Mastering Machine
Learning with
Python in Six Steps

A Practical Implementation Guide to
Predictive Data Analytics Using Python

Second Edition

Manohar Swamynathan

Apress:

Mastering Machine
Learning with Python
in Six Steps

A Practical Implementation Guide
to Predictive Data Analytics
Using Python

Second Edition

Manohar Swamynathan

Apress’

Mastering Machine Learning with Python in Six Steps

Manohar Swamynathan
Bangalore, Karnataka, India

ISBN-13 (pbk): 978-1-4842-4946-8 ISBN-13 (electronic): 978-1-4842-4947-5
https://doi.org/10.1007/978-1-4842-4947-5

Copyright © 2019 by Manohar Swamynathan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham

Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4946-8. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4947-5

Table of Contents

About the AUROFcccciiemrissmnmissnnmmssssssssssnssssnsssssnsesssnsessansessannesssnnesssnnesssnnssssnnssnns ix
About the Technical REVIEWETcceussesrssssssssssnsssssnsssssnssssansssssnsssssnsssssnsssssnnssssnnssssns Xi
AcknNoWIedgmentsccccuuieenmmmssssnnnmsssssnnnmssssssnnmsssssnnnssssssnnnssssssnnnsssssnnnnssssnnnnssssnnns Xiii
INtroduCtioncuvismmmsssnnmsssnnmsssnnmsssnnmsssnnssssnnssssnnnsssnnnessannessannessannesssnnesssnnssssnnssssnnnsss XV
Chapter 1: Step 1: Getting Started in Python 3............cccnnnnmmmnnnnnnnnssssssssnnmmmn. 1
The Best TRINGS i Life Are FIEEcoveeviceiresere s 1
THE RIiSING STAN.....cciceeriecireserinesire s s e e p e re e nr s 3
Choosing Python 2.X oF PYthON 3.X.....cucvvriererirsiriene s ssssesses e ssesessessessessssessessesasssssessessens 3
WINAOWS ... e se s 5

OSX . teueuerrrereussssreeas s s e s s s e e s e e e R e g e nE R E e 5
I G 6

From Official WEDSITEcoveiriririsissnssss s sas 6
RUNNING PYINON ...ttt s sa et 6

G (T 0 R 7
V(0 TN L0 Ty)T RS 7

G A0 (SRS 7

My First PYython Programcccccvieveininennninsene s ssesssssssessessesssssssessessssssssssessessssessesaens 8

00T] T 8
3T (o0] (=0] O 10
When to Use List, Tuple, Set, or DICtioNArycccocveirvnienienniensenessssesessessssessessessesessesseses 13
CommMENES iN PYINON ..ot sa e e saesaesa s nne s 14
Multiling STAatEMENTS ..o ————— 14
Multiple Statements on a SingIe LiNE........cccccvvriernnninienens e ssessssesesse s 15

3 F TS (o0 LT (0] 3RS 15
CONTIOl STIUCTUIES ..vveeecerieeresse s e e p e nr s 24

TABLE OF CONTENTS

I £ 29
170 - S 33
GBS ettt ——————————————————————— 37
D10 110 1 - R 45
User-Defined FUNCLIONScccoviieircnirssese e 51
MOGUIBS ...ttt e 55
File INPUE/OUPUL......oeceeecececer et s a e e s p e s 57

00 T=T 4T = TR 58
EXCEPtion HANAIING......cccveveierierere s serere s s ss s saesas e sae s s e ssesaess s e saesne s 59

£ 11114 7R 64
Chapter 2: Step 2: Introduction to Machine Learning..........ccccusssssnsnssssssnssssssssssasss 65
HiStory and EVOIULION ..o e 66
Artificial Intelligence EVOIULION...........cccoveircereresrn s s 70
DiIffEreNt FOIMS......uccececcrrcseree e ns e 71
Machine Learning Cat@goriescvuerrrenerrssesrmsesssesssssse s sesssse s ssssessssssesssssssssssssssssssssessnns 82
SUPErVISEd LEAINING........ccvueerererrrenerrssessssesssese s srsseses s e s sessessssssssssssssssesssssssssesesssssssnns 83
UNSUPervised LEarning.........ccuueeerieserssessnsessssesssssssssssesssssssssssessssessssssssssssssssssssssssssssssssssssnns 84
Reinforcement LEarning.......c.ccovveeernsesenenmsesesssesssese s sessesssssse s ssssssssssssssssssessessssssessans 84
Frameworks for Building ML SYSTEMSccuevvrrinienininsnene s sessessessesssssssessessesessessesaes 85
Knowledge Discovery in DAtabasescccvurernrenrnenesnsesnsesssese s sesssssssssessnnes 86
Cross-Industry Standard Process for Data Miningcccccvveernnennennnsesnsessnsesesesesessesenns 88
SEMMA (Sample, Explore, Modify, MOAEI, ASSESS)cvvrrerrererrrsensersessessssessessessessssessessesssssssessenes 91
LS 1110 - RS 91
(0] 0] SO 91
0T) OSSPSR 91
MOGEL.......ee e —————————————— L
ASSESSvucrriee et 92
Machine Learning Python PACKAQEScccvrerrererrerierenessersesessssessessessessssessessesssssssessesssssssessenses 93
Data ANalYSiS PACKAQES.......ccuvvererererrersersessesessessessessssessessesssssssessesssssssessessesssssssessessessssessenes 94
Machine Learning Core LiDrari€S......cccvverierrrerserernsessessesessssessessessssessessesssssssessesssssssessesses 142

