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Preface

The Handbook of Diagnostic Classification Models represents a collection of chap-
ters reviewing diagnostic models, their applications, and descriptions of software
tool, written by leading experts in the field. This volume covers most (one can never
claim completeness) of the current major modeling families and approaches as well
as provides a resource that can be used for self-study, teaching, or research that
applies or extends the materials included in the book.

While virtually any project of this type takes longer than expected, and many will
be tempted to remind us that Murphy’s law strikes almost surely, we were amazed
by the willingness of all contributors to put in the hours to finish their chapters and
to review other chapters and, finally, to revise their contributions in order to help
putting together a coherent volume. We hope that this process, together with some
occasional assistance from the editors and the publisher, helped to compile a multi-
authored work together that covers most aspects of doing research around diagnostic
modeling.

We also want to remind readers as well as ourselves of colleagues who passed
away and who leave a void in the research community. We lost Kikumi Tatsuoka, of
whom one can truthfully say that her rule space approach is one of the major roots,
maybe even the most important one, of this field. In her long career, she shaped
many aspects of diagnostic modeling, and we should recall that, among these, the
Q-matrix is one of the central building blocks present in the vast majority of these
methods. The rule space method is described along with other early approaches in
Chap. 1.

We furthermore would like to remember Lou DiBello, who made important
contributions to the field, notably in his modified rule space work, and his work
on the unified model together with colleagues. The work around extensions of the
unified model is described in Chap. 3. We also want to remind readers of Wen-
Chung Wang who just recently passed away. Wen-Chung and his coauthors worked
on many topics around diagnostic models and other psychometric approaches. His
work around DIF methods for use with diagnostic modeling approaches is found in
Chap. 18. We hope that the friends we lost would have liked this volume.

v
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vi Preface

Ending on a more positive note: working in a dynamic field that produces
new knowledge every day, we are aware that the handbook is one stepping stone
on the long path to fully understanding the potential of these powerful modeling
approaches. We are expecting to see books that extend the material we have put
together here; moreover, we expect to see this handbook be replaced or superseded
by a new edition in a couple of years. If we are lucky, we may be involved in putting
together some of the chapters of these future collections describing what will then
be the state of the art in diagnostic modeling.

Philadelphia, PA, USA Matthias von Davier
New York, NY, USA Young-Sun Lee



Contents

1 Introduction: From Latent Classes to Cognitive
Diagnostic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Matthias von Davier and Young-Sun Lee

Part I Approaches to Cognitive Diagnosis

2 Nonparametric Item Response Theory and Mokken Scale
Analysis, with Relations to Latent Class Models and Cognitive
Diagnostic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
L. Andries van der Ark, Gina Rossi, and Klaas Sijtsma

3 The Reparameterized Unified Model System: A Diagnostic
Assessment Modeling Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
William Stout, Robert Henson, Lou DiBello, and Benjamin Shear

4 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Russell G. Almond and Juan-Diego Zapata-Rivera

5 Nonparametric Methods in Cognitively Diagnostic Assessment . . . . . . 107
Chia-Yi Chiu and Hans-Friedrich Köhn

6 The General Diagnostic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Matthias von Davier

7 The G-DINA Model Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Jimmy de la Torre and Nathan D. Minchen

8 Loglinear Cognitive Diagnostic Model (LCDM) . . . . . . . . . . . . . . . . . . . . . . . . 171
Robert Henson and Jonathan L. Templin

9 Diagnostic Modeling of Skill Hierarchies and Cognitive
Processes with MLTM-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Susan E. Embretson

vii



viii Contents

10 Explanatory Cognitive Diagnostic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Yoon Soo Park and Young-Sun Lee

11 Insights from Reparameterized DINA and Beyond. . . . . . . . . . . . . . . . . . . . . 223
Lawrence T. DeCarlo

Part II Special Topics

12 Q-Matrix Learning via Latent Variable Selection
and Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Jingchen Liu and Hyeon-Ah Kang

13 Global- and Item-Level Model Fit Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Zhuangzhuang Han and Matthew S. Johnson

14 Exploratory Data Analysis for Cognitive Diagnosis: Stochastic
Co-blockmodel and Spectral Co-clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Yunxiao Chen and Xiaoou Li

15 Recent Developments in Cognitive Diagnostic Computerized
Adaptive Testing (CD-CAT): A Comprehensive Review . . . . . . . . . . . . . . . 307
Xiaofeng Yu, Ying Cheng, and Hua-Hua Chang

