charged Systems	237
8.8.6	Calculation of Deuterium Isotope Effects on Nuclear Shieldings	238
8.8.6.1	Jameson Approach	238
8.8.6.2	Car–Parrinello and Two-Dimensional Sampling of Chemical Shifts	239
8.9	Principal Component Analysis	240
8.10	Solvent Effects	240
8.11	Conclusions	241
	References	242
9	Spectral Simulation for Flexible Molecules in Solution with Quantum Chemical Calculations	253
	<i>Yukiteru Katsumoto</i>	
9.1	Introduction	253
9.2	Selection of the Calculation Level for Spectral Simulations of Flexible Molecules	254
9.3	Simulation of IR Spectra Observed in Solution Phase	257
9.4	Competition Between Intramolecular and Intermolecular Interactions	261
9.5	Conformational Diversity and Solvation in the Vibrational Spectrum	265

9.6	Conformational Diversity in the Vibrational Circular Dichroism Spectrum	269
9.7	Conformational Diversity in the Electronic Circular Dichroism References	272
10	Combination Analysis of Matrix-Isolation Spectroscopy and DFT Calculation	<i>Nobuyuki Akai</i> 279
10.1	Introduction	279
10.2	Matrix-Isolation Method	280
10.3	Adoption of Theory and Basis Set	282
10.4	Conformational Analysis	283
10.4.1	1,2-Dichloroethane	283
10.4.2	Chlorobenzaldehyde	285
10.4.3	Vanillin	286
10.4.4	Excitation Light	289
10.5	Identification for Unknown Species	290
10.5.1	Rare Tautomer of Cytosine	290
10.5.2	Reversible Isomerization Between Triplet and Singlet Species from 1,8-Diaminonaphthalene	291
10.6	Spectrum and Structure of Molecular Complex or Cluster	293
10.7	Photoinduced Transient Species	294
10.7.1	Hydroquinone	294
10.7.2	Lowest Electronic Excited Triplet State	296
10.8	Conclusion	297
	References	298

Contents to Volume 2

11	Role of Quantum Chemical Calculations in Elucidating Chemical Bond Orientation in Surface Spectroscopy	<i>Dennis K. Hore</i> 303
12	Dynamic and Static Quantum Mechanical Studies of Vibrational Spectra of Hydrogen-Bonded Crystals	<i>Mateusz Z. Brela, Marek Boczar, Łukasz Boda, and Marek Janusz Wójcik</i> 327
13	Quantum Mechanical Simulation of Near-Infrared Spectra: Applications in Physical and Analytical Chemistry	<i>Krzysztof B. Beć, Justyna Grabska, Christian W. Huck, and Yukihiro Ozaki</i> 353
14	Local Modes of Vibration: The Effect of Low-Frequency Vibrations	<i>Emil Vogt, Anne S. Hansen, and Henrik G. Kjaergaard</i> 389

15 **Intra- and Intermolecular Vibrations of Organic Semiconductors and Their Role in Charge Transport** 425
Andrey Yu. Sosorev, Ivan Yu. Chernyshov, Dmitry Yu. Paraschuk, and Mikhail V. Vener

16 **Effects of Non-covalent Interactions on Molecular and Polymer Individuality in Crystals Studied by THz Spectroscopy and Solid-State Density Functional Theory** 459
Feng Zhang, Keisuke Tominaga, Michitoshi Hayashi, and Takashi Nishino

17 **Calculation of Vibrational Resonance Raman Spectra of Molecules Using Quantum Chemistry Methods** 497
Julien Guthmuller

18 **Density Functional Theoretical Study on Surface-Enhanced Raman Spectroscopy of CH₂/NH₂ Wagging Modes in p-π Conjugated Molecules on Noble Metal Surfaces** 537
De-Yin Wu, Yan-Li Chen, Yuan-Fei Wu, and Zhong-Qun Tian

19 **Modeling Plasmonic Optical Properties Using Semiempirical Electronic Structure Calculations** 575
Chelsea M. Mueller, Rebecca L.M. Giesecking, and George C. Schatz

Index 597

Contents to Volume 1

Preface *xiii*

- 1 **Interpretability Meets Accuracy in Computational Spectroscopy: The Virtual Multifrequency Spectrometer** 1
Vincenzo Barone and Cristina Puzzarini
- 2 **Excited State Dynamics in NTChem** 43
Takehiro Yonehara, Noriyuki Minezawa, and Takahito Nakajima
- 3 **Quantum Chemistry for Studying Electronic Spectroscopy and Dynamics of Complex Molecular Systems** 79
Hyun Woo Kim, Kyungmin Kim, Soo Wan Park, and Young Min Rhee
- 4 **Theoretical and Experimental Molecular Spectroscopy of the Far-Ultraviolet Region** 119
Masahiro Ehara and Yusuke Morisawa
- 5 **Weight Averaged Anharmonic Vibrational Calculations: Applications to Polypeptide, Lipid Bilayers, and Polymer Materials** 147
Kiyoshi Yagi, Hiroki Otaki, Pai-Chi Li, Bo Thomsen, and Yuji Sugita
- 6 **Chiral Recognition by Molecular Spectroscopy** 171
Magdalena Pecul and Joanna Sadlej
- 7 **Quantum Approach of IR Line Shapes of Carboxylic Acids Using the Linear Response Theory** 199
Paul Blaise, Olivier Henri-Rousseau, and Adina Velcescu
- 8 **Theoretical Calculations Are a Strong Tool in the Investigation of Strong Intramolecular Hydrogen Bonds** 215
Poul Erik Hansen, Aneta Jezierska, Jarosław J. Panek, and Jens Spanget-Larsen