£ 1134 7 143

iv

TABLE OF CONTENTS

Chapter 3: Step 3: Fundamentals of Machine Learning........ccccusssssnsssssssnnsssssssnnnss 145
Machine Learning Perspective of Dataccccvcvinvinininin s 145
Scales Of MEASUIEMENL...........cccocvrriecresr s 146
Feature ENQINEEIING........cccoiiirir ittt e s 149
Dealing with MisSing Data........c..cccurnririnnnnnnnsn s s ssesnes 150
Handling Categorical Data...........cccoovevirinnsnin e 150
NOrmalizing Data..........ccoeviiiiirrr e e e s 152
Feature Construction or GENErationccoeoeerrnrnrcnesnesere s 154
Supervised Learning—RegresSSionccovrrrrererneseresesnsesesesesssse s ssessssesessssessssessssesenns 163
Correlation and CAUSALIONccoveerrrererenernsesese s nrenis 165
FIittiNg @ SIOPE ...coeeeeeeee e 166
HOW GOOG IS YOUF MOGEI? ...t 168
Polynomial REQreSSIONc..ccceeruererenerieerenese e 173
Multivariate REgreSSiON.........cucveriirnnniere s s s e e 179
RegUIANZALION........covi e s 194
NONIINEAr REGIESSIONcc.ccviiirireriesinsire e e s s p e e 198
Supervised Learning=ClasSifiCation...........c.ccocvrerrenrienrnsessese e 199
LOGiStiIC REGIESSIONc.veecerecerieeressesese e res s se e s sesns e neenis 200
Evaluating a Classification Model Performance.............ccocvoeeresrnncnnnenesenesessesesesessssesennes 205
210 0 T 207
1T T T 208
Stochastic Gradient DESCENTccoeeererrrereree e 210
320 T U2 (o] T 211
Multiclass Logistic REgIreSSiON........ccucviererinninine s se s s sssssssessesnes 214
Supervised Learning—ProCess FIOW...........ccccrrrnrinerenrnsesese s e 219
DECISION TIBES ..evrueuerreerreerreerese e e s e se s e s e e s e re e e e e e nne e e s 220
Support Vector Maching ... s s sne s 226
K-Nearest NEIGNDOISccovorerererreneresesese s se s s sn s ses s sns e nsenis 230
Time-Series FOreCastingcocccvvecrerererenernsesene s ses s s s seesesensssessenens 233

TABLE OF CONTENTS

Unsupervised Learning Process FIOWccoviiririnneninsinsen s sesse s sessessssssessessenns 244
81T (=T 3o O 245
Principal Component AN@lYSiS (PCA).......cccuverrerrererererserseressssessessessesessessesssssssessesssssssessesses 257

£ 1134 7 261

Chapter 4: Step 4: Model Diagnosis and TUNINGccccurmmessnsesssssessssssssssssssssnssssas 263

Optimal Probability Cutoff POINT.........ccoreeeeeeeeee s 264
WHICH EFrOr IS COSTIY? ... e s 268

Rare Event or Imbalanced Dataset............ccovoerrenrnsnnnsenesersse s 268
Which Resampling Technique IS the Best?.........ccccvririnninininnsnsnen s 272

Bias and VAITANCEccvererersesesesessse e srs s s s e s sss e s sssssssssssnssasssesssnenns 274
5 OSSR 274
VAEIANCE. ... cvieeeeieerree s s s a e s e s e e e e e s e e Re e nr e e nennnrnRn e s 274

K-Fold Cross Validation ... s sesssssssas 276
Stratified K-fold Cross-Validationc...ccovenninrnnmnnessnse s ss e sessesenns 277

Ensemble Methods ... ———— 280
372 T o 11 o 281
Feature IMPOMANCE ... s 284
RANAOMFOIESt ..o s 285
Extremely Randomized Trees (EXIraTrEe)ccvvererrrrerrerernsenseresessssesesse e sessessesessessessesaes 285
How Does the Decision Boundary LOOK?..........cceevvrernrernnensensesessssessessessesessessesssssssessesses 286
Bagging—Essential Tuning Parameters.........ccovvvvvnnnienenensensenesss s sessessesssssssessesses 289

57005 (] 3o RS 289
Example lllustration for AdaBOOStcccvvvrvrinnrnrn s sseenes 290
Gradient BOOSTINGcveerverreririererresersere e s s s sseseese s s saesss e ssesaesaese s e saesaesssessesnesssnsssesaees 295
Boosting—Essential Tuning Parameterscccvrevvrerreniernsensensesessssessesessssessessessessssessesses 298
Xgboost (eXtreme Gradient BOOStING).......cccvrerrererrerieriennnensersesessssessessessessssessessesssssssessesses 299
Ensemble Voting—Machine Learning’s Biggest Heroes United.........c.ccocvvvvrvrierenenseniennes 304
£ [14 T RS 308

