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Preface

The purpose of this book is to outline the state-of-the-art quantum chemical
approach to molecular spectroscopy. Over the last two decades or so, molecular
spectroscopy has made remarkable progress; several novel spectroscopies
such as terahertz spectroscopy, tip-enhanced Raman scattering (TERS), and
far-ultraviolet (FUV) spectroscopy in condensed phase have emerged. Moreover,
existing spectroscopies have shown prominent advances in this period. The
advances in spectroscopies lie in the development of theory, instruments,
spectral analysis, and applications. In spectral analysis quantum chemical
approach is particularly important. It is useful not only for spectral analysis such
as band assignments but also for studies of structure, reactions, and physical and
chemical properties of molecules.

This book aims at making a strong bridge between molecular spectroscopy
and quantum chemistry. For the last quarter of a century quantum chemistry
has been extensively used for various spectroscopies such as vibrational spec-
troscopy, electronic spectroscopy, and nuclear magnetic resonance spectroscopy.
However, one cannot find a good book that connects spectroscopy and quan-
tum chemistry. This book may be the first one that explains comprehensively
how quantum chemical approach can be applied to molecular spectroscopy. It
covers FUV spectroscopy, UV–visible spectroscopy, near-infrared (NIR) spec-
troscopy, IR spectroscopy, far-IR spectroscopy/terahertz spectroscopy, Raman
spectroscopy, and NMR spectroscopy. Almost all kinds of molecular spectro-
scopies are presented in this book. For quantum chemical approaches various
new calculation methods are introduced. The recent rapid progress in supercom-
puters has made it possible to utilize these new methods. For example, anhar-
monic quantum chemical calculations are becoming popular due to advances
in supercomputers. In applications many chapters deal with studies of hydro-
gen bonding and inter- and intramolecular interactions. In this book, we invited
front runners from many countries who are currently very active in the molecular
spectroscopy–quantum chemistry field.

This book is very useful not only for chemistry but also for applied physics,
material sciences, biosciences, and industrial applications. It is suitable for
molecular spectroscopists who are interested in quantum chemistry and quan-
tum chemists who are interested in molecular spectroscopy. We hope this book
will find many readers among students at graduate level as well as researchers
and engineers in academia and industry.



xiv Preface

Last but not the least, we would be most grateful if the book can inspire readers
to use novel quantum chemistry approaches for molecular spectroscopy studies
and/or to attempt to develop new approaches by themselves.

In closing, we would like to thank Dr. Lifen Yang, Ms. Shirly Samuel, and
Mr. Jayakumar Ramprasad of Wiley for their continuous efforts in publishing
this book.

April 2019 Yukihiro Ozaki, Sanda, Japan
Marek Janusz Wójcik, Krakow, Poland
Jürgen Popp, Jena, Germany
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Interpretability Meets Accuracy in Computational
Spectroscopy: The Virtual Multifrequency Spectrometer
Vincenzo Barone1 and Cristina Puzzarini2

1Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
2Università di Bologna, Dipartimento di Chimica “Giacomo Ciamician”, Via Selmi 2, 40126 Bologna, Italy

The virtual multifrequency spectrometer (VMS), under active development in
our laboratories over the last few years, is shortly described in this chapter by
means of selected spectroscopic techniques and a few representative case studies.
The VMS project aims to offer an answer to the following question: is it possible
to turn strongly specialized research in the field of computational spectroscopy
into robust and user-friendly aids to experiments and industrial applications?
VMS contains a number of tools devised to increase the interaction between
researchers with different background and to push toward new frontiers in com-
putational chemistry. As a matter of fact, the terrific advancements in computa-
tional spectroscopy and the wide availability of computational and analytic tools
are paving the route toward the study of problems that were previously too diffi-
cult or impossible to be solved and let imagine even more ambitious targets for
fundamental and applied research. Under such circumstances, a robust, flexible,
and user-friendly tool can allow for moving data analysis toward a proactive pro-
cess of strategic decisions and actions. This chapter starts from these premises,
and it proposes a perspective for a new virtual platform aimed at integrating past
developments in theory, algorithms, and software with new workflow manage-
ment and visualization tools. After a short review of the underlying theoretical
framework, the features of the principal tools available in the current version of
VMS for a selection of spectroscopic techniques are addressed in some details.
Next, four case studies are presented, thus aiming to illustrate possible applica-
tions of VMS to systems of current interest for both fundamental and applied
research. These applications convincingly show that even if several extensions of
the software are planned or already under development, VMS represents a pow-
erful and user-friendly tool for both computational and experimentally oriented
spectroscopists.

