

Arun K. Somani · Rajveer Singh Shekhawat ·
Ankit Mundra · Sumit Srivastava ·
Vivek Kumar Verma *Editors*

Smart Systems and IoT: Innovations in Computing

Proceeding of SSIC 2019

Smart Innovation, Systems and Technologies

Volume 141

Series Editors

Robert J. Howlett, Bournemouth University and KES International,
Shoreham-by-sea, UK

Lakhmi C. Jain, Faculty of Engineering and Information Technology,
Centre for Artificial Intelligence, University of Technology Sydney,
Sydney, NSW, Australia

The Smart Innovation, Systems and Technologies book series encompasses the topics of knowledge, intelligence, innovation and sustainability. The aim of the series is to make available a platform for the publication of books on all aspects of single and multi-disciplinary research on these themes in order to make the latest results available in a readily-accessible form. Volumes on interdisciplinary research combining two or more of these areas is particularly sought.

The series covers systems and paradigms that employ knowledge and intelligence in a broad sense. Its scope is systems having embedded knowledge and intelligence, which may be applied to the solution of world problems in industry, the environment and the community. It also focusses on the knowledge-transfer methodologies and innovation strategies employed to make this happen effectively. The combination of intelligent systems tools and a broad range of applications introduces a need for a synergy of disciplines from science, technology, business and the humanities. The series will include conference proceedings, edited collections, monographs, handbooks, reference books, and other relevant types of book in areas of science and technology where smart systems and technologies can offer innovative solutions.

High quality content is an essential feature for all book proposals accepted for the series. It is expected that editors of all accepted volumes will ensure that contributions are subjected to an appropriate level of reviewing process and adhere to KES quality principles.

**** Indexing: The books of this series are submitted to ISI Proceedings, EI-Compendex, SCOPUS, Google Scholar and Springerlink ****

More information about this series at <https://link.springer.com/bookseries/8767>

Arun K. Somani · Rajveer Singh Shekhawat ·
Ankit Mundra · Sumit Srivastava ·
Vivek Kumar Verma
Editors

Smart Systems and IoT: Innovations in Computing

Proceeding of SSIC 2019

Springer

Editors

Arun K. Somani
College of Engineering
Iowa State University
Ames, IA, USA

Ankit Mundra
Department of Information Technology
Manipal University Jaipur
Jaipur, Rajasthan, India

Vivek Kumar Verma
School of Computing and Information
Technology
Manipal University Jaipur
Jaipur, Rajasthan, India

Rajveer Singh Shekhawat
School of Computing and Information
Technology
Manipal University Jaipur
Jaipur, Rajasthan, India

Sumit Srivastava
Department of Information Technology
Manipal University Jaipur
Jaipur, Rajasthan, India

ISSN 2190-3018 ISSN 2190-3026 (electronic)
Smart Innovation, Systems and Technologies
ISBN 978-981-13-8405-9 ISBN 978-981-13-8406-6 (eBook)
<https://doi.org/10.1007/978-981-13-8406-6>

© Springer Nature Singapore Pte Ltd. 2020, corrected publication 2022

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

Contents

1	Statistical Image Processing for Enhanced Scientific Analysis	1
	Deepak Kumar	
2	Performance Analysis of Network with Different Queuing Mechanisms in TCP/FTP and UDP/FTP Scenario	13
	Nehal Patel and Radhika Patel	
3	Wireless Sensor Network: A Possible Solution for Crowd Management	23
	Jenny Kasudiya, Ankit Bhavsar and Harshal Arolkar	
4	Artificial Neural Networks Based Green Energy Harvesting for Smart World	33
	Tigilu Mitiku and Mukhdeep Singh Manshahia	
5	Design of IoT-Based SmartMat	39
	Rutba Mufti, Kartike Khatri, Sumit Bhardwaj and Punit Gupta	
6	SMS Enabled Smart Vehicle Tracking Using GPS and GSM Technologies: A Cost-Effective Approach	51
	Pankaj Kumar Sanda, Sidhartha Barui and Deepanwita Das	
7	The MANI Protocol for Intra-Vehicular Networking	63
	N. Sumedh, Mangala Sneha Srinivasan, Sagar Basavaraju and Nidhi Gangrade	
8	Multi-criteria Group Recommender System Based on Analytical Hierarchy Process	75
	Nirmal Choudhary and K. K. Bharadwaj	
9	Dimensionality Reduction for Insect Bites Pattern Recognition	85
	Abdul Rehman Khan, Nitin Rakesh and Rakesh Matam	

10 Short Term Pollution Index Prediction Using Principles of Machine Learning	95
Siddhant Goswami, Dinesh Singh Shekhawat, Neetu Faujdar, Nitin Rakesh, P. K. Rohatgi and Karan Gupta	
11 DomSent: Domain-Specific Aspect Term Extraction in Aspect-Based Sentiment Analysis	103
Ganpat Singh Chauhan and Yogesh Kumar Meena	
12 IoT-Based Smart Car for Safety of Elderly People	111
Karan Gupta, Nitin Rakesh, Neetu Faujdar, Nidhi Gupta, Deepak Vaswani and Kuldeep Singh Shivran	
13 IoT Based Solution for Automation of Hospital activities with High Authentication	121
Karan Gupta, Nitin Rakesh, Neetu Faujdar and Nidhi Gupta	
14 Analysis and Comparison of Sensor Node Scheduling Heuristic for WSN and Energy Harvesting WSN	131
Sakar Gupta and Sunita Gupta	
15 Child Count Based Load Balancing in Routing Protocol for Low Power and Lossy Networks (Ch-LBRPL)	141
A. Sebastian	
16 A Dielectric Modulated Polarity Controlled Electrically Doped Junctionless TFET Biosensor for IOT Applications	159
Deepak Soni, Amit Kumar Behera, Dheeraj Sharma, Mohd. Aslam and Shivendra Yadav	
17 Algorithm Selection via Meta-Learning and Active Meta-Learning	169
Nirav Bhatt, Amit Thakkar, Nikita Bhatt and Purvi Prajapati	
18 Effect of Metallic Strip Deposition Within the Source Dielectric with Applied Double Metallic Drain for Enhanced DC/RF Behavior of Charge Plasma TFET for Low-Power IOT Applications	179
Mohd. Aslam, Dheeraj Sharma, Deepak Soni and Shivendra Yadav	
19 Analysis of Coverage Hole Problem in Wireless Sensor Networks	187
Neeru Meena and Buddha Singh	
20 Community Detection Using Maximizing Modularity and Similarity Measures in Social Networks	197
Laxmi Chaudhary and Buddha Singh	