TABLE OF CONTENTS

Hyperparameter TUNING.......c.ccuveiirirnne e sse s s e s s s se s e s s sae s s e s saesae s e s s e saessenanans 312
(610 L7 (o O 312
RANAOMSEAICH ... e 314
Bayesian Optimization..........ccccveeviernirieriererserere s ses e s e sse e s e ssesaesseses e saesaesessessesaes 316
Noise Reduction for Time-Series 10T Data............cccovrrinenesnnnnnnsssessssse e 319

£ 1§14 7P 322

Chapter 5: Step 5: Text Mining and Recommender Systems........ccuccrussmnrrssnnsnnas 325

Text Mining ProCESS OVEIVIEWccceveeerererereeriecresese s e see s e se s sesse e ssssessssesessssessenens 326

Data ASSEMDIE (TEXL).....ccereeerererereserre s s 327
SOCIAI MEIA.......cceeerreerieerenese s e s ne e ne e nr s 329

Data PreprocesSing (TEXL)cuuerrresereserrnsessssesessssessssesssessssesessssessssessssssessssessssesssssssssssesessesens 334
Convert to Lower Case and TOKENIZE........cccueevreseresesessesessnsessssssessssessssssssssssssssesssssssssssssenes 334
ReMOVING NOISE......corrreerreserrnerrsesessse s s ssesesse e s se s e s s e sss s srssesnssssnsss e ssssesssssssssssessnses 336
Part of SPeech (P0S) TAGQINGcccvrererrrserrrierereserrsse s s s sesse s srs e e ssssesenns 338
B3] (=1 101 01 OSSPSR 340
LeMMAtiZALION ..o s 342
R 0 USSR 345
2 F2 1o 0 0] 0 TS 347
Term Frequency-Inverse Document Frequency (TF=IDF)ccocvvverrsnnnenenenesnsesensesensenens 350

Data EXPlOration (TEXL)ccvureremesernserensesssesessese s ssse e e sss e e se s s sessessssssessasesessesenns 351
FrequenCy CRar ... s 352
WOPH CIOUT ... s se e sr e nrnnennnennns 353
Lexical DiSPersion POt ... s s sss e sne s 354
COOCCUITENCE MALIX ...eveeeercerrese s s e ne e ne e nr s 355

MOAEI BUIIAING .cuevververieierere st sire s s s e s s st st s e e s saesne st s e nnenanns 356
TEXE SIMIIANTY . e 357
TEXE CIUSTENING ..cveerrierrecsir e sp e nrn e nnna s 359
TOPIC MOUEIING ...vueeveeereserre e r e se e sa e ne e e nne e 364
Text ClasSifiCalioN.......c.cuccvverrese e 367
SeNtIMENT ANAIYSIS ...vcueeveerirererese e sr e n e ne e nr s 369
Deep Natural Language Processing (DNLP)..........cooucvmrenmnenmsssesnsesssesssssessssesssssssssssessnses 371

vii

TABLE OF CONTENTS

WOPH2VEC ... e s e s b e e s R 373
Recommender SYSIEMS ... e e 375
Content-Based FILErNG.........cocuvrriirnienirn s e st 376
Collaborative FIiltering (CF) ...cccuicriirnicrirsserne s ss s e ses e s sesesessssessnses 377
SUMIMANY ..ttt s e e e R e e e e e R e R e e e e e Re e R e e e e e Re e Re R e e e e e Re e R e e e e e Renns 381
Chapter 6: Step 6: Deep and Reinforcement Learning.........ccciusssenmnmssssssnssssssnnnnss 383
Artificial Neural NETWOrk (ANN).....c.occoveemresernsesesesess s s sesss e s e e sessssessssessnnes 385
What Goes On Behind, When Computers Look at an Image?ccccvveererrenerssesensesessenens 386
Perceptron—Single Artificial NeUronc.ccovevrrsnnncsnsssess s sennes 387
Multilayer Perceptrons (Feedforward Neural NETWOrK)cocevneererenerenernsesensesessesenennes 390
Restricted Boltzman Machines (RBMS)ccoovrerrnrnenesnenesesesesesese s sessssesenses 396
MLP USING KBIAScvreeereeerenesessesessesesessesessesessssessssssessesessssessssesessssssssssssssesssssssnssnssssnsssenes 402
AULOBNCOUETS ... s s se e e e e s e nse e sre e e e e e nnnnnns 407
Convolutional Neural NetWork (CNN)........ccvorreerrenereeres s s sennes 414
CNN 0on MNIST DAtaSel.........ccovermrrrrerererereseressesesese e se s ses e s e ssesesessssessssessnses 423
Recurrent Neural Network (RNN)........coverrenrenernse s sss e sennes 428
Transfer LEANING ..o se e nseennsnens 433
Reinforcement LEearning.......c.cuovveeerenernsmsmsssesesesessesessesesssse s sessssssssssssssssesssssssssssssssssssssenns 438
11T 111 1T o OSSOSO 442

