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Introduction

This book is your practical guide to moving from novice to master in machine learning
(ML) with Python 3 in six steps. The six steps path has been designed based on the

“six degrees of separation” theory, which states that everyone and everything is a
maximum of six steps away. Note that the theory deals with the quality of connections,
rather than their existence. So a great effort has been taken to design an eminent yet
simple six steps covering fundamentals to advanced topics gradually, to help a beginner
walk his/her way from no or least knowledge of ML in Python all the way to becoming

a master practitioner. This book is also helpful for current ML practitioners to learn
advanced topics such as hyperparameter tuning, various ensemble techniques, natural
language processing (NLP), deep learning, and the basics of reinforcement learning.

MLKnowledge ——»

ML Learning Expedition

Figure 1. Mastering machine learning with Python 3 in six steps



INTRODUCTION

Each topic has two parts: the first part will cover the theoretical concepts and the
second part will cover practical implementation with different Python packages. The
traditional approach of math to ML (i.e., learning all the mathematic then understanding
how to implement them to solve problems) needs a great deal of time/effort, which has
proved to be inefficient for working professionals looking to switch careers. Hence, the
focus in this book has been more on simplification, such that the theory/math behind
algorithms have been covered only to the extent required to get you started.

Irecommend that you work with the book instead of reading it. Real learning goes on
only through active participation. Hence, all the code presented in the book is available
in the form of Jupyter notebooks to enable you to try out these examples yourselves and
extend them to your advantage or interest as required later.

Who This Book Is For

This book will serve as a great resource for learning ML concepts and implementation
techniques for:

o Python developers or data engineers looking to expand their
knowledge or career into the machine learning area

e Current non-Python (R, SAS, SPSS, Matlab or any other language) ML
practitioners looking to expand their implementation skills in Python

e Novice ML practitioners looking to learn advanced topics such
as hyperparameter tuning, various ensemble techniques, natural
language processing (NLP), deep learning, and the basics of
reinforcement learning

What You Will Learn

Chapter 1, Step 1: Getting Started in Python 3 will help you to set up the environment,
and introduce you to the key concepts of Python 3 programming language relevant to
machine learning. If you are already well versed in Python 3 basics, I recommend you to
glance through the chapter quickly and move on to the next chapter.

Chapter 2, Step 2: Introduction to Machine Learning: Here you will learn about
the history, evolution and different frameworks in practice for building ML systems.



INTRODUCTION

I think this understanding is very important, as it will give you a broader perspective
and set the stage for your further expedition. You'll understand the different types of
ML (supervised/unsupervised/reinforcement learning). You will also learn the various
concepts involved in core data analysis packages (NumPy, Pandas, Matplotlib) with
example codes.

Chapter 3, Step 3: Fundamentals of Machine Learning: This chapter will expose you
to various fundamental concepts involved in feature engineering, supervised learning
(linear regression, nonlinear regression, logistic regression, time series forecasting, and
classification algorithms), and unsupervised learning (clustering techniques, dimension
reduction technique) with the help of Scikit-learn and statsmodel packages.

Chapter 4, Step 4: Model Diagnosis and Tuning: in this chapter you'll learn advanced
topics around different model diagnosis, which covers the common problems that arise
and various tuning techniques to overcome these issues to build efficient models. The
topics include choosing the correct probability cutoff, handling an imbalanced dataset,
the variance, and the bias issues. You'll also learn various tuning techniques such as
ensemble models, and hyperparameter tuning using grid/random search.

Chapter 5, Step 5: Text Mining and Recommender Systems: Statistics say 70% of
the data available in the business world is in the form of text, so text mining has vast
scope across various domains. You will learn the building blocks and basic concepts to
advanced NLP techniques. You'll also learn the recommender systems that are most
commonly used to create personalization for customers.

Chapter 6, Step 6: Deep and Reinforcement Learning: There has been a great
advancement in the area of artificial neural networks (ANNs) through deep learning
techniques, and it has been the buzzword in recent times. You'll learn various aspects
of deep learning such as multilayer perceptrons, convolutional neural networks (CNNs)
for image classification, RNNs (recurrent neural network) for text classification, and
transfer learning. You'll also use a Q-learning example to understand the concept of
reinforcement learning.