Molecular Spectroscopy: A Quantum Chemistry Approach,
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1.1 Introduction

Spectroscopic techniques provide a wealth of qualitative and quantitative infor-
mation on the chemical and physical–chemical properties of molecular systems
in a variety of environments. Nowadays, sophisticated experimental techniques,
mainly based on vibrational, electronic, and resonance spectroscopies, allow
studies under various environmental conditions and in a noninvasive fashion
[1, 2]. Particularly effective strategies are obtained when different spectroscopic
techniques are combined together and further supported and/or integrated
by computational approaches. Indeed, not only the spectral analysis is seldom
straightforward, but also molecular spectra do not provide direct information
on molecular structures, properties, and dynamics [3, 4]. The challenges can
be posed by the intrinsic properties and complexity of the system and/or
caused by thermal or environmental effects, whose specific roles are not easy
to separate and evaluate. In such a context, computational spectroscopy is
undoubtedly a powerful and reliable tool to unravel the different contributions
to the spectroscopic signal and understand the underlying physical phenom-
ena [5, 6]. However, direct vis-à-vis comparisons between experimental and
computed spectroscopic data are still far from being standard. To fill this lack,
a virtual multifrequency spectrometer (VMS) (http://dreamslab.sns.it/vms/)
has been implemented with the aim of providing a user-friendly access to
the latest developments of computational spectroscopy, also to nonspecialists
[7–11]. As it will be better explained in the following section, VMS integrates
state-of-the-art computational implementations of different spectroscopies with
a powerful graphical user interface (GUI) [12], which offers an invaluable aid in
preorganizing and displaying the computed spectroscopic information. For the
sake of clarity, it should be noted that several codes incorporate implementation
of spectroscopic properties at different levels of theory together with graphic
engines. However, none of these tools offer the characteristics that should be
considered mandatory for state-of-the-art computational spectroscopy (e.g.
rigorous treatment of anharmonicity, vibronic contributions, etc.) and/or for
flexible user-friendly graphical tools. In particular, it should emphasize the
uniqueness of VMS in incorporating both general utilities needed by experimen-
tally oriented scientists (e.g. conversion of theoretical quantities to experimental
observables, manipulation of several spectra at the same time, etc.) and advanced
tools for theoreticians and developers (e.g. resonance Raman [RR] spectra).

The aim of the present chapter is to provide an overview of the VMS software,
thus focusing on its peculiarities and unique features. The chapter is organized
as follows. In the following section, a brief summary of the general machinery
of the VMS program and of the main technical aspects will be provided. This
will be followed by a short introduction of the theoretical background for the
selected spectroscopies (e.g. rotational, vibrational, vibronic, and magnetic) and
of the corresponding quantum chemical (QC) requirements. Then, the current
status of VMS will be presented in some detail with specific reference to rota-
tional, vibrational, vibronic, and magnetic spectroscopy. Finally, applications will
be illustrated with the help of four case studies, which will allow the capabilities of
VMS to be demonstrated. Some general considerations will conclude the chapter.

http://dreamslab.sns.it/vms/
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1.2 The Virtual Multifrequency Spectrometer

VMS is a tool that integrates a wide range of computational and experimental
spectroscopic techniques and aims at predicting and analyzing different types of
molecular spectra as well as disclosing the static and dynamic physical–chemical
information they contain [7]. VMS is mainly composed of two parts, namely,
VMS-Comp, which provides access to the latest developments in the field of com-
putational spectroscopy, and VMS-Draw, which provides a powerful GUI for an
intuitive interpretation of theoretical outcomes and a direct prediction or com-
parison to experiment (http://dreamslab.sns.it/vms/) [7].