9 **Spectral Simulation for Flexible Molecules in Solution with Quantum Chemical Calculations** 253
Yukiteru Katsumoto

10 **Combination Analysis of Matrix-Isolation Spectroscopy and DFT Calculation** 279
Nobuyuki Akai

Contents to Volume 2

11 **Role of Quantum Chemical Calculations in Elucidating Chemical Bond Orientation in Surface Spectroscopy** 303
Dennis K. Hore

11.1 Introduction 303

11.2 Vibrational Sum-Frequency Generation Spectroscopy 304

11.2.1 Basic Experimental Details 304

11.2.2 Molecular View 308

11.2.3 SFG Phase Measurement 310

11.3 Determination of Bond Polarity 311

11.4 Quantum Chemical Calculations for Modeling the Molecular Hyperpolarizability 313

11.5 Example 318

11.6 Summary 320

Acknowledgments 321

References 321

12 **Dynamic and Static Quantum Mechanical Studies of Vibrational Spectra of Hydrogen-Bonded Crystals** 327
Mateusz Z. Brela, Marek Boczar, Łukasz Boda, and Marek Janusz Wójcik

12.1 Introduction 327

12.2 Historical and Theoretical Background 329

12.3 Applications 332

12.3.1 Vibrational Spectra of Strong Hydrogen Bonds in Oxalic Acid Dihydrate Crystal with Isotopic Substitution Effects 333

12.3.2 Simulations of Infrared Spectra of Crystalline Vitamin C 336

12.3.3 Study on Proton Dynamics of Strong Hydrogen Bonds in Aspirin Crystals 338

12.3.4 The Hydrogen Bond Dynamics in Crystalline Tropolone 343

12.4 Summary and Perspectives 345

Acknowledgment 346

References 346

13	Quantum Mechanical Simulation of Near-Infrared Spectra: Applications in Physical and Analytical Chemistry	353
	<i>Krzysztof B. Beć, Justyna Grabska, Christian W. Huck, and Yukihiro Ozaki</i>	
13.1	Introduction	353
13.2	Overview of the Current Progress in Computational NIR Spectroscopy	355
13.2.1	Basic Molecules	355
13.2.2	Investigations of Intermolecular Interactions and Biomolecules	363
13.2.3	Connecting the Link Between Theoretical and Analytical NIR Spectroscopy	368
13.2.4	Miscellaneous Applications of NIR Spectra Simulation	373
13.2.5	Accurate NIR Studies of Single Mode Anharmonicity by Solving 1D Schrödinger Equation	375
13.3	Conclusions	383
	References	383
14	Local Modes of Vibration: The Effect of Low-Frequency Vibrations	389
	<i>Emil Vogt, Anne S. Hansen, and Henrik G. Kjaergaard</i>	
14.1	Introduction	389
14.2	Local Mode (LM) Models	391
14.2.1	1D LM Model	391
14.2.1.1	OH Stretching in Sulfuric Acid	393
14.2.2	2D LM Model	394
14.2.2.1	CH Stretching in Butadiene	397
14.2.3	3D LM Model	400
14.2.3.1	CH Stretching in Propane	401
14.3	Effect of Low-Frequency Modes	402
14.3.1	Methyl Torsional Mode	403
14.3.2	Intermolecular Modes in Bimolecular Complexes	406
14.4	Local Mode Intensities	408
14.4.1	Wavefunctions	409
14.4.2	Dipole Moment Function	411
14.4.3	Absolute Intensities	411
14.4.3.1	Sulfuric Acid: Higher Overtones	411
14.4.3.2	Dimethylamine: An Intense First Overtone	412
14.4.3.3	Water Dimer: A Weak First Overtone	413
14.4.3.4	Effect of Methyl Torsion	414
14.4.3.5	Effect of Intermolecular Modes in Bimolecular Complexes	416
14.5	Summary	417
	Appendix 14.A Deriving the LM Hamiltonian	418
	References	420