Chapter 7, Conclusion: This chapter summarizes your six-step learning and includes
quick tips that you should remember while starting with real-world machine learning
problems.

Note An appendix covering Generative Adversarial Networks (GAN) is available as
part of this book’s source code package, which can be accessed via the Download
Source Code button located at www.apress.com/9781484249468.
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CHAPTER 1

Step 1: Getting Started
in Python 3

In this chapter you will get a high-level overview about Python language and its core
philosophy, how to set up the Python 3 development environment, and the key concepts
around Python programming to get you started with basics. This chapter is an additional
step or the prerequisite step for nonPython users. If you are already comfortable with
Python,  would recommend you to quickly run through the contents to ensure you are
aware of all the key concepts.

The Best Things in Life Are Free

It's been said that “The best things in life are free!” Python is an open source, high-level,
object-oriented, interpreted, and general purpose dynamic programming language. It
has a community-based development model. Its core design theory accentuates code
readability, and its coding structure enables programmers to articulate computing
concepts in fewer lines of code compared with other high-level programming languages
such as Java, C, or C++.

The design philosophy of Python is well summarized by the document “The Zen of
Python” (Python Enhancement Proposal, information entry number 20), which includes
mottos such as:

e Beautiful is better than ugly—be consistent.
e Complex is better than complicated—use existing libraries.
o Simple is better than complex—keep it simple, stupid (KISS).

o Flatis better than nested—avoid nested ifs.

© Manohar Swamynathan 2019
M. Swamynathan, Mastering Machine Learning with Python in Six Steps,
https://doi.org/10.1007/978-1-4842-4947-5_1
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STEP 1: GETTING STARTED IN PYTHON 3

Explicit is better than implicit—be clear.
Sparse is better than dense—separate code into modules.
Readability counts—indent for easy readability.

Special cases aren’t special enough to break the rules—everything is
an object.

Errors should never pass silently—use good exception handling.
Although practicality beats purity—if required, break the rules.
Unless explicitly silenced—use error logging and traceability.

In ambiguity, refuse the temptation to guess—Python syntax is
simpler; however, many times we might take a longer time to

decipher.

Although the way may not be obvious at first—there is not only one
way of achieving something.

There should be, preferably, only one obvious way to do it—use
existing libraries.

If the implementation is hard to explain, it’s a bad idea—if you can’t
explain in simple terms, then you don’t understand it well enough.

Now is better than never—there are quick/dirty ways to get the job
done rather than trying too much to optimize.

Although never is often better than right now—although there is a
quick/dirty way, don’t head on a path that will not allow a graceful
way back.

Namespaces are one honking great idea, so let’s do more of those! Be
specific.

If the implementation is easy to explain, it may be a good idea—
simplicity is good.
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The Rising Star

Python was officially born on February 20, 1991, with version number 0.9.0. Its
application cuts across various areas such as website development, mobile apps
development, scientific and numeric computing, desktop GUI, and complex software
development. Even though Python is a more general-purpose programming and
scripting language, it has gained popularity over the past couple of years among data
engineers, scientists, and Machine Learning (ML) enthusiasts.

There are well-designed development environments such as Jupyter Notebook
and Spyder that allow for a quick examination of the data and enable developing of ML
models interactively.

Powerful modules such as NumPy and Pandas exist for the efficient use of numeric
data. Scientific computing is made easy with the SciPy package. A number of primary ML
algorithms have been efficiently implemented in scikit-learn (also known as sklearn).
HadooPy and PySpark provide a seamless work experience with big data technology
stacks. Cython and Numba modules allow executing Python code on par with the speed
of C code. Modules such as nosetest emphasize high quality, continuous integration
tests, and automatic deployment.

Combining all of these has led many ML engineers to embrace Python as the choice
of language to explore data, identify patterns, and build and deploy models to the
production environment. Most importantly, the business-friendly licenses for various
key Python packages are encouraging the collaboration of businesses and the open
source community for the benefit of both worlds. Overall, the Python programming
ecosystem allows for quick results and happy programmers. We have been seeing the
trend of developers being part of the open source community to contribute to the bug
fixes and new algorithms for use by the global community, at the same time protecting
the core IP of the respective company they work for.

