LEARNING MADE EASY

Chemistry Essentials

All of the critical calculations

What you need to know to conquer chemistry

Concise coverage of key topics

John T. Moore, EdD

Regents Professor of Chemistry, Stephen F. Austin State University

Chemistry Essentials

by John T. Moore, EdD

Chemistry Essentials For Dummies®

Published by John Wiley & Sons, Inc. 111 River St. Hoboken, NJ 07030-5774 www.wiley.com

Copyright © 2019 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2019936131

ISBN 978-1-119-59114-6 (pbk); ISBN 978-1-119-59113-9 (ebk); ISBN 978-1-119-59111-5(ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Contents at a Glance

Introdu	uction	. 1
CHAPTER 1:	Matter and Energy: Exploring the Stuff of Chemistry	. 5
CHAPTER 2:	What's in an Atom?	17
CHAPTER 3:	The Periodic Table	35
CHAPTER 4:	Nuclear Chemistry	43
CHAPTER 5:	Ionic Bonding	55
CHAPTER 6:	Covalent Bonding	69
CHAPTER 7:	Chemical Reactions	87
CHAPTER 8:	Electrochemistry: Using Electrons1	11
CHAPTER 9:	Measuring Substances with the Mole1	25
CHAPTER 10:	A Salute to Solutions1	35
CHAPTER 11:	Acids and Bases14	45
CHAPTER 12:	Clearing the Air on Gases1	59
CHAPTER 13:	Ten Serendipitous Discoveries in Chemistry1	71
Index		75

Table of Contents

INTRO	DUCTION	1
	About This Book Conventions Used in This Book Foolish Assumptions Icons Used in This Book Where to Go from Here	1 2 3 3
CHAPTER 1:	Matter and Energy: Exploring	
	the Stuff of Chemistry	5
	Knowing the States of Matter and Their Changes	6
	Solids, liquids, and gases	6
	Condensing and freezing	7
	Melting and boiling	8
	Skipping liquids: Sublimation	9
	Pure Substances and Mixtures	9
	Pure substances	10
	Throwing mixtures into the mix	11
	Measuring Matter	12
	Nice Properties You've Got There	13
	Energy Types	14
	Kinetic energy	14
	Potential energy	15
	remperature and Heat	15
CHAPTER 2:	What's in an Atom?	17
CHAPTER 2:	Subatomic Particles	17
	Centering on the Nucleus	19
	Locating Those Electrons	21
	The quantum mechanical model	21
	Energy level diagrams	26
	Isotopes and lons	30
	Isotopes: Varying neutrons	31
	Ions: Varying electrons	32

CHAPTER 3:	The Periodic Table	35
	Repeating Patterns: The Modern Periodic Table	
	Arranging Elements in the Periodic Table	38
	Grouping metals, nonmetals, and metalloids	
	Arranging elements by families and periods	41
CHAPTER 4:	Nuclear Chemistry	43
	Seeing How the Atom's Put Together	43
	Dealing with a Nuclear Breakup: Balancing Reactions	44
	Understanding Types of Natural Radioactive Decay	46
	Alpha emission	47
	Beta emission	48
	Gamma emission	48
	Positron emission	48
	Electron capture	49
	Half-Lives and Radioactive Dating	49
	Calculating remaining radioactivity	50
	Radioactive dating	51
	Breaking Elements Apart with Nuclear Fission	51
	Mass defect: Where does all that energy come from?	52
	Chain reactions and critical mass	52
	Coming Together with Nuclear Fusion	53
CHAPTER 5:	Ionic Bonding	55
	Forming lons: Making Satisfying Electron Trades	55
	Gaining and losing electrons	56
	Looking at charges on single-atom ions	58
	Grouping atoms to form polyatomic ions	61
	Creating Ionic Compounds	63
	Making the bond: Sodium metal + chlorine	
	gas = sodium chloride	63
	Figuring out the formulas of ionic compounds	64
	Naming ionic compounds	66
	Bonding Clues: Electrolytes and Nonelectrolytes	68
CHAPTER 6:	Covalent Bonding	69
	Covalent Bond Basics	69
	Sharing electrons: A hydrogen example	69
	Comparing covalent bonds with other bonds	71
	Dealing with multiple bonds	72