15	Intra- and Intermolecular Vibrations of Organic Semiconductors and Their Role in Charge Transport	425
	<i>Andrey Yu. Sosorev, Ivan Yu. Chernyshov, Dmitry Yu. Paraschuk, and Mikhail V. Vener</i>	
15.1	Introduction	425
15.2	Theoretical Treatment of Coupling Between Intra- and Intermolecular Vibrations in Low-Frequency Region	426
15.2.1	Computations of IR and Raman Spectra by Solid-State DFT	427
15.2.2	Low-Frequency Vibrations of Crystals Formed by Structurally Close Molecules	429
15.3	The Role of Inter- and Intramolecular Vibrations in Charge Transport	434
15.3.1	Local and Nonlocal Electron–Phonon Coupling	434
15.3.2	Three Mechanisms Underlying Impact of Electron–Phonon Interaction on Charge Transport in Organic Semiconductors	436
15.3.3	Computational and Experimental Approaches to Electron–Phonon Coupling in Organic Semiconductors	439
15.3.4	Electron–Phonon Coupling in Various Organic Semiconductors	440
15.4	Impact of Low-Frequency Vibrations on Charge Transport in F_n -TCNQ Crystal Family	443
15.5	Conclusions	449
	Acknowledgments	450
	References	450
16	Effects of Non-covalent Interactions on Molecular and Polymer Individuality in Crystals Studied by THz Spectroscopy and Solid-State Density Functional Theory	459
	<i>Feng Zhang, Keisuke Tominaga, Michitoshi Hayashi, and Takashi Nishino</i>	
16.1	A Historical Review of Phonon Modes	459
16.2	Theoretical Representation of Non-covalent Interactions	462
16.3	A Mode Decomposition Method	465
16.4	Interpretation of the Nature of Optical Phonon Modes Controlled by Prototypical Non-covalent Interactions	470
16.4.1	C_{60}	471
16.4.2	Anthracene	473
16.4.3	Adenine	475
16.4.4	α -Glycine and L-Alanine	476
16.4.5	Frequency Sequences of Intermolecular Translations and Vibrations and Intramolecular Vibrations	478
16.4.6	Mixing Between Intermolecular and Intramolecular Vibrations	479
16.5	Application of the DFT-D Method in a Material System scPLA	481
16.6	Experimental Evidence Supporting the Mode Assignments	484
16.7	Conclusion	486
	References	487

17	Calculation of Vibrational Resonance Raman Spectra of Molecules Using Quantum Chemistry Methods	497
	<i>Julien Guthmuller</i>	
17.1	Introduction	497
17.2	Theory of Resonance Raman Scattering, Approximations, and Quantum Chemistry Methods	499
17.2.1	Sum-Over-State Formulation of the Vibrational Raman Intensities	499
17.2.2	Normal Raman Scattering in the Double Harmonic Approximation	501
17.2.3	Resonance Raman Intensities	503
17.2.4	Time-Dependent Formulation of Resonance Raman Intensities	506
17.2.5	Resonance Polarizability Derivatives	508
17.2.6	Transform Theory and Simplified Φ_e Approximation	509
17.2.7	Calculation of the Franck–Condon Overlap Integrals	511
17.2.8	Quantum Chemistry Methods to Calculate Resonance Raman Spectra	515
17.3	Illustrative Applications	518
17.3.1	Using the Short-Time Approximation	518
17.3.2	Including Franck–Condon Vibronic Couplings	518
17.3.3	Considering Several Electronic Excited States in Resonance	521
17.3.4	Including Herzberg–Teller Vibronic Couplings	523
17.4	Conclusions	523
	References	525
18	Density Functional Theoretical Study on Surface-Enhanced Raman Spectroscopy of CH_2/NH_2 Wagging Modes in p–π Conjugated Molecules on Noble Metal Surfaces	537
	<i>De-Yin Wu, Yan-Li Chen, Yuan-Fei Wu, and Zhong-Qun Tian</i>	
18.1	Introduction	537
18.2	Brief Review of Wagging Vibrational Raman Spectra	538
18.3	Normal Mode Analysis	541
18.4	Density Functional Theoretical Calculations	546
18.5	Raman Intensity	548
18.6	Modeling Molecules	549
18.6.1	Aniline	549
18.6.2	Para-substituted Anilines	554
18.6.3	Benzyl Radicals and Its Anion	557
18.6.4	Terminal Olefins	558
18.7	Chemical Enhancement Effect	562
18.8	The Reason of Broadbands	565
18.9	Conclusions	567
	Acknowledgments	568
	References	568

19	Modeling Plasmonic Optical Properties Using Semiempirical Electronic Structure Calculations	575
	<i>Chelsea M. Mueller, Rebecca L.M. Giesecking, and George C. Schatz</i>	
19.1	Introduction	575
19.2	INDO/CI vs. TD-DFT: Absorption Spectra of Ag Nanoclusters	577
19.3	Higher-Order Excitations: The Role of Double Excitations in Absorption	579
19.4	Identification of Quadrupolar Plasmonic Excited States	580
19.5	Electrochemical Charge Transfer	583
19.6	Voltage Effects and the Chemical Mechanism of Surface-Enhanced Raman Scattering	584
19.7	Conclusions	590
	Acknowledgment	591
	References	591

Index 597

Preface

The purpose of this book is to outline the state-of-the-art quantum chemical approach to molecular spectroscopy. Over the last two decades or so, molecular spectroscopy has made remarkable progress; several novel spectroscopies such as terahertz spectroscopy, tip-enhanced Raman scattering (TERS), and far-ultraviolet (FUV) spectroscopy in condensed phase have emerged. Moreover, existing spectroscopies have shown prominent advances in this period. The advances in spectroscopies lie in the development of theory, instruments, spectral analysis, and applications. In spectral analysis quantum chemical approach is particularly important. It is useful not only for spectral analysis such as band assignments but also for studies of structure, reactions, and physical and chemical properties of molecules.