Choosing Python 2.x or Python 3.x

Python version 3.0, released in December 2008, is backward incompatible. That’s
because as there was big stress from the development team stressed separating binary
data from textual data, and making all textual data automatically support Unicode so
that project teams can work with multiple languages easily. As a result, any project
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migration from 2.x to 3.x required large changes. Python 2.x originally had a scheduled
end-of-life (EOL) for 2015 but was extended for another 5 years to 2020.

Python 3 is a cutting edge, nicer and more consistent language. It is the future of
the Python language and it fixes many of the problems that are present in Python 2.
Table 1-1 shows some of the key differences.

Table 1-1. Python 2 vs. Python 3

Python 2 Python 3

& It'll retire by 2020; till then it’ll receive
updates for security and bug fixes.

It has seen great adoption in the last
two years; currently, 99.7% of key packages support

Python 3.
= - F=) - FIx)
Print is a statement. Print is a function.
Print “Hello World!” Print (“Hello World!”)
ASCII UNICODE
Strings are by default stored as ASCII. Strings are by default stored as Unicode.

2= Rounds the integer division to the @
nearest whole number Integer division returns the exact value without
rounding to the nearest whole number.

As of now, Python 3 readiness (http://py3readiness.org/) shows that 360 of the
360 top packages for Python support 3.x. It is highly recommended that we use Python
3.x for development work.


http://py3readiness.org/
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Irecommend Anaconda (Python distribution), BSD licensed, which gives you
permission to use it commercially and for redistribution. It has around 474 packages,
including the most important for most scientific applications, data analysis, and ML such
as NumPy, SciPy, Pandas, Jupyter Notebook, matplotlib, and scikit-learn. It also provides
a superior environment tool, conda, which allows you to easily switching between
environments—even between Python 2 and 3 (if required). It is also updated very
quickly as soon as a new version of a package is released; you can just do conda update
<packagename> to update it.

You can download the latest version of Anaconda from their official website
https://www.anaconda.com/distribution/ and follow the installation instructions.

To install Python, refer to the following sections.

Windows

1. Download the installer, depending on your system configuration
(32 or 64 bit).

2. Double-click the .exe file to install Anaconda and follow the
installation wizard on your screen.

0SX

For Mac OS, you can install either through the graphical installer or from the command line.

Graphical Installer

1. Download the graphical installer.

2. Double-click the downloaded .pkg file and follow the installation
wizard instructions on your screen.

Command Line Installer

1. Download the command-line installer

2. Inyour terminal window, type and follow the instructions: bash
<Anaconda3-x.x.x-MacOSX-x86_64.sh>


https://www.anaconda.com/distribution/
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Linux

1. Download the installer, depending on your system configuration.

2. Inyour terminal window, type and follow the instructions: bash
Anaconda3-x.x.x-Linux-x86_xx.sh.

From Official Website

If you don’t want to go with the Anaconda build pack, you can go to Python’s official
website waw. python.org/downloads/ and browse to appropriate OS section and
download the installer. Note that OSX and most of the Linux comes with preinstalled
Python, so there is no need for additional configuring.

When setting up a PATH for Windows, make sure to check the “Add Python to PATH
option,” when you run the installer. This will allow you to invoke Python interpreter from
any directory.

If you miss ticking the “Add Python to PATH option’, follow these steps:

1. Right click “My computer”

2. Click “Properties”

3. Click “Advanced system settings” in the side panel

4. Click “Environment Variables”

5. Click “New” below system variables.

6. Inname, enter pythonexe (or anything you want).

7. Invalue, enter the path to your Python (example: C:\Python32\).

8. Now edit the Path variable (in the system part) and add
%pythonexe%; to the end of what'’s already there.

Running Python

From the command line, type “Python” to open the interactive interpreter. A Python
script can be executed at the command line using the syntax

python <scriptname.py>.


http://www.python.org/downloads/
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Key Concepts

There are many fundamental concepts in Python, and understanding them is essential
for you to get started. The remainder of the chapter takes a concise look at them.