	Naming Covalent Compounds Made of Two Elements	73
	Writing Covalent Compound Formulas	74
	Empirical formulas	74
	Molecular or true formulas	75
	Structural formulas: Dots and dashes	75
	Electronegativities: Which Atoms Have More Pull?	81
	Predicting the type of bond	
	Polar covalent bonding: Creating partial charges	
	Attracting other molecules: Intermolecular forces	84
CHAPTER 7:	Chemical Reactions	
	Reactants and Products: Reading Chemical Equations	87
	Collision Theory: How Reactions Occur	
	Hitting the right snot	20 20
	Adding releasing and absorbing energy	90 90
	Types of Reactions	92
	Combination reactions: Coming together	92
	Decomposition reactions: Breaking down	93
	Single displacement reactions: Kicking out	
	another element	93
	Double displacement reactions: Trading places	
	Combustion reactions: Burning	97
	Redox reactions: Exchanging electrons	97
	Balancing Chemical Equations	97
	Balancing the Haber process	
	Balancing the burning of butane	
	Knowing Chemical Equilibrium Backward and Forward	100
	Matching rates of change in the Haber process	101
	Constants: Comparing amounts of products	
	and reactants	102
	Le Chatelier's Principle: Getting More (or Less) Product	103
	Changing the concentration	103
	Changing the temperature	104
	Changing the pressure	104
	Chemical Kinetics: Changing Reaction Speeds	105
	Seeing How Catalysts Speed Up Reactions	107
	Heterogeneous catalysis: Giving reactants	
	a better target	108
	Homogeneous catalysis: Offering an easier path	108

CHAPTER 8:	Electrochemistry: Using Electrons	1
	Transferring Electrons with Redox Reactions	1
	Oxidation	2
	Reduction	3
	Ovidation numbers	4
	Oxidation numbers	5
	Exploring Electrochemical Cells 120))
	Galvanic cells: Getting electricity from	J
	chemical reactions	1
	Electrolytic cells: Getting chemical reactions	h
	Trom electricity	2
	Having it both ways with rechargeable batteries	C
CHAPTER 9:	Measuring Substances with the Mole125	5
	Counting by Weighing	5
	Moles: Putting Avogadro's Number to Good Use	7
	Defining the mole	/
	Finding formulas of compounds	o a
	Chemical Reactions and Moles) 0
	Reaction stoichiometry	1
	Percent yield132	2
	Limiting reactants133	3
CHAPTER 10:	A Salute to Solutions	5
	Mixing Things Up with Solutes, Solvents, and Solutions	5
	How dissolving happens136	5
	Concentration limits136	5
	Saturated facts	7
	Understanding Solution Concentration Units	3
	Percent composition	5
	Molality: Comparing solute to solvent	2 J
	Parts per million	3
CHADTED 11.	Acids and Bases 149	5
CHAITER II.	Observing Properties of Acids and Bases 14	5
	The Brønsted-Lowry Acid-Base Theory	5
	Understanding Strong and Weak Acids and Bases	7
	Strong: Ionizing all the way147	7
	Weak: Ionizing partially149	9

Ac Sh Ph	id-Base Reactions: Using the Brønsted-Lowry System	i1 i2 i3 i3 i3 i4 i5
CHAPTER 12: C	learing the Air on Gases15	59
Th Th Re	ne Kinetic Molecular Theory: Assuming nings about Gases	i9 i2 i3 i4 i5 i6 7 i8
CHAPTER 13: Te	en Serendipitous Discoveries in Chemistry17	'1
Ar	chimedes: Streaking Around17	'1
Vu	Ilcanization of Rubber17	'2
M	olecular Geometry	2
IVI6 Ko	auve Dye	2
Di	scovering Radioactivity 17	ב גי
Fir	nding Really Slick Stuff: Teflon	'3
Sti	ick 'Em Up! Sticky Notes17	'4
Gr	rowing Hair17	′4
Sw	veeter than Sugar17	'4
INDEX		'5

Introduction

ongratulations on making a step toward discovering more about what I consider a fascinating subject: chemistry. For more than 40 years, I've been a student of chemistry. This includes the time I've been teaching chemistry, but I still consider myself a student because I'm constantly finding out new facts and concepts about this important and far-reaching subject.