(T 1 0T gl T T [T T X

L S 445
Start with Questions/Hypothesis, Then Move to Data!ccccccovievniicrininnicnnnescrncenen 445
Don’t Reinvent the Wheel from SCratCh...........c.ccocvvrminnnnnnnssssessssssssese e 446
Start With SImpPIe MOTEISc..covververererr e ss e e s saesaesassessesnens 447
Focus on Feature ENGINEEIING..........ccvvriereriiniennie s sses s ssessssssessessesssssaesaessenns 447
Beware of Common ML IMPOSIEISccvcevevrieriererrrersere e sersesse s sessessessssessessesassessessesaes 448

Happy Maching LEarningcccocvveveririernin s e s s see s se s e s s s s e s e s snesnesessessaesnessenns 448

1T - 449

viil

About the Author

Manohar Swamynathan is a data science practitioner

and an avid programmer with over 14 years of experience

in various data science related areas that include: data
warehousing, business intelligence (BI), analytical tool
development, ad-hoc analysis, predictive modeling, data
science product development, consulting, formulating
strategy and executing analytics programs. He’s had a career
covering the life cycle of data across different domains such
as US mortgage banking, retail/e-commerce, insurance,

and industrial IoT. He has a bachelor’s degree with a
specialization in physics, mathematics, and computers; and a master’s degree in project
management. He’s currently living in Bengaluru, the silicon valley of India.

He’s also involved in technical review of books on data science using Python and R.

ix

About the Technical Reviewer

Jojo Moolayil is an artificial intelligence professional and
published author of three books on machine learning, deep
learning, and IoT. He is currently working with Amazon Web
Services as a Research Scientist - Al in their Vancouver, BC
office.

He was born and raised in Pune, India and graduated
from the University of Pune with a major in information
technology engineering. His passion for problem solving
and data-driven decision making led him to start a career
with Mu Sigma Inc., the world’s largest pure play analytics

provider. Here, he was responsible for developing machine
learning and decision science solutions for large complex
problems for healthcare and telecom giants. He later worked with Flutura (an IoT
Analytics startup) and General Electric with a focus on industrial Al in Bangalore, India.
In his current role with AWS, he works on researching and developing large-scale
Al solutions for combating fraud and enriching customers’ payment experience in the
cloud. He is also actively involved as a tech reviewer and Al consultant with leading
publishers, and has reviewed more than a dozen books on machine learning, deep
learning, and business analytics.
You can reach out to Jojo at

o www.jojomoolayil.com/
o www.linkedin.com/in/jojo62000

o https://twitter.com/jojo62000

http://www.jojomoolayil.com/
http://www.linkedin.com/in/jojo62000
https://twitter.com/jojo62000

Acknowledgments

I'm grateful to my mom, dad, and loving brother. I thank my wife Usha and son Jivin for
providing me the space to write this book. I would like to express my gratitude to my
colleagues/friends from current/previous organizations for their inputs, inspiration,
and support. Thanks to Jojo for the encouragement to write this book and his technical
review inputs. Big thanks to the Apress team for their constant support and help.

I'would like to express my gratitude for the encouragement received from Ajit Jaokar.

Thanks for the input, feedback both positive and constructive provided by readers of
the first edition of this book.

Finally, I would like to thank YOU, for showing an interest in this book and I sincerely
hope to help your machine learning quest.

xiii

Introduction

This book is your practical guide to moving from novice to master in machine learning
(ML) with Python 3 in six steps. The six steps path has been designed based on the

“six degrees of separation” theory, which states that everyone and everything is a
maximum of six steps away. Note that the theory deals with the quality of connections,
rather than their existence. So a great effort has been taken to design an eminent yet
simple six steps covering fundamentals to advanced topics gradually, to help a beginner
walk his/her way from no or least knowledge of ML in Python all the way to becoming

a master practitioner. This book is also helpful for current ML practitioners to learn
advanced topics such as hyperparameter tuning, various ensemble techniques, natural
language processing (NLP), deep learning, and the basics of reinforcement learning.

MLKnowledge ——»

ML Learning Expedition

Figure 1. Mastering machine learning with Python 3 in six steps

INTRODUCTION

Each topic has two parts: the first part will cover the theoretical concepts and the
second part will cover practical implementation with different Python packages. The
traditional approach of math to ML (i.e., learning all the mathematic then understanding
how to implement them to solve problems) needs a great deal of time/effort, which has
proved to be inefficient for working professionals looking to switch careers. Hence, the
focus in this book has been more on simplification, such that the theory/math behind
algorithms have been covered only to the extent required to get you started.

Irecommend that you work with the book instead of reading it. Real learning goes on
only through active participation. Hence, all the code presented in the book is available
in the form of Jupyter notebooks to enable you to try out these examples yourselves and
extend them to your advantage or interest as required later.