Python Identifiers

As the name suggests, identifiers help us to differentiate one entity from another. Python
entities such as class, functions, and variables are called identifiers.

o Itcan be a combination of upper or lower case letters (a to z or A to Z).
e It can be any digits (0 to 9) or an underscore (_).
e The general rules to be followed for writing identifiers in Python:

o It cannot start with a digit. For example, 1variable is not valid,
whereas variablel is valid.

e Python reserved keywords (refer to Table 1-2) cannot be used as
identifiers.

e Except for underscore (_), special symbols like !, @, #, $, %, etc.
cannot be part of the identifiers.

Keywords

Table 1-2 lists the set of reserved words used in Python to define the syntax and structure
of the language. Keywords are case sensitive, and all the keywords are in lowercase
except True, False, and None.

Table 1-2. Python Keywords

False class finally Is return
None continue for lambda try
True Def From nonlocal while
and Del Global Not with
as elif if or yield
assert else import pass

break except in raise
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My First Python Program

Working with Python is comparatively a lot easier than other programming languages
(Figure 1-1). Let’s look at how an example of executing a simple print statement can be
done in a single line of code. You can launch the Python interactive on the command
prompt, type the following text, and press Enter.

>>> print ("Hello, Python World!")

Python Others

[bT >>> print ("Hello, World!")

Figure 1-1. Python vs. others

Code Blocks

It is very important to understand how to write code blocks in Python. Let’s look at two
key concepts around code blocks: indentations and suites.

Indentations

One of the most unique features of Python is its use of indentation to mark blocks of
code. Each line of code must be indented by the same amount to denote a block of code
in Python. Unlike most other programming languages, indentation is not used to help
make the code look pretty. Indentation is required to indicate which block of code or
statement belongs to current program structure (see Listings 1-1 and 1-2 for examples).
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Suites

A collection of individual statements that makes a single code block are called suites
in Python. A header line followed by a suite is required for compound or complex
statements such as if, while, def, and class (we will understand each of these in detail
in the later sections). Header lines begin with a keyword, and terminate with a colon
(:) and are followed by one or more lines that make up the suite.

Listing 1-1. Example of Correct Indentation

# Correct indentation

print ("Programming is an important skill for Data Science")

print ("Statistics is an important skill for Data Science")

print ("Business domain knowledge is an important skill for Data Science")

# Correct indentation, note that if statement here is an example of suites
X =1
if x == 1:
print ('x has a value of 1)
else:
print ('x does NOT have a value of 1")

Listing 1-2. Example of Incorrect Indentation

# incorrect indentation, program will generate a syntax error
# due to the space character inserted at the beginning of the second line
print ("Programming is an important skill for Data Science")
print ("Statistics is an important skill for Data Science")
print ("Business domain knowledge is an important skill for Data Science")
3
# incorrect indentation, program will generate a syntax error
# due to the wrong indentation in the else statement
X =1
if x ==
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print ('x has a value of 1')
else:
print ('x does NOT have a value of 1")

print ("Statistics is an important skill for Data Science")

N

IndentationError: unexpected indent

Basic Object Types

Table 1-3 lists the Python object types. According to the Python data model reference,
objects are Python’s notion for data. All data in a Python program is represented by
objects or by relations between objects. In a sense, and in conformance to
Von Neumann’s model of a “stored program computer,” code is also represented
by objects.

Every object has an identity, a type, and a value. Listing 1-3 provides example code to
understand object types.

10
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Table 1-3. Python Object Types
Type Examples Comments
None None # singleton null object
Boolean True, False
Integer -1, 0, 1, sys.maxint
Long 1L, 9787L
Float 3.141592654
inf, float(‘inf’) # infinity
-inf # neg infinity
nan, float(‘nan’) # not a number
Complex 2+8j # note use of
String ‘this is a string’, “also me” # use single or double quote
r‘raw string’, u’unicode string’
Tuple empty = () # empty tuple
(1, True, ‘ML) # immutable list or unalterable list
List empty =[] empty list
[1, True, ‘ML # mutable list or alterable list
Set empty = set() # empty set
set(1, True, ‘ML) # mutable or alterable
dictionary empty ={} # mutable object or alterable object
{17A,2"AN, True = 1, False = 0}
File f = open(‘filename’, ‘rb’)

11
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Listing 1-3. Code for Basic Object Types

none = None #singleton null object
boolean = bool(True)

integer = 1

Long = 3.14

# float

Float = 3.14

Float_inf = float('inf")
Float _nan = float('nan")