The spectroscopies supported by VMS are electron spin resonance (ESR),
nuclear magnetic resonance (NMR), rotational (microwave [MW]), infrared
(IR), vibrational circular dichroism (VCD), nonresonant Raman (nRR), reso-
nance Raman, Raman optical activity (ROA), resonance Raman optical activity
(RROA), electronic one-photon absorption (OPA) (i.e. UV–vis) and one-photon
emission (OPE) (i.e. fluorescence), electronic circular dichroism (ECD), and
circularly polarized luminescence (CPL).

1.2.1 The VMS Framework

The framework of the VMS program is graphically shown in Figure 1.1 [7].
The key feature of VMS is to provide a user-friendly access to computational
spectroscopy tools also to nonspecialists. VMS integrates a powerful GUI,
VMS-Draw, which offers an invaluable aid in the pre- and post-processing
stages [12]. This permits a direct way to present the information produced by
in vitro and in silico experiments, thus allowing the user to focus the attention
on the underlying physical–chemical features without being concerned with
technical details. VMS-Draw is interfaced with VMS-Comp [8, 9, 13], which
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Figure 1.1 The framework of the virtual multifrequency spectrometer.
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takes care of QC computations of the required spectroscopic parameters and
all high-performance computing (HPC) aspects [7, 12]. Both VMS-Draw and
VMS-Comp modules are either fully embedded with the Gaussian package [14]
or loosely bound to other suites of QC programs, such as CFOUR [15]. In the
last case, general input–output facilities as well as ad hoc scripts that permit
effective interactions with other electronic structure codes than Gaussian have
been developed or are still under development (see, for example, Ref. [10]).
Overall, VMS has access to almost all computational models and to properties
that are not yet available in the reference QC Gaussian suite. In addition to the
large availability of QC methods and properties, VMS has the unique feature
of allowing state-of-the-art computational spectroscopy studies driven by a
flexible user-friendly graphical tool that furthermore includes those general
utilities needed by experimentally oriented scientists (e.g. manipulations of
several spectra at the same time, spectral normalization, etc.) and advanced
tools for theoreticians and developers (e.g. resonance Raman spectroscopy). In
the following sections, the theoretical background and the QC requirements
for quantitative spectral prediction/analysis of selected spectroscopies are
presented together with a description of the spectral simulation facilities and of
the corresponding results.

1.2.2 The VMS Framework: Spectroscopies and Theoretical
Background

The complete list of the spectroscopies available within the VMS software has
been given above. In this chapter, we limit ourselves to the discussion of a selec-
tion of spectroscopies, namely, the rotational, vibrational, vibronic, and magnetic
spectroscopies, for which we provide a short description of the theoretical back-
ground.

1.2.2.1 Rotational Spectroscopy
The terms of the effective rotational Hamiltonian are the pure rotational and cen-
trifugal distortion contributions, which describe the rotational energy levels for
a given vibrational state, with the ground state usually being the one of inter-
est. While a complete treatment can be found in the literature (see, for example,
Ref. [16]), here, we recall just the key aspects of interest.

The basic rotational Hamiltonian, within the semirigid rotor approximation,
can be written as

Hrot = HR +Hqcd +Hscd + · · · (1.1)
where Hqcd and Hscd are the quartic and sextic centrifugal terms, respectively. The
dots refer to the possibility of including higher-order centrifugal contributions.
HR is the rigid rotor Hamiltonian:

HR =
∑
𝜏

Beq
𝜏

J2
𝜏

(1.2)

where Beq
𝜏

has been defined as follows:

Beq
𝜏
= ℏ

2

2hcIeq
𝜏𝜏

(1.3)
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where 𝜏 refers to the inertial axis. From a computational point of view, the equi-
librium rotational constants are straightforwardly obtained from the geometry
optimization.