Hardly any human endeavor doesn't involve chemistry in some fashion. People use chemical products in their homes — cleaners, medicines, cosmetics, and so on. And they use chemistry in school, from the little girl mixing vinegar and baking soda in her volcano to the Ivy League grad student working on chemical research.

Chemistry has brought people new products and processes. Many times this has been for the good of humankind, but sometimes it's been for the detriment. Even in those cases, people used chemistry to correct the situations. Chemistry is, as has been said many times, the central science.

About This Book

My goal with this book is to give you the really essential information and concepts that you would face in a first semester chemistry class in high school or college. I've omitted a lot of topics found in a typical chemistry textbook. This book is designed to give you the bare essentials.

Remember, this is a light treatment. If you want more, many other books are available. My favorite, naturally, is *Chemistry For Dummies*. I understand the author is really a great guy.

Conventions Used in This Book

Here are a couple of conventions you find in For Dummies books:

- I use *italics* to emphasize new words and technical terms, which I follow with easy-to-understand definitions.
- Bold text marks keywords in bulleted lists and highlights the general steps to follow in a numbered list.

In addition, I've tried to organize this book in approximately the same order of topics found in a one-semester general chemistry course. I've included some figures for you to look at; refer to them as you read along. Also, pay particular attention to the reactions that I use. I've attempted to use reactions that you may be familiar with or ones that are extremely important industrially.

Foolish Assumptions

I don't know your exact reasons for picking up this guide, but I assume you want to know something about chemistry. Here are some reasons for reading:

- You may be taking (or retaking) a chemistry class. This book offers a nice, quick review for your final exam. It can also give you a refresher before you plunge into a new course, such as biochemistry or organic chemistry.
- You may be preparing for some type of professional exam in which a little chemistry appears. This book gives you the essentials, not the fluff.
- You may be a parent trying to help a student with his or her homework or assignment. Pay attention to what your child is currently studying and try to stay a little ahead.
- Finally, you may be what people call a "nontraditional student." You knew most of this material once upon a time, but now you need a quick review.

Whatever the reason, I hope that I'm able to give you what you need in order to succeed. Good luck!

Icons Used in This Book

If you've read any other *For Dummies* books (such as the great *Chemistry For Dummies*), you'll recognize the two icons used in this book. Here are their meanings:

This icon alerts you to those really important things you shouldn't forget. These are ideas that you most probably need to memorize for an exam.

This icon points out the easiest or quickest way to understand a particular concept. These are the tricks of the trade that I've picked up in my 40+ years learning chemistry.

Where to Go from Here

Where you go next really depends on you and your reason for using this book. If you're having difficulty with a particular topic, go right to that chapter and section. If you're a real novice, start at Chapter 1 and go from there. If you're using the book for review, skim quickly starting at the beginning and read in more depth those topics that seem a little fuzzy to you. You can even use this book as a fat bookmark in your regular chemistry textbook.

Whatever way you use this book, I hope that it helps and you grow to appreciate the wonderful world of chemistry.

- » Understanding the states of matter
- » Differentiating between pure substances and mixtures
- » Measuring matter with the metric system
- » Examining the properties of chemical substances
- » Discovering the different types of energy

Chapter **1** Matter and Energy: Exploring the Stuff of Chemistry

Simply put, chemistry is a whole branch of science about matter, which is anything that has mass and occupies space. Chemistry is the study of the composition and properties of matter and the changes it undergoes.

Matter and energy are the two basic components of the universe. Scientists used to believe that these two things were separate and distinct, but now they realize that matter and energy are linked. In an atomic bomb or nuclear reactor, for instance, matter is converted into energy. (Perhaps someday science fiction will become a reality and converting the human body into energy and back in a transporter will be commonplace.)

In this chapter, you examine the different states of matter and what happens when matter goes from one state to another. I show you how to use the SI (metric) system to make matter and energy measurements, and I describe types of energy and how energy is measured.