21 Subgame Perfect Equilibrium-Based Framework for Counterterror Solution Modeling	207
Saurabh Ranjan Srivastava, Yogesh Kumar Meena and Girdhari Singh	
22 A Broadband Microstrip Patch Antenna for C-Band Wireless Applications	219
P. Kumar and G. Singh	
23 Rule-Based Derivational Stemmer for Sindhi Devanagari Using Suffix Stripping Approach.	227
Bharti Nathani, Nisheeth Joshi and G. N. Purohit	
24 Slow Speed Alert for Speed Breakers and Potholes Using IoT and Analytics in the Context of Smart Cities	237
Sathish Kumar Soundararaj, P. Bagavathi Sivakumar and V. Ananthanarayanan	
25 Localization and Indoor Navigation for Visually Impaired Using Bluetooth Low Energy	249
Bhalaji Nagarajan, Valliappan Shanmugam, V. Ananthanarayanan and P. Bagavathi Sivakumar	
26 Compact Circularly Polarized Symmetric Fractal Slits Loaded Micro-strip Antenna	261
Shashi Kant Pandey, Ganga Prasad Pandey and P. M. Sarun	
27 Fog Computing-Based Environmental Monitoring Using Nordic Thingy: 52 and Raspberry Pi	269
P. Divya Bharathi, V. Ananthanarayanan and P. Bagavathi Sivakumar	
28 A Note on Wired and Wireless Sensor Communication Using Arduino Board and NodeMCU	281
Tanisha Dey Roy and Jaiteg Singh	
29 Analysis of Archimedes' Spiral Based Wireless Sensor Network with Mobile Sink	293
Ranjana Thalore, Raunak Monir, Jeetu Sharma, Vikas Raina, P. P. Bhattacharya and V. K. Jain	
30 Word Embeddings for Semantic Resemblance of Substantial Text Data: A Comparative Study	303
Kazi Lutful Kabir, Fardina Fathmiul Alam and Anika Binte Islam	
31 Automated Ethereum Smart Contract for Block Chain Based Smart Home Security	313
Amjad Qashlan, Priyadarsi Nanda and Xiangjian He	

32	SecureDorm: Sensor-Based Girls Hostel Surveillance System	327
	Shreyansh Sharad Jain, Gaurav Singal, Deepak Garg and Suneet Kumar Gupta	
33	Improvement in XML Keyword Search and Ranking for Data Analytics	339
	Vasudev Yadav, Pradeep Tomar, Prabhjot Singh and Gurjot Kaur	
34	Attacks and Their Solution at Data Link Layer in Cognitive Radio Networks	351
	Gurjot Kaur, Pradeep Tomar, Archit Agrawal and Prabhjot Singh	
35	Interactive Electricity Consumption System	363
	Gresha Bhatia, Gurpreet Singh Nagpal, Samujjwaal Dey, Ashish Joshi and Nadiminti Sai Sirisha	
36	Development of Artificial Neural Network to Predict the Concrete Strength	379
	Yaman Parasher, Gurjot Kaur, Pradeep Tomar and Akshay Kaushik	
37	Potato Crop Disease Classification Using Convolutional Neural Network	391
	Mohit Agarwal, Amit Sinha, Suneet Kr. Gupta, Diganta Mishra and Rahul Mishra	
38	Intelligent Voice Bots for Digital Banking	401
	Ravneet Kaur, Ravtej Singh Sandhu, Ayush Gera, Tarlochan Kaur and Purva Gera	
39	The Internet of Things Based Water Quality Monitoring and Control	409
	Neha Dalwadi and Mamta Padole	
40	Internet of Things: Risk Management	419
	Vinita Malik and Sukhdip Singh	
41	A Survey on Devanagari Character Recognition	429
	Ankit K. Sharma, Dipak M. Adhyaru and Tanish H. Zaveri	
42	An Advanced Algorithm for Perfect Image Selection Based on Quality Matrix	439
	Kiran Jeswani and Mukesh Gupta	
43	Cross-Domain Authentication and Interoperability Scheme for Federated Cloud	451
	Monika Gogna and C. Rama Krishna	

44	Detecting Suspicious Users in Social Networks Using Text Analysis	463
	Nisha Kundu and Yogesh Kumar Meena	
45	Smart Compact-Folded Microstrip Antenna for GSM, LTE, and WLAN Applications	475
	Amit Birwal, Sanjeev Singh and Binod Kumar Kanaujia	
46	A Pixel-Based Digital Medical Images Protection Using Genetic Algorithm with LSB Watermark Technique	483
	Gaurav Kumar Soni, Akash Rawat, Smriti Jain and Saurabh Kumar Sharma	
47	Void Avoidance Node Deployment Strategy for Underwater Sensor Networks	493
	Pradeep Nazareth and B. R. Chandavarkar	
48	A Framework for e-Governance Using Federation of Cloud	503
	Ashutosh Gupta, Praveen Dhyani, O. P. Rishi and Vishwambhar Pathak	
49	“Computing with Words”-Based Concept Retrieval	513
	Bushra Siddique and M. M. Sufyan Beg	
50	Emotion Recognition on E-Learning Community to Improve the Learning Outcomes Using Machine Learning Concepts: A Pilot Study	521
	A. Jithendran, P. Pranav Karthik, S. Santhosh and J. Naren	
51	Improving the Model Performance of Deep Convolutional Neural Network in MURA Dataset	531
	Shubhajit Panda and Mahesh Jangid	
52	Vulgarism Classification in Comments Using SVM and LSTM	543
	Crystal Dias and Mahesh Jangid	
53	Network Packet Breach Detection Using Cognitive Techniques	555
	Priyadarshi Nanda, Abid Arain and Upasana Nagar	
54	Efficient Channel Access Scheme with Low Congestion Lane Selection in Vehicular Ad Hoc Network	567
	Pradeep Kumar Tiwari, Maya Pandey and Manish Sharma	
55	Railway Control and Alert When Train Is on Wrong Track and Derail Due to Obstruction	579
	Aaradhya Agarwal, Sumit Bhardwaj and Punit Gupta	