Even if the equilibrium contribution to rotational constants is the most
important, the effect of molecular vibrations cannot be neglected when aiming
at a quantitative description of rotational spectra. Therefore, the term describing
the dependence of the rotational constants on the vibrational quantum numbers
should be incorporated in Eq. (1.3), and equilibrium rotational constants should
be replaced by the effective rotational constants that contain the contributions
beyond the rigid rotor harmonic oscillator (RRHO) approximation. Their effects
on rotational motion can be conveniently described by means of vibrational
perturbation theory (VPT), and we refer the reader to, for example, Refs. [16, 17]
for a detailed treatment. While there are no corrections at the first order in VPT,
at the second order (VPT2), the expression becomes [18]:

Bv
𝜏
= Beq

𝜏
−

N∑
i=1
𝛼i,𝜏

(
vi +

di

2

)
(1.4)

where the superscript v denotes a specific vibrational state and the sum runs
on all fundamental vibrational modes i, with vi being the corresponding
quantum number and di its degeneracy order. The 𝛼i,𝜏 values are the so-called
vibration–rotation interaction constants and contain three contributions: the
first one is a corrective term related to the moment of inertia, the second one
is due to the Coriolis interactions, and the last is an anharmonic correction.
Therefore, from a computational point of view, anharmonic force field (FF)
calculations are required to correct the equilibrium rotational constants for
vibrational effects.

The quartic centrifugal distortion Hamiltonian is defined as

Hqcd =
1
4
∑
𝜏𝜂𝜍𝜚

𝜏
𝜏𝜂𝜍𝜚

J
𝜏
J
𝜂
J
𝜍
J
𝜚

(1.5)

where the tensor 𝜏
𝜏𝜂𝜍𝜚

depends only on the harmonic part of the potential energy
surface (PES). To obtain the quartic centrifugal distortion parameters actually
employed, further contact transformations with purely rotational operators (thus
diagonal in the vibrational quantum numbers) are then required. An analogous
expression can be written for the sextic centrifugal distortion term Hscd, and the
computation of the corresponding sextic centrifugal distortion constants involves
harmonic, anharmonic, and Coriolis perturbation terms. Therefore, from a com-
putational point of view, anharmonic force field computations are needed for
their determination. To relate the experimental parameters to combinations of
𝜏
𝜏𝜂𝜍𝜚

(𝜏
𝜏𝜂𝜍𝜚𝜖𝜄

in the case of sextics), it is necessary to further completely reduce
the Hamiltonian. Different results are then obtained depending on the reduction
chosen; see, for example, Refs. [16, 17, 19].

1.2.2.2 Vibrational Spectroscopy
For the simulation of vibrational spectra, a purely vibrational Hamiltonian (Hvib)
is commonly used. In the framework of VPT2, which is based on Taylor expan-
sions of the harmonic potential (V ), vibrational (Ev) energies, and vibrational
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wavefunction, up to the second order [20], the vibrational Hamiltonian is defined
as follows:

Hvib =
1
2

N∑
i=1
𝜔i(pi

2 + qi
2) + 1

6

N∑
i,j,k=1

kijkqiqjqk +
1

24

N∑
i,j,k,l=1

kijklqiqjqkql

+
∑
𝜏

Beq
𝜏

N∑
i,j,k,l=1

𝜁ij,𝜏𝜁kl,𝜏

√
𝜔i𝜔k

𝜔j𝜔l
qipjqkpl +U (1.6)

For asymmetric tops, at the VPT2 level, the energy (Em, in cm−1) of a given vibra-
tional state m is given by

Em = E0 +
N∑

i=1
vm

i 𝜔i +
N∑

i,j=1
𝜒ij

[
vm

i vm
j +

1
2
(vm

i + vm
j )
]

(1.7)

where vm
i is the number of quanta associated with mode i in state m and 𝜔i the

corresponding harmonic wavenumber. E0 is the zero-point vibrational energy,
which is defined as follows:

E0 =
N∑

i=1

𝜔i

2
+

N∑
i,j=1

kiijj

32
−

N∑
i,j,k=1

[
kiikkjjk

32𝜔k
+

kijk
2

48(𝜔i + 𝜔j + 𝜔k)

]

−
∑
𝜏

Beq
𝜏

4

[
1 −

N−1∑
i=1

N∑
j=i+1

{𝜁ij,𝜏}2
(𝜔i − 𝜔j)2

𝜔i𝜔j

]
(1.8)

In Eq. (1.7), 𝜒 is the anharmonicity contributions matrix, with its elements
given by

16𝜒ii = kiiii −
5kiii

2

3𝜔i
−

N∑
j=1
j≠i

(8𝜔i
2 − 3𝜔j

2)kiij
2

𝜔j(4𝜔i
2 − 𝜔j

2)
(1.9)

4𝜒ij = kiijj −
2𝜔ikiij

2

(4𝜔i
2 − 𝜔j

2)
−

2𝜔jkijj
2

(4𝜔j
2 − 𝜔i

2)
−

kiiikijj

𝜔i
−

kjjjkiij

𝜔j

+
N∑

k=1
k≠i,j

[
2𝜔k(𝜔i

2 + 𝜔j
2 − 𝜔k

2)kijk
2

Δijk
−

kiikkjjk

𝜔k

]

+
4(𝜔i

2 + 𝜔j
2)

𝜔i𝜔j

∑
𝜏

Beq
𝜏
{𝜁ij,𝜏}2 (1.10)

where
Δijk = 𝜔i

4 + 𝜔j
4 + 𝜔k

4 − 2(𝜔i
2
𝜔j

2 + 𝜔i
2
𝜔k

2 + 𝜔j
2
𝜔k

2) (1.11)
Transition energies from the ground state 𝜈m are therefore straightforwardly
obtained from Eqs. (1.7) and (1.8) as Em − E0 difference.

The intensities for a broad range of spectroscopies at the VPT2 level can be
obtained by referring to a generic property P, which can depend on either the
normal coordinates (q) or their conjugate momenta (p):

P = P(0) + P(1) + P(2) (1.12)
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where

P(0) = Peq + s0

N∑
i=1

Pi(a
†
i + Sai) (1.13)

P(1) = s1

N∑
i=1

N∑
j=1

Pijqj(a
†
i + Sai) (1.14)

P(2) = s2

N∑
i=1

N∑
k=1

N∑
j=1

Pijkqjqk(a
†
i + Sai) (1.15)

In equations above, a†i and ai are the creation and annihilation operators, respec-
tively; s0, s1, and s2 are constant factors; and S corresponds to a sign (i.e. it repre-
sents the multiplication by +1 or −1). The function of Eq. (1.12) is then used to
obtain analytic formulas for the transition moments up to three quanta [21–25]
and can be simply related to the property of interest by identifying the variables
in Eqs. (1.12)–(1.15) with the actual quantities, as exemplified in Figure 1.2. The
electric (𝛍) and magnetic (m) dipoles and the polarizability (𝛂) are used in IR,
VCD, and Raman intensities, respectively, whereas the electric dipole–magnetic
dipole optical activity (G′) and the electric dipole–electric quadrupole (A) ten-
sors also enter the ROA intensities [13].

From a quick inspection of Eqs. (1.9) and (1.10), it is evident that for the VPT2
energies, the denominator might become exceedingly small. This situation leads
to the so-called Fermi resonances (FRs), which can be distinguished in type I
(𝜔i ≈ 2𝜔j) and type II (𝜔i ≈ 𝜔j + 𝜔k). Indeed, a near resonance can be sufficient
to obtain unphysical results due to an excessive contribution from anharmonic-
ity. This is a well-known issue of VPT2, which has been extensively studied in the
literature [16, 26–39] and needs to be correctly addressed for a successful appli-
cation of this method. A major difficulty lies in the definition of the resonance
conditions. In the literature, several efficient identification processes have been
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Figure 1.2 Equivalence relations between the model property P and actual properties.