Knowing the States of Matter and Their Changes

Matter is anything that has mass and occupies space. It can exist in one of three classic states: solid, liquid, and gas. When a substance goes from one state of matter to another, the process is called a *change of state*, or *phase change*. Some rather interesting things occur during this process, which I explain in this section.

Solids, liquids, and gases

Particles of matter behave differently depending on whether they're part of a solid, liquid, or gas. As Figure 1-1 shows, the particles may be organized or clumped, close or spread out. In this section, you look at the solid, liquid, and gaseous states of matter.

FIGURE 1-1: Solid, liquid, and gaseous states of matter.

Solids

At the *macroscopic level*, the level at which you directly observe with your senses, a solid has a definite shape and occupies a definite volume. Think of an ice cube in a glass — it's a solid. You can easily weigh the ice cube and measure its volume.

At the *microscopic level* (where items are so small that people can't directly observe them), the particles that make up the solid are very close together and aren't moving around very much (see Figure 1-1a). That's because in many solids, the particles are pulled into a rigid, organized structure of repeating patterns

called a *crystal lattice.* The particles in the crystal lattice are still moving but barely — it's more of a slight vibration. Depending on the particles, this crystal lattice may be of different shapes.

Liquids

Unlike solids, liquids have no definite shape; however, they do have a definite volume, just like solids do. The particles in liquids are much farther apart than the particles in solids, and they're also moving around much more (see Figure 1-1b).

Even though the particles are farther apart, some particles in liquids may still be near each other, clumped together in small groups. The attractive forces among the particles aren't as strong as they are in solids, which is why liquids don't have a definite shape. However, these attractive forces are strong enough to keep the substance confined in one large mass — a liquid — instead of going all over the place.

Gases

A gas has no definite shape and no definite volume. In a gas, particles are much farther apart than they are in solids or liquids (see Figure 1–1c), and they're moving relatively independent of each other. Because of the distance between the particles and the independent motion of each of them, the gas expands to fill the area that contains it (and thus it has no definite shape).

Condensing and freezing

If you cool a gaseous or liquid substance, you can watch the changes of state, or *phase changes*, that occur. Here are the phase changes that happen as substances lose energy:

- Condensation: When a substance condenses, it goes from a gas to a liquid state. Gas particles have a high amount of energy, but as they're cooled, that energy decreases. The attractive forces now have a chance to draw the particles closer together, forming a liquid. The particles are now in clumps, as is characteristic of particles in a liquid state.
- Freezing: A substance *freezes* when it goes from a liquid to a solid. As energy is removed by cooling, the particles in a liquid start to align themselves, and a solid forms. The temperature at which this occurs is called the *freezing point (fp)* of the substance.

You can summarize the process of water changing from a gas to a solid in this way:

 $H_2O(g) \rightarrow H_2O(l) \rightarrow H_2O(s)$

Here, the (1) stands for liquid, the (g) stands for gas, and (s) stands for solid.

Melting and boiling

As a substance heats, it can change from a solid to a liquid to a gas. For water, you represent the change like this:

 $H_2O(s) \rightarrow H_2O(l) \rightarrow H_2O(g)$

This section explains melting and boiling, the changes of state that occur as a substance gains energy.

From solid to liquid

When a substance melts, it goes from a solid to a liquid state. Here's what happens: If you start with a solid, such as ice, and take temperature readings while heating it, you find that the temperature of the solid begins to rise as the heat causes the particles to vibrate faster and faster in the crystal lattice.

After a while, some of the particles move so fast that they break free of the lattice, and the crystal lattice (which keeps a solid *solid*) eventually breaks apart. The solid begins to go from a solid state to a liquid state — a process called *melting*. The temperature at which melting occurs is called the *melting point (mp)* of the substance. The melting point for ice is 32° F, or 0° C.

During changes of state, such as melting, the temperature remains constant — even though a liquid contains more energy than a solid. So if you watch the temperature of ice as it melts, you see that the temperature remains steady at 0° C until all the ice has melted.

The melting point (solid to a liquid) is the same as the freezing point (liquid to a solid).

From liquid to gas

The process by which a substance moves from the liquid state to the gaseous state is called *boiling*.