56	An Overview of Application Scenarios of Voice over Wireless Sensor Networks	587
	Rohit Mathur, Dungar Nath Chouhan and Tarun Kumar Dubey	
57	The QoS Evaluation of WSN Using Different Number of Mobile Sink Nodes Underwater	595
	Vikas Raina, Jeetu Sharma, Ranjana Thalore and Partha Pratim Bhattacharya	
58	Internet of Streetlights for Energy Efficient Smart Lighting System	609
	Vibhanshu Singh and Sangeeta Mittal	
59	Linking Green Supply Chain Management, Co-creation, and Sustainability: Empirical Revisit in Indian Manufacturing Sector Context	617
	Sashikala Parimi and Samyadip Chakraborty	
60	Digital Solution to Combat Training	631
	Bharat Sharma, Bhuvidha Singh Tomar, Chander Bhuvan, Sumit Bhardwaj and Prakash Kumar	
61	Image Encryption Decryption Using Simple and Modified Version of AES	641
	Ravi Nahta, Tarun Jain, Abhishek Narwaria, Horesh Kumar and Rohit Kumar Gupta	
62	Model for Classification of Poems in Hindi Language Based on Ras	655
	Kaushika Pal and Biraj V. Patel	
63	Object Motion Detection Methods for Real-Time Video Surveillance: A Survey with Empirical Evaluation	663
	Surender Singh, Ajay Prasad, Kingshuk Srivastava and Suman Bhattacharya	
64	Analysis of Wormhole Attack on AODV and DSR Protocols Over Live Network Data	681
	Harsh Kishore Mishra and Meenakshi Mittal	
65	Identifying Non-pulsar Radiation and Predicting Chess Endgame Result Using ARSkNN	691
	Yash Agarwal, Ashish Kumar, Roheet Bhatnagar and Sumit Srivastava	
66	Assessing and Exploiting Security Vulnerabilities of Unmanned Aerial Vehicles	701
	Fekadu Lakew Yihunie, Aman Kumar Singh and Sajal Bhatia	

67	Image Steganography Using LSB Substitution: A Comparative Analysis on Different Color Models	711
	Avneesh Nolkha, Sunil Kumar and V. S. Dhaka	
68	Comparison-Based Study of PageRank Algorithm Using Web Structure Mining and Web Content Mining	719
	Nitesh Pradhan and V. S. Dhaka	
69	Internet of Things Enabled Innovation Constructs in Third-Party Logistics—An Empirical Validation	731
	Samir Yerpude and Tarun Kumar Singhal	
70	Cloud-Assisted IoT-Enabled Smoke Monitoring System (e-Nose) Using Machine Learning Techniques	743
	Somya Goyal, Pradeep K. Bhatia and Anubha Parashar	
71	IoT-Based Cloud-Enabled Smart Electricity Management System	755
	Apoorva Parashar and Anubha Parashar	
72	Real-Time Object Detection and Tracking Using Velocity Control	767
	Geeta Rani and Anita Jindal	
73	A Review on View-Invariant Human Gesture Encroachments	779
	Ayush Mittal and Bhavesh Singh Jaggi	
74	A Survey on Crowd Video Exploration Using Physical Enthused Approaches	791
	Bhanu Kanwar Bhati and Ayushi Aggarwal	
75	Impacts of Change in Facial Features on Age Estimation and Face Identification: A Review	801
	Hitendra Singh Shekhawat and Hitendra Singh Rathor	
76	RETRACTED CHAPTER: Remote Sensing Classification Under Deep Learning: A Review	813
	Manoj Kumar Sharma and Harshit Verma	
77	Recommendation System for Students' Course Selection	825
	J. Naren, M. Zarina Banu and S. Lohavani	
78	Design of a Novel Circularly Polarized Patch Antenna on Elliptical Structure	835
	Sumanta Kumar Kundu, Shashank Jaiswal and Pramod Kumar Singhal	

79 Indian Sign Language Spelling Finger Recognition System	845
J. Naren, R. Venkatesan, P. Rajendran, Galla Sai Vasudha and Vivek	
80 Compact and Secure S-Box Implementations of AES—A Review	857
Amrik Singh, Ajay Prasad and Yoginder Talwar	
Correction to: Smart Systems and IoT: Innovations in Computing	C1
Arun K. Somani, Rajveer Singh Shekhawat, Ankit Mundra, Sumit Srivastava and Vivek Kumar Verma	
Retraction Note to: Remote Sensing Classification Under Deep Learning: A Review	C3
Manoj Kumar Sharma and Harshit Verma	
Author Index	873

About the Editors

Arun K. Somanı is currently Anson Marston Distinguished Professor and Jerry R. Junkins Endowed Chair Professor of Electrical and Computer Engineering at Iowa State University. His research interests include fault-tolerant computing, computer interconnection networks, WDM-based optical networking, and reconfigurable and parallel computer system architecture. He architected, designed, and implemented the 46-node multi-computer cluster-based system, Proteus. He has served as an IEEE distinguished visitor, IEEE distinguished tutorial speaker, and has delivered several keynotes. He was elected as a Fellow of IEEE for his contributions to the “theory and applications of computer networks.” He was made a Distinguished Scientist member of ACM in 2006.

Rajveer Singh Shekhwat is Professor & Director of the School of Computing & IT, Manipal University Jaipur. He completed his M.Sc., B. Tech. M.S. and Ph.D. at BITS, Pilani. He holds 4 patents: Software for PC EK22 3D co-ordinate capturing system (1996); Software Package for Digital Mapping Applications (1996); NF 205/96: An Electronic Device Useful for Measuring Three Dimensional Model and Ground Co-ordinates from Stereo-Photogrammetric Instruments, CSIR, 1996; and NF/92/90: An Electronic Device for High Speed Peer to Peer Data Communication, CSIR, 1988.

Ankit Mundra is an Assistant Professor at the School of Computer Science and IT, Manipal University Jaipur. He is currently pursuing a PhD in the area of Internet of Vehicles at Malaviya National Institute of Technology, Jaipur. His research interests include IoV, online fraud detection, and cyber-physical systems. He has published over 30 research articles in peer-reviewed international journals, book series, and conference proceedings.