Who This Book Is For

This book will serve as a great resource for learning ML concepts and implementation
techniques for:

o Python developers or data engineers looking to expand their
knowledge or career into the machine learning area

e Current non-Python (R, SAS, SPSS, Matlab or any other language) ML
practitioners looking to expand their implementation skills in Python

e Novice ML practitioners looking to learn advanced topics such
as hyperparameter tuning, various ensemble techniques, natural
language processing (NLP), deep learning, and the basics of
reinforcement learning

What You Will Learn

Chapter 1, Step 1: Getting Started in Python 3 will help you to set up the environment,
and introduce you to the key concepts of Python 3 programming language relevant to
machine learning. If you are already well versed in Python 3 basics, I recommend you to
glance through the chapter quickly and move on to the next chapter.

Chapter 2, Step 2: Introduction to Machine Learning: Here you will learn about
the history, evolution and different frameworks in practice for building ML systems.

INTRODUCTION

I think this understanding is very important, as it will give you a broader perspective
and set the stage for your further expedition. You'll understand the different types of
ML (supervised/unsupervised/reinforcement learning). You will also learn the various
concepts involved in core data analysis packages (NumPy, Pandas, Matplotlib) with
example codes.

Chapter 3, Step 3: Fundamentals of Machine Learning: This chapter will expose you
to various fundamental concepts involved in feature engineering, supervised learning
(linear regression, nonlinear regression, logistic regression, time series forecasting, and
classification algorithms), and unsupervised learning (clustering techniques, dimension
reduction technique) with the help of Scikit-learn and statsmodel packages.

Chapter 4, Step 4: Model Diagnosis and Tuning: in this chapter you'll learn advanced
topics around different model diagnosis, which covers the common problems that arise
and various tuning techniques to overcome these issues to build efficient models. The
topics include choosing the correct probability cutoff, handling an imbalanced dataset,
the variance, and the bias issues. You'll also learn various tuning techniques such as
ensemble models, and hyperparameter tuning using grid/random search.

Chapter 5, Step 5: Text Mining and Recommender Systems: Statistics say 70% of
the data available in the business world is in the form of text, so text mining has vast
scope across various domains. You will learn the building blocks and basic concepts to
advanced NLP techniques. You'll also learn the recommender systems that are most
commonly used to create personalization for customers.

Chapter 6, Step 6: Deep and Reinforcement Learning: There has been a great
advancement in the area of artificial neural networks (ANNs) through deep learning
techniques, and it has been the buzzword in recent times. You'll learn various aspects
of deep learning such as multilayer perceptrons, convolutional neural networks (CNNs)
for image classification, RNNs (recurrent neural network) for text classification, and
transfer learning. You'll also use a Q-learning example to understand the concept of
reinforcement learning.

Chapter 7, Conclusion: This chapter summarizes your six-step learning and includes
quick tips that you should remember while starting with real-world machine learning
problems.

Note An appendix covering Generative Adversarial Networks (GAN) is available as
part of this book’s source code package, which can be accessed via the Download
Source Code button located at www.apress.com/9781484249468.

xvii

https://www.apress.com/9781484249468

CHAPTER 1

Step 1: Getting Started
in Python 3

In this chapter you will get a high-level overview about Python language and its core
philosophy, how to set up the Python 3 development environment, and the key concepts
around Python programming to get you started with basics. This chapter is an additional
step or the prerequisite step for nonPython users. If you are already comfortable with
Python, would recommend you to quickly run through the contents to ensure you are
aware of all the key concepts.

The Best Things in Life Are Free

It's been said that “The best things in life are free!” Python is an open source, high-level,
object-oriented, interpreted, and general purpose dynamic programming language. It
has a community-based development model. Its core design theory accentuates code
readability, and its coding structure enables programmers to articulate computing
concepts in fewer lines of code compared with other high-level programming languages
such as Java, C, or C++.

The design philosophy of Python is well summarized by the document “The Zen of
Python” (Python Enhancement Proposal, information entry number 20), which includes
mottos such as:

e Beautiful is better than ugly—be consistent.
e Complex is better than complicated—use existing libraries.
o Simple is better than complex—keep it simple, stupid (KISS).

o Flatis better than nested—avoid nested ifs.

© Manohar Swamynathan 2019
M. Swamynathan, Mastering Machine Learning with Python in Six Steps,
https://doi.org/10.1007/978-1-4842-4947-5_1

CHAPTER 1

STEP 1: GETTING STARTED IN PYTHON 3

Explicit is better than implicit—be clear.
Sparse is better than dense—separate code into modules.
Readability counts—indent for easy readability.

Special cases aren’t special enough to break the rules—everything is
an object.

Errors should never pass silently—use good exception handling.
Although practicality beats purity—if required, break the rules.
Unless explicitly silenced—use error logging and traceability.

In ambiguity, refuse the temptation to guess—Python syntax is
simpler; however, many times we might take a longer time to

decipher.

Although the way may not be obvious at first—there is not only one
way of achieving something.

There should be, preferably, only one obvious way to do it—use
existing libraries.

If the implementation is hard to explain, it’s a bad idea—if you can’t
explain in simple terms, then you don’t understand it well enough.

Now is better than never—there are quick/dirty ways to get the job
done rather than trying too much to optimize.

Although never is often better than right now—although there is a
quick/dirty way, don’t head on a path that will not allow a graceful
way back.