This book aims at making a strong bridge between molecular spectroscopy and quantum chemistry. For the last quarter of a century quantum chemistry has been extensively used for various spectroscopies such as vibrational spectroscopy, electronic spectroscopy, and nuclear magnetic resonance spectroscopy. However, one cannot find a good book that connects spectroscopy and quantum chemistry. This book may be the first one that explains comprehensively how quantum chemical approach can be applied to molecular spectroscopy. It covers FUV spectroscopy, UV-visible spectroscopy, near-infrared (NIR) spectroscopy, IR spectroscopy, far-IR spectroscopy/terahertz spectroscopy, Raman spectroscopy, and NMR spectroscopy. Almost all kinds of molecular spectroscopies are presented in this book. For quantum chemical approaches various new calculation methods are introduced. The recent rapid progress in supercomputers has made it possible to utilize these new methods. For example, anharmonic quantum chemical calculations are becoming popular due to advances in supercomputers. In applications many chapters deal with studies of hydrogen bonding and inter- and intramolecular interactions. In this book, we invited front runners from many countries who are currently very active in the molecular spectroscopy-quantum chemistry field.

This book is very useful not only for chemistry but also for applied physics, material sciences, biosciences, and industrial applications. It is suitable for molecular spectroscopists who are interested in quantum chemistry and quantum chemists who are interested in molecular spectroscopy. We hope this book will find many readers among students at graduate level as well as researchers and engineers in academia and industry.

Last but not the least, we would be most grateful if the book can inspire readers to use novel quantum chemistry approaches for molecular spectroscopy studies and/or to attempt to develop new approaches by themselves.

In closing, we would like to thank Dr. Lifen Yang, Ms. Shirly Samuel, and Mr. Jayakumar Ramprasad of Wiley for their continuous efforts in publishing this book.

April 2019

Yukihiro Ozaki, Sanda, Japan
Marek Janusz Wójcik, Krakow, Poland
Jürgen Popp, Jena, Germany

1

Interpretability Meets Accuracy in Computational Spectroscopy: The Virtual Multifrequency Spectrometer

Vincenzo Barone¹ and Cristina Puzzarini²

¹Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

²Università di Bologna, Dipartimento di Chimica "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy

The virtual multifrequency spectrometer (VMS), under active development in our laboratories over the last few years, is shortly described in this chapter by means of selected spectroscopic techniques and a few representative case studies. The VMS project aims to offer an answer to the following question: is it possible to turn strongly specialized research in the field of computational spectroscopy into robust and user-friendly aids to experiments and industrial applications? VMS contains a number of tools devised to increase the interaction between researchers with different background and to push toward new frontiers in computational chemistry. As a matter of fact, the terrific advancements in computational spectroscopy and the wide availability of computational and analytic tools are paving the route toward the study of problems that were previously too difficult or impossible to be solved and let imagine even more ambitious targets for fundamental and applied research. Under such circumstances, a robust, flexible, and user-friendly tool can allow for moving data analysis toward a proactive process of strategic decisions and actions. This chapter starts from these premises, and it proposes a perspective for a new virtual platform aimed at integrating past developments in theory, algorithms, and software with new workflow management and visualization tools. After a short review of the underlying theoretical framework, the features of the principal tools available in the current version of VMS for a selection of spectroscopic techniques are addressed in some details. Next, four case studies are presented, thus aiming to illustrate possible applications of VMS to systems of current interest for both fundamental and applied research. These applications convincingly show that even if several extensions of the software are planned or already under development, VMS represents a powerful and user-friendly tool for both computational and experimentally oriented spectroscopists.