Sumit Srivastava is a Professor of Information Technology with expertise in the domain of data analytics and image processing. He is also a senior member of IEEE. He has published more than 100 research papers in peer-reviewed international journals, book series and conference proceedings.

Vivek Kumar Verma is an Assistant Professor at the School of Computing & Information Technology, Manipal University Jaipur. His areas of expertise include image processing, and natural language processing. He has published several articles in peer-reviewed international journals, book series and conference proceedings.

Chapter 1

Statistical Image Processing for Enhanced Scientific Analysis

Deepak Kumar

Abstract Image acquired through various sensors accrue multi-faceted distortions due to the failure of either sensor or platform and consequently, images get distorted. But for any kind of image analysis, it is a prerequisite that each image pixel should be refurbished. In recompensing these, image processing assists in image restoring to its best possible natural form. Recent image processing techniques have significantly advanced and are capable of removing any kind of distortions. The present work exhibits the statistical image processing approach, which has been tested over the Landsat series of satellite image having data gaps of approximately 22% of the loss from the normal scene area that occurred due to the failure of Scan Line Corrector (SLC). The method has precisely estimated the missing values to fill the data gaps in the images for making more visually sensible and analytical. The results presented and authenticated the statistical processing approach as a potential tool for gap filling of lost pixels for the satellite imagery, which can enable more scientific usage of the acquired data sets.

Keywords Optical sensors · Sensor applications · Pixel · Statistics · Sensor signal processing and sensor fusion

1.1 Introduction

Satellite remote sensing deals a wide range of image data with diverse characteristics in terms of temporal, spatial, radiometric and spectral resolutions. An image of ‘superior quality’ refers to higher spatial or higher spectral resolution, which can only be obtained by more advanced sensors. Remotely sensed images can be useful for a lot of interpretations without any intervention for better quality of the images.

D. Kumar (✉)

Amity Institute of Geoinformatics & Remote Sensing (AIGIRS), Amity University Uttar Pradesh, Amity University Campus, Sector-125, Gautam Buddha Nagar, Noida 201313, Uttar Pradesh, India

e-mail: deepakdeo2003@gmail.com; dkumar12@amity.edu

Satellite imagery assists in creating a knowledge base to address issues with the usage of scientific analysis investigating phenomena, acquiring new knowledge, or correcting and integrating previous knowledge [1]. It uses the analysis methods based on empirical or measurable evidence subject to specific principles of reasoning to analyze data acquired from satellites or ground-based platforms using statistical and image analysis software to solve regional, national, and global problems in areas of natural resource management, urban planning, and climate and weather prediction [2].

However, many of the times, satellite images could have distortions in terms of data gaps. In order to improve the capability of analysis of these satellite images, a different approach for image processing is required [3]. Therefore, it is necessary and very useful to process images with the proper approach to achieving gap-filled image data with higher spatial information. But it will have a severe effect on the image interpretation and consequent analysis if some of the pixels or pixel elements/ digital number (DN) in the acquired satellite images are missing. These missing pixels are referred as gaps, which influence the process of image classification and ultimately hinder the spatial information contained in the pixel [4]. To recognize each object or features depending on the presence of original pixel data, so to achieve this, the various methods/approaches have been used for remote sensing image processing but almost all the methods have some distress in the image.

Restoration of missing or damaged portions of images is an ancient technique consisting of filling in the lost areas or modifying the damaged ones in a non-detectable technique [5]. Earlier image processing utilized the traditional methods which include image sharpening, image smoothing, image rectification and image restoration, image enhancement but very less attention has been paid for the image restoration in context to missing pixels [6].

This satellite imaging processing is a prerequisite for producing seamless sharpened images with fewer distortions and data loss for the applications [5]. It also helps in image quality improvement for better pattern recognition, object detection, content-based retrieval approaches [7]. Geographic object-based image analysis (GEOBIA) moreover augment to scientific analysis work for further spatial analysis in conjunction with classification and feature extraction approaches [8]. Hence, the current approach was attempted to improve the eminence of image processing for gap filling techniques.

The recent method was tested with the processing of Landsat 7 image having a noise frame in the scene, which occurred due to the failure of SLC (Scan Line corrector) led to the stripping or missing of the scan line in the satellite image. The usage of the image was challenging, therefore, ways to repatriate the data gaps was taken up for the current research [9]. The current work also encompasses the understanding of image processing techniques for the images having missing pixels to provide the finer datasets for analysis.

1.2 Methodology

Gap filling of the satellite images can be classified as a single source, multi-source, and hybrid methods. Multi-source methods involve more than one image for reconstruction. Single-source methods use the same image information to fill gaps. The hybrid method combines both of the above approaches [10]. Processing of images utilizes the techniques of remote sensing technology for image and signal processing of optical datasets with conjunction to the image enhancement, image restoration, machine intelligence, data fusion techniques [11]. Several methods are now available for the image improvement, which are embedded conventionally into the remote sensing software package but these correction modules need to be customized and parameterized with the appropriate methods and values to deliver the required results after the image processing procedure.