Namespaces are one honking great idea, so let’s do more of those! Be
specific.

If the implementation is easy to explain, it may be a good idea—
simplicity is good.

CHAPTER 1 STEP 1: GETTING STARTED IN PYTHON 3

The Rising Star

Python was officially born on February 20, 1991, with version number 0.9.0. Its
application cuts across various areas such as website development, mobile apps
development, scientific and numeric computing, desktop GUI, and complex software
development. Even though Python is a more general-purpose programming and
scripting language, it has gained popularity over the past couple of years among data
engineers, scientists, and Machine Learning (ML) enthusiasts.

There are well-designed development environments such as Jupyter Notebook
and Spyder that allow for a quick examination of the data and enable developing of ML
models interactively.

Powerful modules such as NumPy and Pandas exist for the efficient use of numeric
data. Scientific computing is made easy with the SciPy package. A number of primary ML
algorithms have been efficiently implemented in scikit-learn (also known as sklearn).
HadooPy and PySpark provide a seamless work experience with big data technology
stacks. Cython and Numba modules allow executing Python code on par with the speed
of C code. Modules such as nosetest emphasize high quality, continuous integration
tests, and automatic deployment.

Combining all of these has led many ML engineers to embrace Python as the choice
of language to explore data, identify patterns, and build and deploy models to the
production environment. Most importantly, the business-friendly licenses for various
key Python packages are encouraging the collaboration of businesses and the open
source community for the benefit of both worlds. Overall, the Python programming
ecosystem allows for quick results and happy programmers. We have been seeing the
trend of developers being part of the open source community to contribute to the bug
fixes and new algorithms for use by the global community, at the same time protecting
the core IP of the respective company they work for.

Choosing Python 2.x or Python 3.x

Python version 3.0, released in December 2008, is backward incompatible. That’s
because as there was big stress from the development team stressed separating binary
data from textual data, and making all textual data automatically support Unicode so
that project teams can work with multiple languages easily. As a result, any project

CHAPTER 1 STEP 1: GETTING STARTED IN PYTHON 3

migration from 2.x to 3.x required large changes. Python 2.x originally had a scheduled
end-of-life (EOL) for 2015 but was extended for another 5 years to 2020.

Python 3 is a cutting edge, nicer and more consistent language. It is the future of
the Python language and it fixes many of the problems that are present in Python 2.
Table 1-1 shows some of the key differences.

Table 1-1. Python 2 vs. Python 3

Python 2 Python 3

& It'll retire by 2020; till then it’ll receive
updates for security and bug fixes.

It has seen great adoption in the last
two years; currently, 99.7% of key packages support

Python 3.
= - F=) - FIx)
Print is a statement. Print is a function.
Print “Hello World!” Print (“Hello World!”)
ASCII UNICODE
Strings are by default stored as ASCII. Strings are by default stored as Unicode.

2= Rounds the integer division to the @
nearest whole number Integer division returns the exact value without
rounding to the nearest whole number.

As of now, Python 3 readiness (http://py3readiness.org/) shows that 360 of the
360 top packages for Python support 3.x. It is highly recommended that we use Python
3.x for development work.

http://py3readiness.org/

CHAPTER 1 STEP 1: GETTING STARTED IN PYTHON 3

Irecommend Anaconda (Python distribution), BSD licensed, which gives you
permission to use it commercially and for redistribution. It has around 474 packages,
including the most important for most scientific applications, data analysis, and ML such
as NumPy, SciPy, Pandas, Jupyter Notebook, matplotlib, and scikit-learn. It also provides
a superior environment tool, conda, which allows you to easily switching between
environments—even between Python 2 and 3 (if required). It is also updated very
quickly as soon as a new version of a package is released; you can just do conda update
<packagename> to update it.

You can download the latest version of Anaconda from their official website
https://www.anaconda.com/distribution/ and follow the installation instructions.

To install Python, refer to the following sections.

Windows

1. Download the installer, depending on your system configuration
(32 or 64 bit).

2. Double-click the .exe file to install Anaconda and follow the
installation wizard on your screen.

0SX

For Mac OS, you can install either through the graphical installer or from the command line.

Graphical Installer

1. Download the graphical installer.

2. Double-click the downloaded .pkg file and follow the installation
wizard instructions on your screen.

Command Line Installer

1. Download the command-line installer

2. Inyour terminal window, type and follow the instructions: bash
<Anaconda3-x.x.x-MacOSX-x86_64.sh>

https://www.anaconda.com/distribution/

CHAPTER 1 STEP 1: GETTING STARTED IN PYTHON 3

Linux

1. Download the installer, depending on your system configuration.

2. Inyour terminal window, type and follow the instructions: bash
Anaconda3-x.x.x-Linux-x86_xx.sh.

From Official Website

If you don’t want to go with the Anaconda build pack, you can go to Python’s official
website waw. python.org/downloads/ and browse to appropriate OS section and
download the installer. Note that OSX and most of the Linux comes with preinstalled
Python, so there is no need for additional configuring.

When setting up a PATH for Windows, make sure to check the “Add Python to PATH
option,” when you run the installer. This will allow you to invoke Python interpreter from
any directory.