# complex object type, note the usage of letter j
Complex = 2+8j

# string can be enclosed in single or double quote
string = 'this is a string'
me_also _string = "also me"

List = [1, True, 'ML'] # Values can be changed
Tuple = (1, True, 'ML') # Values can not be changed
Set = set([1,2,2,2,3,4,5,5]) # Duplicates will not be stored

# Use a dictionary when you have a set of unique keys that map to values
Dictionary = {'a':'A", 2:'AA', True:1, False:0}

# lets print the object type and the value
print (type(none), none)

print (type(boolean), boolean)

print (type(integer), integer)

print (type(Long), Long)

print (type(Float), Float)

print (type(Float inf), Float inf)

print (type(Float nan), Float nan)

print (type(Complex), Complex)

print (type(string), string)

print (type(me_also string), me also_string)
print (type(Tuple), Tuple)

12
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(type(List), List)
(type(Set), Set)
(type(Dictionary), Dictionary)

"NoneType'> None

'bool'> True

"int'> 1

"float'> 3.14

"float'> 3.14

"float'> inf

"float'> nan

"complex'> (2+87)

'str'> this is a string
'str'> also me

"tuple'> (1, True, 'ML")
"list'> [1, True, 'ML']
'set'> set([1, 2, 3, 4, 5])
"dict'> {'a': 'A', True: 1, 2: 'AA', False: 0}

When to Use List, Tuple, Set, or Dictionary

Four key, commonly used Python objects are list, tuple, set, and dictionary. It’s

important to understand when to use these, to be able to write efficient code.

List: Use when you need an ordered sequence of homogenous
collections whose values can be changed later in the program.

Tuple: Use when you need an ordered sequence of heterogeneous
collections whose values need not be changed later in the program.

Set: It is ideal for use when you don’t have to store duplicates and you
are not concerned about the order of the items. You just want to know
whether a particular value already exists or not.

Dictionary: It is ideal for use when you need to relate values with
keys, in order to look them up efficiently using a key.

13
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Comments in Python

Single line comment: Any characters followed by the # (hash) and up to the end of the
line are considered as part of the comment and the Python interpreter ignores them.

Multiline comments: Any characters between the strings (referred to as multiline
string), that is, one at the beginning and end of your comments, will be ignored by the

Python interpreter. Please refer to Listing 1-4 for a comments code example.

Listing 1-4. Example Code for Comments

# This is a single line comment in Python
print("Hello Python World") # This is also a single line comment in Python

This is an example of a multi-line
the comment that runs into multiple lines.
Everything that is in between is considered as comments

Multiline Statements

Python’s oblique line continuation inside parentheses, brackets, and braces is the
favorite way of casing longer lines. Using a backslash to indicate line continuation makes
readability better; however, if needed you can add an extra pair of parentheses around
the expression. It is important to indent the continued line of your code suitably. Note
that the preferred place to break around the binary operator is after the operator, and not
before it. Please refer to Listing 1-5 for Python code examples.

Listing 1-5. Example Code for Multiline Statements

# Example of implicit line continuation
x = ("1" + "2" +

3"+ '4")
# Example of explicit line continuation
y ="1"+"2" +\

11" + '12°

weekdays = ['Monday', 'Tuesday', 'Wednesday',

'Thursday', 'Friday']

14
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weekend = {'Saturday’',
"Sunday '}

print ('x has a value of', x)
print ('y has a value of', y)
print (weekdays)
print (weekend)

------ output -------

('x has a value of', '1234")

('y has a value of', '1234")

[ 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']
set(['Sunday', 'Saturday'])

Multiple Statements on a Single Line

Python also allows multiple statements on a single line through the usage of the
semicolon (;), given that the statement does not start a new code block. Listing 1-6
provides a code example.

Listing 1-6. Code Example for Multiple Statements on a Single Line

import os; x = 'Hello'; print (x)

Basic Operators

In Python, operators are the special symbols that can manipulate the value of operands.

For example, let’s consider the expression 1 + 2 = 3. Here, 1 and 2 are called operands,

which are the value on which operators operate, and the symbol + is called operator.
Python language supports the following types of operators:

e Arithmetic operators

o Comparison or Relational operators
e Assignment operators

o Bitwise operators

o Logical operators
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