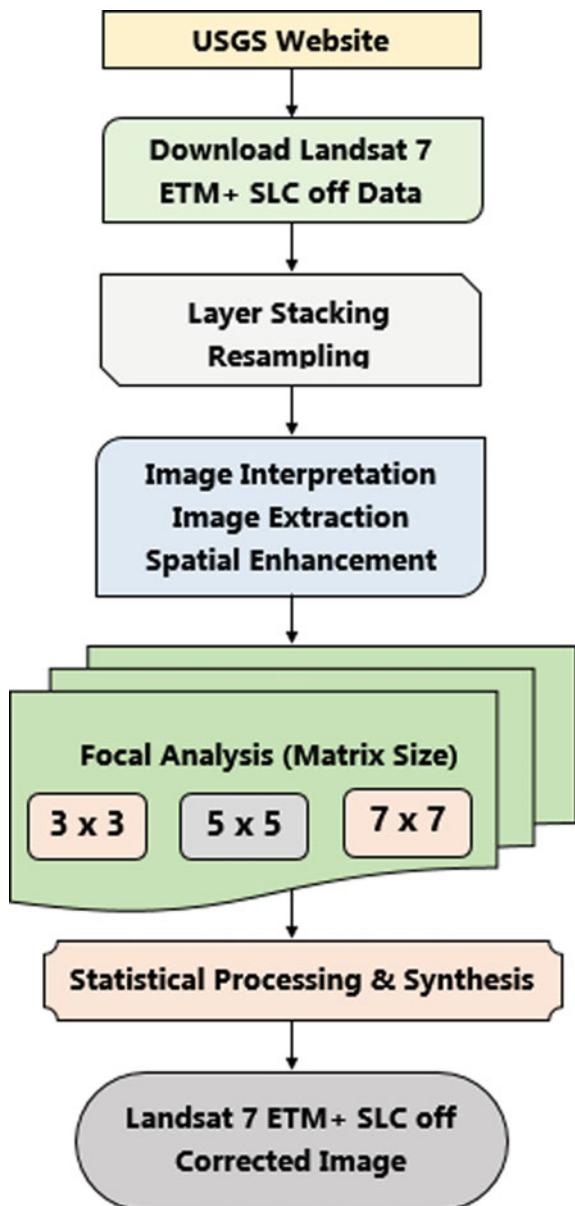

A. Gap Filling of Landsat SLC-Off Single Scene

Figure 1.1 illustrates the procedure followed for statistical image processing. The method is intended to modify neighboring pixels in a single Landsat 7 SLC-off scene, creating a final corrected image, which can be used for scientific analysis. The method was adapted with the help of ERDAS Imagine software for initial image processing as well as for final filled image verification. Here, the idea was to apply different mathematical matrix functions in an iterative manner (depending on the loss of pixel in the raw image) for gap filling in the satellite images. After examining various functions, matrix sizes, and properties, the best technique and matrix size were adopted based on a statistical matrix report of the corrected image block. The current approach of statistical image processing for ETM+ images was tested for gap filling of the distorted image that occurred due to instrumentation error, losses of image data during transmission. Table 1.1 exhibits the scientific significance and spectral characteristics of the ETM+ sensor bands.

By manipulating imagery data values and positions, it is possible to see features that would not normally be visible and to locate geo-positions of features that would otherwise be graphical [12]. The current image processing method focused on performing image enhancement to develop operational methodologies for finer spatiotemporal satellite image dataset usability at a wider scale. Therefore, the link/pipeline between the end-users' requirements and the scientific community for facilitating the required quality of datasets must be established. The shaded regions in Fig. 1.2a exhibits the data losses and red rectangular boxes (i.e., at upper and lower parts) which are in red show the regions considered/used for computing the values of missing pixels/digital numbers (DNs).

Though, the synergistic use of statistical image processing methodologies may result in the possibility of solving complex problems related to the data gaps in the imagery acquired by various sensors but still some more comparative studies for multiple test areas must be done for validation of the results. Therefore, the present study is a footstep effort aimed for image restoration through the state-of-the-art statistical techniques of gap filling.

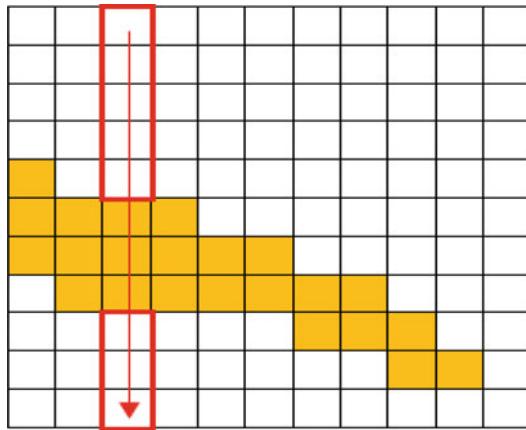
Fig. 1.1 Overview of statistical processing of SLC-off Landsat ETM+ images for scientific analysis

Table 1.1 Usability of Landsat 7 ETM+ different bands

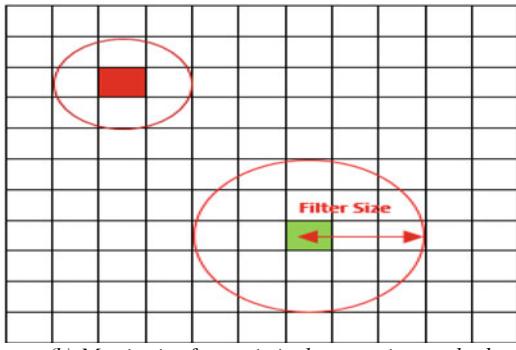
Band	Spectral range (μm)	EMR region	Applications
1	0.45–0.52	Visible blue	Soil-vegetation discriminations, coastal water mapping
2	0.52–0.60	Visible green	Vegetation region assessment
3	0.63–0.69	Visible red	Chlorophyll absorption for vegetation
4	0.76–0.90	Near-infrared	Biomass assessment and water bodies differentiation
5	1.55–1.75	Middle infrared	Vegetation-soil moisture assessment and snow-cloud discrimination
6	10.40–12.50	Thermal infrared	Thermal mapping, soil moisture studies and plant heat stress studies
7	2.08–2.35	Middle infrared	Hydrothermal mapping
8	0.52–0.90	Near-infrared	Large area mapping, urban change studies

Source <http://www.landcover.org/data/landsat/>

Likewise, Fig. 1.2b exhibits the different filter sizes (i.e., 3×3 or 5×5 filter) used for processing of the image having the data losses.


B. Study Area and Dataset

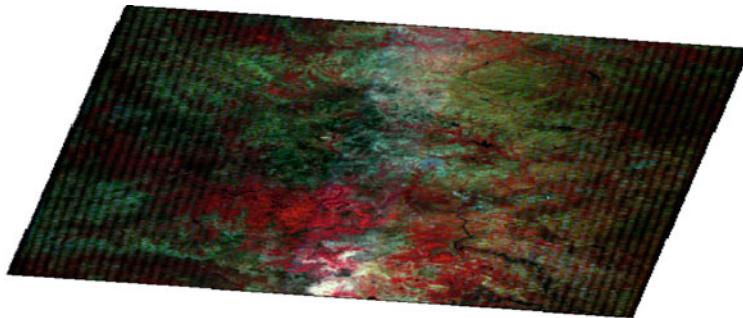
To evaluate the performance of our proposed technique, investigation was performed on real Landsat ETM+ data of unscanned location (obtained from Landsat ETM+ data) for Kalaburagi (*erstwhile Gulbarga*) City, Karnataka province, India (*Row 048 Path 145 in World Reference System 2, around 17°N and 76°E*). The major land cover types in this area include agricultural fields, urban area, forest, and bare soil. Corresponding bands 1-5 and 7 were used in level L1T obtained from the USGS website (<http://glovis.usgs.gov/>). Figure 1.3a exhibits the original raw image of the study area and Fig. 1.3b shows the subset of the same scene to showcase the missing pixels in the image.