If you miss ticking the “Add Python to PATH option’, follow these steps:

1. Right click “My computer”

2. Click “Properties”

3. Click “Advanced system settings” in the side panel

4. Click “Environment Variables”

5. Click “New” below system variables.

6. Inname, enter pythonexe (or anything you want).

7. Invalue, enter the path to your Python (example: C:\Python32\).

8. Now edit the Path variable (in the system part) and add
%pythonexe%; to the end of what'’s already there.

Running Python

From the command line, type “Python” to open the interactive interpreter. A Python
script can be executed at the command line using the syntax

python <scriptname.py>.

http://www.python.org/downloads/

CHAPTER 1 STEP 1: GETTING STARTED IN PYTHON 3

Key Concepts

There are many fundamental concepts in Python, and understanding them is essential
for you to get started. The remainder of the chapter takes a concise look at them.

Python Identifiers

As the name suggests, identifiers help us to differentiate one entity from another. Python
entities such as class, functions, and variables are called identifiers.

o Itcan be a combination of upper or lower case letters (a to z or A to Z).
e It can be any digits (0 to 9) or an underscore (_).
e The general rules to be followed for writing identifiers in Python:

o It cannot start with a digit. For example, 1variable is not valid,
whereas variablel is valid.

e Python reserved keywords (refer to Table 1-2) cannot be used as
identifiers.

e Except for underscore (_), special symbols like !, @, #, $, %, etc.
cannot be part of the identifiers.

Keywords

Table 1-2 lists the set of reserved words used in Python to define the syntax and structure
of the language. Keywords are case sensitive, and all the keywords are in lowercase
except True, False, and None.

Table 1-2. Python Keywords

False class finally Is return
None continue for lambda try
True Def From nonlocal while
and Del Global Not with
as elif if or yield
assert else import pass

break except in raise

CHAPTER 1 STEP 1: GETTING STARTED IN PYTHON 3

My First Python Program

Working with Python is comparatively a lot easier than other programming languages
(Figure 1-1). Let’s look at how an example of executing a simple print statement can be
done in a single line of code. You can launch the Python interactive on the command
prompt, type the following text, and press Enter.

>>> print ("Hello, Python World!")

Python Others

[bT >>> print ("Hello, World!")

Figure 1-1. Python vs. others

Code Blocks

It is very important to understand how to write code blocks in Python. Let’s look at two
key concepts around code blocks: indentations and suites.

Indentations

One of the most unique features of Python is its use of indentation to mark blocks of
code. Each line of code must be indented by the same amount to denote a block of code
in Python. Unlike most other programming languages, indentation is not used to help
make the code look pretty. Indentation is required to indicate which block of code or
statement belongs to current program structure (see Listings 1-1 and 1-2 for examples).

CHAPTER 1 STEP 1: GETTING STARTED IN PYTHON 3

Suites

A collection of individual statements that makes a single code block are called suites
in Python. A header line followed by a suite is required for compound or complex
statements such as if, while, def, and class (we will understand each of these in detail
in the later sections). Header lines begin with a keyword, and terminate with a colon
(:) and are followed by one or more lines that make up the suite.

Listing 1-1. Example of Correct Indentation

Correct indentation

print ("Programming is an important skill for Data Science")

print ("Statistics is an important skill for Data Science")

print ("Business domain knowledge is an important skill for Data Science")

Correct indentation, note that if statement here is an example of suites
X =1
if x == 1:
print ('x has a value of 1)
else:
print ('x does NOT have a value of 1")

Listing 1-2. Example of Incorrect Indentation

incorrect indentation, program will generate a syntax error
due to the space character inserted at the beginning of the second line
print ("Programming is an important skill for Data Science")
print ("Statistics is an important skill for Data Science")
print ("Business domain knowledge is an important skill for Data Science")
3
incorrect indentation, program will generate a syntax error
due to the wrong indentation in the else statement
X =1
if x ==

CHAPTER 1 STEP 1: GETTING STARTED IN PYTHON 3

print ('x has a value of 1')
else:
print ('x does NOT have a value of 1")

print ("Statistics is an important skill for Data Science")

N

IndentationError: unexpected indent

Basic Object Types

Table 1-3 lists the Python object types. According to the Python data model reference,
objects are Python’s notion for data. All data in a Python program is represented by
objects or by relations between objects. In a sense, and in conformance to
Von Neumann’s model of a “stored program computer,” code is also represented
by objects.

Every object has an identity, a type, and a value. Listing 1-3 provides example code to
understand object types.