1.1 Introduction

Spectroscopic techniques provide a wealth of qualitative and quantitative information on the chemical and physical-chemical properties of molecular systems in a variety of environments. Nowadays, sophisticated experimental techniques, mainly based on vibrational, electronic, and resonance spectroscopies, allow studies under various environmental conditions and in a noninvasive fashion [1, 2]. Particularly effective strategies are obtained when different spectroscopic techniques are combined together and further supported and/or integrated by computational approaches. Indeed, not only the spectral analysis is seldom straightforward, but also molecular spectra do not provide direct information on molecular structures, properties, and dynamics [3, 4]. The challenges can be posed by the intrinsic properties and complexity of the system and/or caused by thermal or environmental effects, whose specific roles are not easy to separate and evaluate. In such a context, computational spectroscopy is undoubtedly a powerful and reliable tool to unravel the different contributions to the spectroscopic signal and understand the underlying physical phenomena [5, 6]. However, direct vis-à-vis comparisons between experimental and computed spectroscopic data are still far from being standard. To fill this lack, a virtual multifrequency spectrometer (VMS) (<http://dreamslab.sns.it/vms/>) has been implemented with the aim of providing a user-friendly access to the latest developments of computational spectroscopy, also to nonspecialists [7–11]. As it will be better explained in the following section, VMS integrates state-of-the-art computational implementations of different spectroscopies with a powerful graphical user interface (GUI) [12], which offers an invaluable aid in preorganizing and displaying the computed spectroscopic information. For the sake of clarity, it should be noted that several codes incorporate implementation of spectroscopic properties at different levels of theory together with graphic engines. However, none of these tools offer the characteristics that should be considered mandatory for state-of-the-art computational spectroscopy (e.g. rigorous treatment of anharmonicity, vibronic contributions, etc.) and/or for flexible user-friendly graphical tools. In particular, it should emphasize the uniqueness of VMS in incorporating both general utilities needed by experimentally oriented scientists (e.g. conversion of theoretical quantities to experimental observables, manipulation of several spectra at the same time, etc.) and advanced tools for theoreticians and developers (e.g. resonance Raman [RR] spectra).

The aim of the present chapter is to provide an overview of the VMS software, thus focusing on its peculiarities and unique features. The chapter is organized as follows. In the following section, a brief summary of the general machinery of the VMS program and of the main technical aspects will be provided. This will be followed by a short introduction of the theoretical background for the selected spectroscopies (e.g. rotational, vibrational, vibronic, and magnetic) and of the corresponding quantum chemical (QC) requirements. Then, the current status of VMS will be presented in some detail with specific reference to rotational, vibrational, vibronic, and magnetic spectroscopy. Finally, applications will be illustrated with the help of four case studies, which will allow the capabilities of VMS to be demonstrated. Some general considerations will conclude the chapter.

1.2 The Virtual Multifrequency Spectrometer

VMS is a tool that integrates a wide range of computational and experimental spectroscopic techniques and aims at predicting and analyzing different types of molecular spectra as well as disclosing the static and dynamic physical–chemical information they contain [7]. VMS is mainly composed of two parts, namely, VMS-Comp, which provides access to the latest developments in the field of computational spectroscopy, and VMS-Draw, which provides a powerful GUI for an intuitive interpretation of theoretical outcomes and a direct prediction or comparison to experiment (<http://dreamslab.sns.it/vms/>) [7].

The spectroscopies supported by VMS are electron spin resonance (ESR), nuclear magnetic resonance (NMR), rotational (microwave [MW]), infrared (IR), vibrational circular dichroism (VCD), nonresonant Raman (nRR), resonance Raman, Raman optical activity (ROA), resonance Raman optical activity (RROA), electronic one-photon absorption (OPA) (i.e. UV–vis) and one-photon emission (OPE) (i.e. fluorescence), electronic circular dichroism (ECD), and circularly polarized luminescence (CPL).

1.2.1 The VMS Framework

The framework of the VMS program is graphically shown in Figure 1.1 [7]. The key feature of VMS is to provide a user-friendly access to computational spectroscopy tools also to nonspecialists. VMS integrates a powerful GUI, VMS-Draw, which offers an invaluable aid in the pre- and post-processing stages [12]. This permits a direct way to present the information produced by *in vitro* and *in silico* experiments, thus allowing the user to focus the attention on the underlying physical–chemical features without being concerned with technical details. VMS-Draw is interfaced with VMS-Comp [8, 9, 13], which

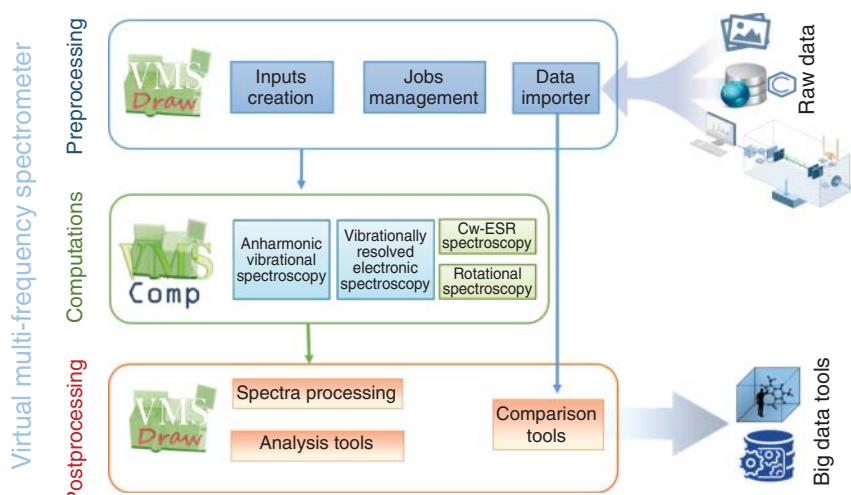


Figure 1.1 The framework of the virtual multifrequency spectrometer.