C. Software Tools and Methods/ Technology

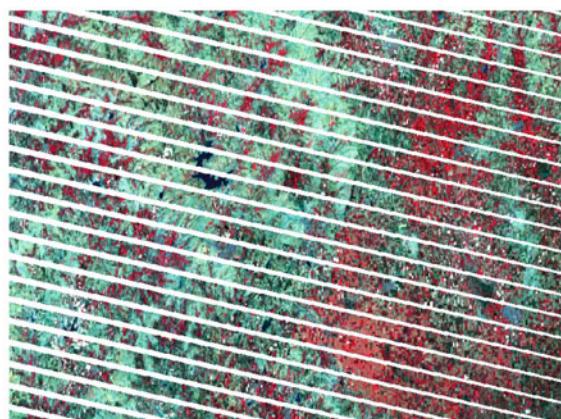
There are multiple systems/software for processing the satellites image using efficient algorithms to provide an enhanced image as an output. Commonly ERDAS Imagine (*a software application for satellite image processing*) is used to process the remote sensing data. For the current work, ERDAS Imagine 2014 were used for data processing, preparing and display of the enhanced digital images. It also facilitated to implement the various statistical techniques to augment several image processing algorithms.

Fig. 1.2 Overview of statistical processing and synthesis. **a** Configuration for statistical image processing approach. **b** Matrix size for the statistical processing method

(a) Configuration for Statistical Image Processing Approach



(b) Matrix size for statistical processing method


1.3 Results and Analysis

A. SLC-Off Image (Raw Image)

Figure 1.4 illustrates the raw image (distorted) acquired from the SLC-Off Sensor. The majority of image processing techniques developed to overcome this setback were contingent upon the use of SLC-on as primary imagery. These techniques suffered for their unpredictable rendering of various factors which changed over time and were, therefore, unsuitable for many of the systems. Various algorithms for gap filling methods of satellite image suffer from sharp radical changes in images due to change in sun glint change, snow, cloud, etc. These algorithms were having the concern in terms of computational time. Therefore the requirement of the powerful technique was a prerequisite for larger as well as a small area having less computational time. Therefore, the current work attempted to avoid these drawbacks through the statistical image processing method to provide a high level of accuracy for correct-

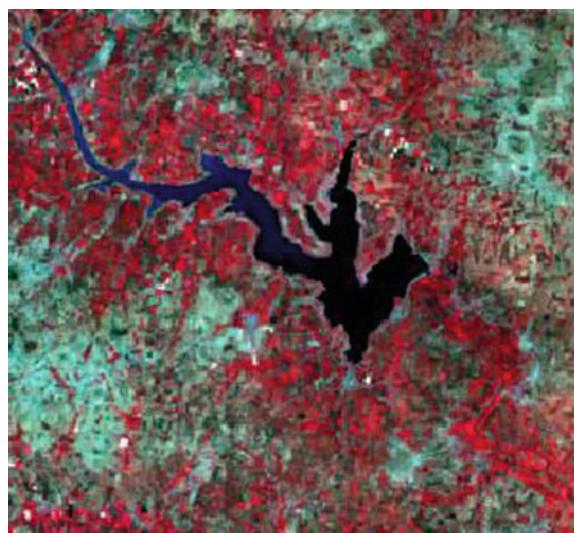
(a) Original Scene of Gulbarga District (Path-145/Row-048)

(b) Part of Scene 145/048 of Gulbarga District

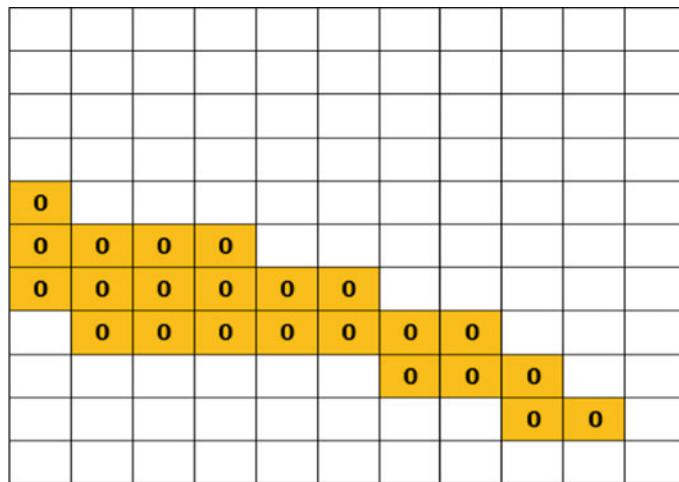
Fig. 1.3 **a** Original scene of Gulbarga District (Path-145/Row-048). **b** Part of scene 145/048 of Gulbarga District

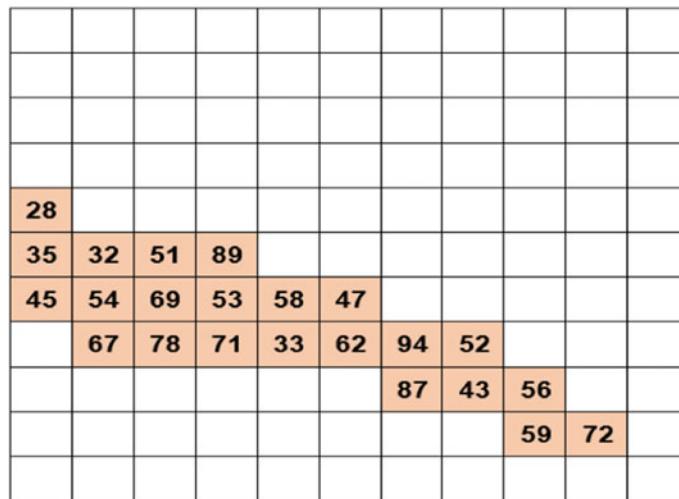

ing pixels from a single image via the techniques of one-dimensional interpolation and filtering.