16 Identifiability and Cognitive Diagnosis Models . . . . . . . . . . . . . . . . . . . . . . . . . 333
Gongjun Xu

17 Measures of Agreement: Reliability, Classification Accuracy,
and Classification Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Sandip Sinharay and Matthew S. Johnson

18 Differential Item Functioning in Diagnostic Classification Models . . . 379
Xue-Lan Qiu, Xiaomin Li, and Wen-Chung Wang

19 Bifactor MIRT as an Appealing and Related Alternative
to CDMs in the Presence of Skill Attribute Continuity. . . . . . . . . . . . . . . . . 395
Daniel M. Bolt

Part III Applications

20 Utilizing Process Data for Cognitive Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Hong Jiao, Dandan Liao, and Peida Zhan

21 Application of Cognitive Diagnostic Models to Learning
and Assessment Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
Benjamin Deonovic, Pravin Chopade, Michael Yudelson,
Jimmy de la Torre, and Alina A. von Davier

22 CDMs in Vocational Education: Assessment and Usage
of Diagnostic Problem-Solving Strategies in Car Mechatronics. . . . . . . 461
Stephan Abele and Matthias von Davier



Contents ix

23 Applying the General Diagnostic Model to Proficiency Data
from a National Skills Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
Xueli Xu and Matthias von Davier

24 Reduced Reparameterized Unified Model Applied to Learning
Spatial Rotation Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
Susu Zhang, Jeff Douglas, Shiyu Wang,
and Steven Andrew Culpepper

25 How to Conduct a Study with Diagnostic Models. . . . . . . . . . . . . . . . . . . . . . . 525
Young-Sun Lee and Diego A. Luna-Bazaldua

Part IV Software, Data, and Tools

26 The R Package CDM for Diagnostic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 549
Alexander Robitzsch and Ann Cathrice George

27 Diagnostic Classification Modeling with flexMIRT . . . . . . . . . . . . . . . . . . . . . 573
Li Cai and Carrie R. Houts

28 Using Mplus to Estimate the Log-Linear Cognitive
Diagnosis Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
Meghan Fager, Jesse Pace, and Jonathan L. Templin

29 Cognitive Diagnosis Modeling Using the GDINA R Package . . . . . . . . . . 593
Wenchao Ma

30 GDM Software mdltm Including Parallel EM Algorithm . . . . . . . . . . . . . . 603
Lale Khorramdel, Hyo Jeong Shin, and Matthias von Davier

31 Estimating CDMs Using MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
Xiang Liu and Matthew S. Johnson

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647



Contributors

Stephan Abele Institute of Vocational Education and Vocational Didactics, Tech-
nische Universität Dresden, Dresden, Germany

Russell G. Almond Department of Educational Psychology and Learning Sys-
tems, Florida State University, Tallahassee, FL, USA

Daniel M. Bolt Department of Educational Psychology, University of Wisconsin –
Madison, Madison, WI, USA

Li Cai University of California, Los Angeles, CA, USA

Vector Psychometric Group, LLC, Chapel Hill, NC, USA

Hua-Hua Chang Department of Educational Studies, Purdue University, IN, USA

Yunxiao Chen London School of Economics and Political Science, London, UK

Ying Cheng Department of Psychology, University of Notre Dame, Notre Dame,
IN, USA

Chia-Yi Chiu Department of Educational Psychology, Rutgers, The State Univer-
sity of New Jersey, New Brunswick, NJ, USA

Pravin Chopade ACTNext ACT Inc., Iowa City, IA, USA

Steven Andrew Culpepper Department of Statistics, University of Illinois at
Urbana-Champaign, Champaign, IL, USA

Jimmy de la Torre Division of Learning, Development and Diversity, University
of Hong Kong, Hong Kong, China

Lawrence T. DeCarlo Department of Human Development, Teachers College,
Columbia University, New York, NY, USA

Benjamin Deonovic ACTNext ACT Inc., Iowa City, IA, USA

xi



xii Contributors

Lou DiBello Department of Statistics, University of Illinois at Urbana-Champaign,
Urbana, IL, USA

Jeff Douglas Department of Statistics, University of Illinois at Urbana-Champaign,
Champaign, IL, USA

Susan E. Embretson School of Psychology, Georgia Institute of Technology,
Atlanta, GA, USA