takes care of QC computations of the required spectroscopic parameters and all high-performance computing (HPC) aspects [7, 12]. Both VMS-Draw and VMS-Comp modules are either fully embedded with the Gaussian package [14] or loosely bound to other suites of QC programs, such as CFOUR [15]. In the last case, general input–output facilities as well as *ad hoc* scripts that permit effective interactions with other electronic structure codes than Gaussian have been developed or are still under development (see, for example, Ref. [10]). Overall, VMS has access to almost all computational models and to properties that are not yet available in the reference QC Gaussian suite. In addition to the large availability of QC methods and properties, VMS has the unique feature of allowing state-of-the-art computational spectroscopy studies driven by a flexible user-friendly graphical tool that furthermore includes those general utilities needed by experimentally oriented scientists (e.g. manipulations of several spectra at the same time, spectral normalization, etc.) and advanced tools for theoreticians and developers (e.g. resonance Raman spectroscopy). In the following sections, the theoretical background and the QC requirements for quantitative spectral prediction/analysis of selected spectroscopies are presented together with a description of the spectral simulation facilities and of the corresponding results.

1.2.2 The VMS Framework: Spectroscopies and Theoretical Background

The complete list of the spectroscopies available within the VMS software has been given above. In this chapter, we limit ourselves to the discussion of a selection of spectroscopies, namely, the rotational, vibrational, vibronic, and magnetic spectroscopies, for which we provide a short description of the theoretical background.

1.2.2.1 Rotational Spectroscopy

The terms of the effective rotational Hamiltonian are the pure rotational and centrifugal distortion contributions, which describe the rotational energy levels for a given vibrational state, with the ground state usually being the one of interest. While a complete treatment can be found in the literature (see, for example, Ref. [16]), here, we recall just the key aspects of interest.

The basic rotational Hamiltonian, within the semirigid rotor approximation, can be written as

$$H_{\text{rot}} = H_{\text{R}} + H_{\text{qcd}} + H_{\text{scd}} + \dots \quad (1.1)$$

where H_{qcd} and H_{scd} are the quartic and sextic centrifugal terms, respectively. The dots refer to the possibility of including higher-order centrifugal contributions. H_{R} is the rigid rotor Hamiltonian:

$$H_{\text{R}} = \sum_{\tau} B_{\tau}^{\text{eq}} J_{\tau}^2 \quad (1.2)$$

where B_{τ}^{eq} has been defined as follows:

$$B_{\tau}^{\text{eq}} = \frac{\hbar^2}{2\hbar c I_{\tau}^{\text{eq}}} \quad (1.3)$$

where τ refers to the inertial axis. From a computational point of view, the equilibrium rotational constants are straightforwardly obtained from the geometry optimization.

Even if the equilibrium contribution to rotational constants is the most important, the effect of molecular vibrations cannot be neglected when aiming at a quantitative description of rotational spectra. Therefore, the term describing the dependence of the rotational constants on the vibrational quantum numbers should be incorporated in Eq. (1.3), and equilibrium rotational constants should be replaced by the effective rotational constants that contain the contributions beyond the rigid rotor harmonic oscillator (RRHO) approximation. Their effects on rotational motion can be conveniently described by means of vibrational perturbation theory (VPT), and we refer the reader to, for example, Refs. [16, 17] for a detailed treatment. While there are no corrections at the first order in VPT, at the second order (VPT2), the expression becomes [18]:

$$B_\tau^v = B_\tau^{\text{eq}} - \sum_{i=1}^N \alpha_{i,\tau} \left(\nu_i + \frac{d_i}{2} \right) \quad (1.4)$$

where the superscript v denotes a specific vibrational state and the sum runs on all fundamental vibrational modes i , with ν_i being the corresponding quantum number and d_i its degeneracy order. The $\alpha_{i,\tau}$ values are the so-called vibration–rotation interaction constants and contain three contributions: the first one is a corrective term related to the moment of inertia, the second one is due to the Coriolis interactions, and the last is an anharmonic correction. Therefore, from a computational point of view, anharmonic force field (FF) calculations are required to correct the equilibrium rotational constants for vibrational effects.

The quartic centrifugal distortion Hamiltonian is defined as

$$H_{\text{qcd}} = \frac{1}{4} \sum_{\tau\eta\zeta\varrho} \tau_{\tau\eta\zeta\varrho} \mathbf{J}_\tau \mathbf{J}_\eta \mathbf{J}_\zeta \mathbf{J}_\varrho \quad (1.5)$$

where the tensor $\tau_{\tau\eta\zeta\varrho}$ depends only on the harmonic part of the potential energy surface (PES). To obtain the quartic centrifugal distortion parameters actually employed, further contact transformations with purely rotational operators (thus diagonal in the vibrational quantum numbers) are then required. An analogous expression can be written for the sextic centrifugal distortion term H_{scd} , and the computation of the corresponding sextic centrifugal distortion constants involves harmonic, anharmonic, and Coriolis perturbation terms. Therefore, from a computational point of view, anharmonic force field computations are needed for their determination. To relate the experimental parameters to combinations of $\tau_{\eta\zeta\varrho}$ ($\tau_{\eta\zeta\varrho\varrho\varrho}$ in the case of sextics), it is necessary to further completely reduce the Hamiltonian. Different results are then obtained depending on the reduction chosen; see, for example, Refs. [16, 17, 19].