B. Processed Image


Figure 1.5 depicts the processed satellite obtained after statistical image processing of the raw image.

Figures 1.6a and 1.6b exhibit the transformation occurred at the pixel level of the satellite image. The statistically processed images were compared with original images for the pixel distribution and to calculate RMSE values between each image. An analysis of the coefficients of determination of two-dimensional correction results, in terms of the pixel distribution, demonstrates the variation in the pixel data values. Therefore, Fig. 1.6a exhibits the original pixel values or digital numbers


Fig. 1.4 Distorted original raw image


Fig. 1.5 Image after statistical processing

(DN) values in the distorted image and Fig. 1.6b depicts the values after applying statistical processing methods to the image.

(a) Original DN (Pixel) matrix values in raw image

(b) Altered DN (Pixel) matrix values in processed image

Fig. 1.6 Illustration for conversions in image in DN matrix values. **a** Original DN (Pixel) matrix values in the raw image. **b** Altered DN (Pixel) matrix values in the processed image

1.4 Conclusion

People were working, in the past, on ways to improve the severely damaged image quality for using the images more efficiently. The idea worked at least to some degree, but very little attempt was made for retrospectively improving the damaged scenes. The metamorphosis of the proposed system over the conventional algorithm is the theory of the statistical approach being applied for the missing pixel value estimation guided by the adjacent value rather than the distance pixel. As the image restoration processes take place in pixel by pixel manner so the calculation of each pixel is dependent on adjacent pixels. In other words, the proposed concept generates one pixel using the functions among adjacent directly surrounding the empty location, whose value is almost equal to the value generated by the conventional bilinear interpolation algorithm. The trial outcomes presented more superior images after restoring the image gaps to resolve the inconsistencies of the image to be used in any scientific analysis. The simulated trial validated that the proposed approach (*statistical/focal analysis approach*) as a finer image restoration approach in both visual and statistical aspects.

Acknowledgements We gratefully acknowledge USGS and NASA leadership and support of the Landsat Science Team. Landsat ETM+ data used in this study was downloaded from <http://earthexplorer.usgs.gov/>. Source for this data set is the Global Land Cover Facility, www.landcover.org. This work was undertaken as part of full-time PhD program and the work was supported by the DST-INSPIRE Fellowship [Grant Numbers IF120639] from Ministry of Science & Technology, Govt. of India for completing PhD work. This research is supported in part by SERB under Early Career Research Scheme (FILE NO. ECR/2017/000816).

References

1. Paper, O.: Validating gap-filling of landsat ETM + satellite images in the Golestan province, Iran. Arab. J. Geosci. **5** (2013)
2. Alfred, V.D.M.: Stein; Freek. Remote Sensing and Digital Image Processing. Springer, Berlin (2002)
3. Zhang, C., Li, W., Travis, D.: International journal of remote. Int. J. Remote Sens. **28**(768485448) (2007)
4. Chen, F., Zhao, X., Ye, H.: Making use of the landsat 7 SLC-off ETM + image through different recovering approaches. In: INTECH, pp. 317–342 (2012)
5. Blaschke, T.: Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. **65**(1), 2–16 (2010)
6. Rogers, A.S., Kearney, M.S.: Reducing signature variability in unmixing coastal marsh thematic mapper scenes using spectral indices. Int. J. Remote Sens. **25**(12), 2317–2335 (2004)
7. Benz, U.C., Hofmann, P., Willhauck, G., Lingenfelder, I., Heynen, M.: Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. **58**(3–4), 239–258 (2004)
8. Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Feitosa, R.Q., Van Der Meer, F., Van Der Werff, H., Van Coillie, F., Tiede, D.: Geographic object-based image analysis – towards a new paradigm. ISPRS J. Photogramm. Remote Sens. **87**, 180–191 (2014)
9. Gonzalez, R.C., Woods, R.E., Hall, P.: Digital Image Processing. Pearson, New York

10. Zeng, C., Shen, H., Zhang, L.: Recovering missing pixels for landsat ETM + SLC-off imagery using multi-temporal regression analysis and a regularization method. *Remote Sens. Environ.* **131**, 182–194 (2013)
11. Butt, A., Shabbir, R., Ahmad, S.S., Aziz, N.: Land use change mapping and analysis using remote sensing and GIS: a case study of simly watershed, Islamabad, Pakistan. *Egypt. J. Remote Sens. Space Sci.* (2015)
12. Wulder, M.A., White, J.C., Masek, J.G., Dwyer, J., Roy, D.P.: Landsat observations : short term considerations. *Remote Sens. Environ.* **115**(2), 747–751 (2012)

Chapter 2

Performance Analysis of Network with Different Queueing Mechanisms in TCP/FTP and UDP/FTP Scenario

Nehal Patel and Radhika Patel

Abstract Implementation, performance analysis, and network management are the leading issues in the vast field of computer. The choice of the several queues completely depends on the requirement of the broadcast of data. Safe and reliable propagation of data is an elementary obligation of a computer network. In the present situation, there is a strong necessity of calibration, testing, and extensive deployment of queue organization patterns in routers, which is liable for the enhancement of today's performance of the Internet. Queues presentation calculation needs a tangible research effort in the measurement as well as utilization of router workings, which developments to guard the Internet from drifts that are not adequately amicable to notification of congestion. In this paper, we assess the act of Drop Tail, RED, SFQ, and FQ by varying the queue size. We are representing the detailed performance analysis and comparison of the various queues in terms of throughput and packet loss.

Keywords NS2 · Drop tail · RED · SFQ · FQ · Packet drop · Queue size · Throughput

2.1 Introduction

The importance of Computer Networks and Internetworking layer has been tremendously increased in the recent decade. In the digitalized era of computer networks, sharing of information is only possible through networking where end-devices are connected via various links. But the transmission of the data packet in the network is carried out with the help of transport protocols. Among various transport protocols,

N. Patel (✉)
CSPIT, CHARUSAT, Changa, Gujarat, India
e-mail: nehalpatel.it@charusat.ac.in

R. Patel
DEPSTAR, CHARUSAT, Changa, Gujarat, India
e-mail: radhipatel999@gmail.com

TCP, i.e., Transmission Control Protocol is the most significant protocol consisting of perfect mechanism such as management of connections, error control, flow control, and congestion control.