10

CHAPTER 1 STEP 1: GETTING STARTED IN PYTHON 3
Table 1-3. Python Object Types
Type Examples Comments
None None # singleton null object
Boolean True, False
Integer -1, 0, 1, sys.maxint
Long 1L, 9787L
Float 3.141592654
inf, float(‘inf’) # infinity
-inf # neg infinity
nan, float(‘nan’) # not a number
Complex 2+8j # note use of
String ‘this is a string’, “also me” # use single or double quote
r‘raw string’, u’unicode string’
Tuple empty = () # empty tuple
(1, True, ‘ML) # immutable list or unalterable list
List empty =[] empty list
[1, True, ‘ML # mutable list or alterable list
Set empty = set() # empty set
set(1, True, ‘ML) # mutable or alterable
dictionary empty ={} # mutable object or alterable object
{17A,2"AN, True = 1, False = 0}
File f = open(‘filename’, ‘rb’)

11

CHAPTER 1 STEP 1: GETTING STARTED IN PYTHON 3

Listing 1-3. Code for Basic Object Types

none = None #singleton null object
boolean = bool(True)

integer = 1

Long = 3.14

float

Float = 3.14

Float_inf = float('inf")
Float _nan = float('nan")

complex object type, note the usage of letter j
Complex = 2+8j

string can be enclosed in single or double quote
string = 'this is a string'
me_also _string = "also me"

List = [1, True, 'ML'] # Values can be changed
Tuple = (1, True, 'ML') # Values can not be changed
Set = set([1,2,2,2,3,4,5,5]) # Duplicates will not be stored

Use a dictionary when you have a set of unique keys that map to values
Dictionary = {'a':'A", 2:'AA', True:1, False:0}

lets print the object type and the value
print (type(none), none)

print (type(boolean), boolean)

print (type(integer), integer)

print (type(Long), Long)

print (type(Float), Float)

print (type(Float inf), Float inf)

print (type(Float nan), Float nan)

print (type(Complex), Complex)

print (type(string), string)

print (type(me_also string), me also_string)
print (type(Tuple), Tuple)

12

CHAPTER 1 STEP 1: GETTING STARTED IN PYTHON 3

(type(List), List)
(type(Set), Set)
(type(Dictionary), Dictionary)

"NoneType'> None

'bool'> True

"int'> 1

"float'> 3.14

"float'> 3.14

"float'> inf

"float'> nan

"complex'> (2+87)

'str'> this is a string
'str'> also me

"tuple'> (1, True, 'ML")
"list'> [1, True, 'ML']
'set'> set([1, 2, 3, 4, 5])
"dict'> {'a': 'A', True: 1, 2: 'AA', False: 0}

When to Use List, Tuple, Set, or Dictionary

Four key, commonly used Python objects are list, tuple, set, and dictionary. It’s

important to understand when to use these, to be able to write efficient code.

List: Use when you need an ordered sequence of homogenous
collections whose values can be changed later in the program.

Tuple: Use when you need an ordered sequence of heterogeneous
collections whose values need not be changed later in the program.

Set: It is ideal for use when you don’t have to store duplicates and you
are not concerned about the order of the items. You just want to know
whether a particular value already exists or not.

Dictionary: It is ideal for use when you need to relate values with
keys, in order to look them up efficiently using a key.

13

CHAPTER 1 STEP 1: GETTING STARTED IN PYTHON 3

Comments in Python

Single line comment: Any characters followed by the # (hash) and up to the end of the
line are considered as part of the comment and the Python interpreter ignores them.

Multiline comments: Any characters between the strings (referred to as multiline
string), that is, one at the beginning and end of your comments, will be ignored by the

Python interpreter. Please refer to Listing 1-4 for a comments code example.

Listing 1-4. Example Code for Comments

This is a single line comment in Python
print("Hello Python World") # This is also a single line comment in Python

This is an example of a multi-line
the comment that runs into multiple lines.
Everything that is in between is considered as comments

Multiline Statements

Python’s oblique line continuation inside parentheses, brackets, and braces is the
favorite way of casing longer lines. Using a backslash to indicate line continuation makes
readability better; however, if needed you can add an extra pair of parentheses around
the expression. It is important to indent the continued line of your code suitably. Note
that the preferred place to break around the binary operator is after the operator, and not
before it. Please refer to Listing 1-5 for Python code examples.

Listing 1-5. Example Code for Multiline Statements

Example of implicit line continuation
x = ("1" + "2" +

3"+ '4")
Example of explicit line continuation
y ="1"+"2" +\

11" + '12°

weekdays = ['Monday', 'Tuesday', 'Wednesday',

'Thursday', 'Friday']

14

CHAPTER 1 STEP 1: GETTING STARTED IN PYTHON 3

weekend = {'Saturday’',
"Sunday '}

print ('x has a value of', x)
print ('y has a value of', y)
print (weekdays)
print (weekend)

------ output -------

('x has a value of', '1234")

('y has a value of', '1234")

['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']
set(['Sunday', 'Saturday'])

Multiple Statements on a Single Line

Python also allows multiple statements on a single line through the usage of the
semicolon (;), given that the statement does not start a new code block. Listing 1-6
provides a code example.

Listing 1-6. Code Example for Multiple Statements on a Single Line

import os; x = 'Hello'; print (x)

Basic Operators

In Python, operators are the special symbols that can manipulate the value of operands.

For example, let’s consider the expression 1 + 2 = 3. Here, 1 and 2 are called operands,

which are the value on which operators operate, and the symbol + is called operator.
Python language supports the following types of operators:

e Arithmetic operators

o Comparison or Relational operators
e Assignment operators

o Bitwise operators

o Logical operators

15