1.2.2.2 Vibrational Spectroscopy

For the simulation of vibrational spectra, a purely vibrational Hamiltonian (H_{vib}) is commonly used. In the framework of VPT2, which is based on Taylor expansions of the harmonic potential (V), vibrational (E_v) energies, and vibrational

wavefunction, up to the second order [20], the vibrational Hamiltonian is defined as follows:

$$H_{\text{vib}} = \frac{1}{2} \sum_{i=1}^N \omega_i (\mathbf{p}_i^2 + \mathbf{q}_i^2) + \frac{1}{6} \sum_{i,j,k=1}^N k_{ijk} \mathbf{q}_i \mathbf{q}_j \mathbf{q}_k + \frac{1}{24} \sum_{i,j,k,l=1}^N k_{ijkl} \mathbf{q}_i \mathbf{q}_j \mathbf{q}_k \mathbf{q}_l + \sum_{\tau} \mathbf{B}_{\tau}^{\text{eq}} \sum_{i,j,k,l=1}^N \zeta_{ij,\tau} \zeta_{kl,\tau} \sqrt{\frac{\omega_i \omega_k}{\omega_j \omega_l}} \mathbf{q}_i \mathbf{p}_j \mathbf{q}_k \mathbf{p}_l + U \quad (1.6)$$

For asymmetric tops, at the VPT2 level, the energy (E_m , in cm^{-1}) of a given vibrational state m is given by

$$E_m = E_0 + \sum_{i=1}^N v_i^m \omega_i + \sum_{i,j=1}^N \chi_{ij} \left[v_i^m v_j^m + \frac{1}{2} (v_i^m + v_j^m) \right] \quad (1.7)$$

where v_i^m is the number of quanta associated with mode i in state m and ω_i the corresponding harmonic wavenumber. E_0 is the zero-point vibrational energy, which is defined as follows:

$$E_0 = \sum_{i=1}^N \frac{\omega_i}{2} + \sum_{i,j=1}^N \frac{k_{iij}}{32} - \sum_{i,j,k=1}^N \left[\frac{k_{iik} k_{jik}}{32 \omega_k} + \frac{k_{ijk}^2}{48 (\omega_i + \omega_j + \omega_k)} \right] - \sum_{\tau} \frac{\mathbf{B}_{\tau}^{\text{eq}}}{4} \left[1 - \sum_{i=1}^{N-1} \sum_{j=i+1}^N \{\zeta_{ij,\tau}\}^2 \frac{(\omega_i - \omega_j)^2}{\omega_i \omega_j} \right] \quad (1.8)$$

In Eq. (1.7), χ is the anharmonicity contributions matrix, with its elements given by

$$16 \chi_{ii} = k_{iiii} - \frac{5 k_{iii}^2}{3 \omega_i} - \sum_{\substack{j=1 \\ j \neq i}}^N \frac{(8 \omega_i^2 - 3 \omega_j^2) k_{iij}^2}{\omega_j (4 \omega_i^2 - \omega_j^2)} \quad (1.9)$$

$$4 \chi_{ij} = k_{iijj} - \frac{2 \omega_i k_{iij}^2}{(4 \omega_i^2 - \omega_j^2)} - \frac{2 \omega_j k_{ijj}^2}{(4 \omega_j^2 - \omega_i^2)} - \frac{k_{iui} k_{ijj}}{\omega_i} - \frac{k_{jjj} k_{iij}}{\omega_j} + \sum_{\substack{k=1 \\ k \neq i,j}}^N \left[\frac{2 \omega_k (\omega_i^2 + \omega_j^2 - \omega_k^2) k_{ijk}^2}{\Delta_{ijk}} - \frac{k_{iik} k_{jik}}{\omega_k} \right] + \frac{4(\omega_i^2 + \omega_j^2)}{\omega_i \omega_j} \sum_{\tau} \mathbf{B}_{\tau}^{\text{eq}} \{\zeta_{ij,\tau}\}^2 \quad (1.10)$$

where

$$\Delta_{ijk} = \omega_i^4 + \omega_j^4 + \omega_k^4 - 2(\omega_i^2 \omega_j^2 + \omega_i^2 \omega_k^2 + \omega_j^2 \omega_k^2) \quad (1.11)$$

Transition energies from the ground state v_m are therefore straightforwardly obtained from Eqs. (1.7) and (1.8) as $E_m - E_0$ difference.