The transportation of packets/message/information from any source to the desired destination through any medium at any instance of time entails a proper order of processes being done. Interface development is to be managed in order to complete a successful packet transmission [1].

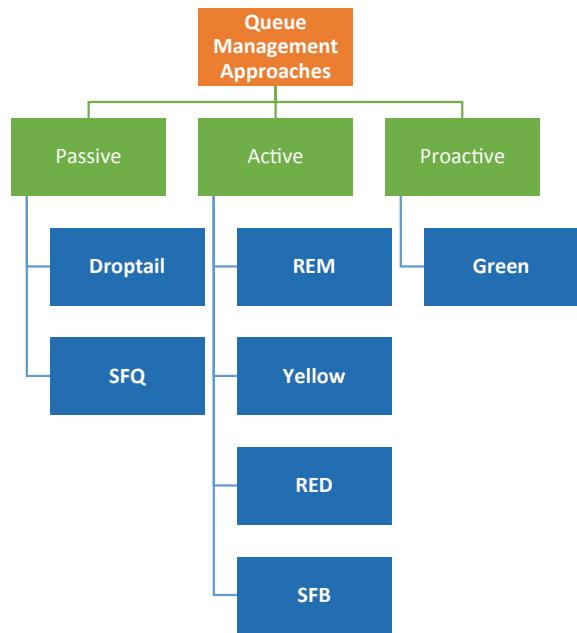
Packets are being sent in the network through two mediums, namely, TCP/FTP sender and UDP/FTP sender. Analysis until the date delivers the knowledge that TCP/FTP sender technique for packet transmission is better. In TCP/FTP technique, TCP represents a protocol of transport layer and FTP is a protocol of application layer that represents traffic agent of a specific presentation through which TCP data is conduct [2].

TCP/FTP and UDP/FTP scenario offer reliable, bidirectional, and conforming characteristics. It has been found that the performance of the network differs according to the queuing mechanisms used. In this paper, the performance parameters such as packet delivery ratio and throughput are analyzed in NS2 using different queue management approaches in TCP/FTP and UDP/FTP scenarios. The next section describes all the queue management approaches in brief. In the remaining part, simulation environment and experimental results along with a conclusion and future work are described.

2.2 Queue Management Approaches

Queue management is expounded as the method which can manage the size of packet queues through packet dropping. It can be categorized into three groups [3] (Fig. 2.1).

2.2.1 *Passive Queue Management*


In PQM method, a router sustains a set of queues which holds packets for scheduling. For instance, Drop tail and Stochastic Fair Queuing [SFQ].

1. **Drop Tail**

Drop Tail is a modest queue mechanism that is utilized by the routers. Whenever queue or buffer is full, then incoming packets are dropped till queue or buffer has an adequate vacuum to accept new packets. It is the most extensively used due to its simple implementation and quite a high efficiency.

Unfortunately, drop tail is having some problems such as lack out, full queue, bias against bursty traffic and global synchronization.

Fig. 2.1 Types of queue management approaches

2. SFQ

SFQ queuing mechanism is established on the fair queuing procedure and suggested by John Nagle in 1987. It practices a hashing scheme that distributes the traffic above a restricted number of queues. SFQ allocates a pretty large number of First In First Out (FIFO) queues [4].

2.2.2 Active Queue Management

AQM queuing mechanism is dropping packets before the router's queue is full. It is suggested to substitute a drop tail queue scheme in demand to increase network performance in relationships of link employment, system fairness, delay, and packet loss rate. There are many AQM algorithms like RED (Random Early Detection), SRED, REM (Random Exponential Marking), BLUE, SFB, etc. [6].

A. REM

It can achieve equally high consumption with minor packet loss as well as delay in a very modest and accessible way. The main idea is to decouple congestion measure from performance measure for instance delay, packet loss, and queue length [7].

B. *YELLOW*

For managing the problem of congestion, yellow practices the load aspect, i.e., link usage as a chief virtue. Along with link utilization, a queue control function is familiarized to upgrade congestion control performance. Yellow leave behind the newly anticipated AQM procedures in relation to link consumption, packet loss as well as robust performance over widespread recreations [8].

Yellow algorithm practices the disparity among the input amount and link capability as the prime metric. Moreover, the queue dimension is considered as a subordinate metric. Queue dimension shakes the load issue consuming Queue Control utility, which is figured out by a nonlinear hyperbola function of instantaneous queue length and reference queue size [8]. Yellow delivers an early controlling queuing delay preserving the main load value. The average queue length and standard deviation of queue length of Yellow are slightly affected by UDP flows [8].

C. *RED*

RED stands for Random Early Detection. It is an overcrowding prevention queuing contrivance, which is hypothetically useful, chiefly in high-speed transfer networks. It comes under the active queue managing mechanism. RED functions on the average queue size as well as drop packets on the source of statistics information. If the buffer is vacant all entering packets are accredited. The possibility of dumping a packet increases with the increase in the size of the queue. When the buffer is full probability and turns out to be 1 and all entering packets are dropped.

D. *SFB*

SFB, i.e., Stochastic Fair BLUE is an innovative practice for guarding TCP flows in contradiction of nonresponsive flows consuming the BLUE algorithm. SFB is extremely ascendant and imposes equality using a tremendously minor quantity of state and a minor quantity of buffer space [9]. It is based on two self-governing algorithms, namely, BLUE queue management algorithm and bloom filters. This algorithm uses a solitary marking possibly to spot packets at the time of congestion. The probability of spotting increases linearly with congestion. The subsequent algorithm is built on bloom filters [1]. This algorithm allows for the distinctive grouping of objects through the usage of numerous, self-determining hash functions. By means of bloom filters, object classification can be complete with an awfully minor quantity of state information.

2.2.3 *Proactive Queue Management*

A proactive queue management (PQM) algorithm known as Generalized Random Early Evasion Network smears acquaintance of the steady-state performance of TCP connections to dropped packets perceptively and proactively. It prevents congestion from ever happening and guaranteeing a greater grade of equality between flows.