The intensities for a broad range of spectroscopies at the VPT2 level can be obtained by referring to a generic property \mathbf{P} , which can depend on either the normal coordinates (\mathbf{q}) or their conjugate momenta (\mathbf{p}):

$$\mathbf{P} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)} \quad (1.12)$$

where

$$\mathbf{P}^{(0)} = \mathbf{P}^{\text{eq}} + s_0 \sum_{i=1}^N \mathbf{P}_i (\mathbf{a}_i^\dagger + S \mathbf{a}_i) \quad (1.13)$$

$$\mathbf{P}^{(1)} = s_1 \sum_{i=1}^N \sum_{j=1}^N \mathbf{P}_{ij} q_j (\mathbf{a}_i^\dagger + S \mathbf{a}_i) \quad (1.14)$$

$$\mathbf{P}^{(2)} = s_2 \sum_{i=1}^N \sum_{k=1}^N \sum_{j=1}^N \mathbf{P}_{ijk} q_j q_k (\mathbf{a}_i^\dagger + S \mathbf{a}_i) \quad (1.15)$$

In equations above, \mathbf{a}_i^\dagger and \mathbf{a}_i are the creation and annihilation operators, respectively; s_0 , s_1 , and s_2 are constant factors; and S corresponds to a sign (i.e. it represents the multiplication by +1 or -1). The function of Eq. (1.12) is then used to obtain analytic formulas for the transition moments up to three quanta [21–25] and can be simply related to the property of interest by identifying the variables in Eqs. (1.12)–(1.15) with the actual quantities, as exemplified in Figure 1.2. The electric ($\mathbf{\mu}$) and magnetic (\mathbf{m}) dipoles and the polarizability ($\mathbf{\alpha}$) are used in IR, VCD, and Raman intensities, respectively, whereas the electric dipole–magnetic dipole optical activity (\mathbf{G}') and the electric dipole–electric quadrupole (\mathbf{A}) tensors also enter the ROA intensities [13].

From a quick inspection of Eqs. (1.9) and (1.10), it is evident that for the VPT2 energies, the denominator might become exceedingly small. This situation leads to the so-called Fermi resonances (FRs), which can be distinguished in type I ($\omega_i \approx 2\omega_j$) and type II ($\omega_i \approx \omega_j + \omega_k$). Indeed, a near resonance can be sufficient to obtain unphysical results due to an excessive contribution from anharmonicity. This is a well-known issue of VPT2, which has been extensively studied in the literature [16, 26–39] and needs to be correctly addressed for a successful application of this method. A major difficulty lies in the definition of the resonance conditions. In the literature, several efficient identification processes have been

\mathbf{P}	\mathbf{P}_0	\mathbf{P}_i	\mathbf{P}_{ji}	\mathbf{P}_{jki}	s_0	s_1	s_2	S
$\mathbf{\mu}$	$\mathbf{\mu}^{\text{eq}}$	$\frac{\partial \mathbf{\mu}}{\partial q_i}$	$\frac{\partial^2 \mathbf{\mu}}{\partial q_i \partial q_j}$	$\frac{\partial^3 \mathbf{\mu}}{\partial q_i \partial q_j \partial q_k}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2\sqrt{2}}$	$\frac{1}{6\sqrt{2}}$	+1
\mathbf{m}	$\mathbf{0}$	\mathbf{M}_i	$\frac{\partial \mathbf{M}}{\partial q_i}$	$\frac{\partial^2 \mathbf{M}}{\partial q_i \partial q_j}$	$\frac{i\hbar}{\sqrt{2}}$	$\frac{i\hbar}{\sqrt{2}}$	$\frac{i\hbar}{2\sqrt{2}}$	-1
$\mathbf{\alpha}$	$\mathbf{\alpha}^{\text{eq}}$	$\frac{\partial \mathbf{\alpha}}{\partial q_i}$	$\frac{\partial^2 \mathbf{\alpha}}{\partial q_i \partial q_j}$	$\frac{\partial^3 \mathbf{\alpha}}{\partial q_i \partial q_j \partial q_k}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2\sqrt{2}}$	$\frac{1}{6\sqrt{2}}$	+1
\mathbf{G}'	\mathbf{G}'^{eq}	$\frac{\partial \mathbf{G}'}{\partial q_i}$	$\frac{\partial^2 \mathbf{G}'}{\partial q_i \partial q_j}$	$\frac{\partial^3 \mathbf{G}'}{\partial q_i \partial q_j \partial q_k}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2\sqrt{2}}$	$\frac{1}{6\sqrt{2}}$	+1
\mathbf{A}	\mathbf{A}^{eq}	$\frac{\partial \mathbf{A}}{\partial q_i}$	$\frac{\partial^2 \mathbf{A}}{\partial q_i \partial q_j}$	$\frac{\partial^3 \mathbf{A}}{\partial q_i \partial q_j \partial q_k}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2\sqrt{2}}$	$\frac{1}{6\sqrt{2}}$	+1

Figure 1.2 Equivalence relations between the model property \mathbf{P} and actual properties.