Meghan Fager National University, Precision Institute, La Jolla, CA, USA

Ann Cathrice George Federal Institute for Educational Research, Innovation and
Development of the Austrian School System, Salzburg, Austria

Zhuangzhuang Han Department of Human Development, Teachers College,
Columbia University, New York, NY, USA

Robert Henson Educational Research Methodology (ERM) Department, The
University of North Carolina at Greensboro, Greensboro, NC, USA

Carrie R. Houts Vector Psychometric Group, LLC, Chapel Hill, NC, USA

Hong Jiao Department of Human Development and Quantitative Methodology,
University of Maryland, College Park, MD, USA

Matthew S. Johnson Educational Testing Service, Princeton, NJ, USA

Hyeon-Ah Kang Department of Educational Psychology, University of Texas,
Austin, TX, USA

Lale Khorramdel National Board of Medical Examiners (NBME), Philadelphia,
PA, USA

Hans-Friedrich Köhn Department of Psychology, University of Illinois at Urbana-
Champaign, Champaign, IL, USA

Young-Sun Lee Teachers College, Columbia University, New York, NY, USA

Xiaomin Li The University of Hong Kong, Pokfulam, Hong Kong

Xiaoou Li School of Statistics, University of Minnesota, Minneapolis, MN, USA

Dandan Liao American Institutes for Research, Washington, DC, USA

Jingchen Liu Department of Statistics, Columbia University, New York, NY, USA

Xiang Liu Department of Human Development, Teachers College, Columbia
University, New York, NY, USA

Diego A. Luna-Bazaldua School of Psychology, National Autonomous University
of Mexico, Mexico City, Mexico

Wenchao Ma The University of Alabama, Tuscaloosa, AL, USA

Nathan D. Minchen Pearson, Bronx, NY, USA



Contributors xiii

Jesse Pace University of Kansas, Lawrence, KS, USA

Yoon Soo Park Department of Medical Education, College of Medicine, Univer-
sity of Illinois at Chicago, Chicago, IL, USA

Xue-Lan Qiu The University of Hong Kong, Pokfulam, Hong Kong

Alexander Robitzsch Department of Educational Measurement, IPN Leibniz
Institute for Science and Mathematics Education, Kiel, Germany

Centre for International Student Assessment, Munich, Germany

Gina Rossi Research Group Personality and Psychopathology, Vrije Universiteit
Brussel, Brussels, Belgium

Benjamin Shear Research and Evaluation Methodology, University of Colorado,
Boulder, CO, USA

Hyo Jeong Shin Educational Testing Service, Princeton, NJ, USA

Klaas Sijtsma Department of Methodology and Statistics, TSB, Tilburg Univer-
sity, Tilburg, The Netherlands

Sandip Sinharay Educational Testing Service, Princeton, NJ, USA

William Stout Department of Statistics, University of Illinois at Urbana-
Champaign, Urbana, IL, USA

Jonathan L. Templin Educational Measurement and Statistics Program, Univer-
sity of Iowa, Iowa City, IA, USA

L. Andries van der Ark Research Institute of Child Development and Education,
University of Amsterdam, Amsterdam, The Netherlands

Alina A. von Davier ACTNext ACT Inc., Iowa City, IA, USA

Matthias von Davier National Board of Medical Examiners (NBME), Philadel-
phia, PA, USA

Shiyu Wang Department of Educational Psychology, University of Georgia,
Athens, GA, USA

Wen-Chung Wang The University of Hong Kong, Pokfulam, Hong Kong

Gongjun Xu Department of Statistics, University of Michigan, Ann Arbor, MI,
USA

Xueli Xu Educational Testing Service, Princeton, NJ, USA



xiv Contributors

Xiaofeng Yu Department of Psychology, University of Notre Dame, Notre Dame,
IN, USA

Jiangxi Normal University, Nanchang, China

Michael Yudelson ACTNext ACT Inc., Iowa City, IA, USA

Juan-Diego Zapata-Rivera Educational Testing Service, Princeton, NJ, USA

Peida Zhan Department of Psychology, College of Teacher Education, Zhejiang
Normal University, Zhejiang, China

Susu Zhang Department of Statistics, Columbia University, New York, NY, USA



Chapter 1
Introduction: From Latent Classes
to Cognitive Diagnostic Models

Matthias von Davier and Young-Sun Lee

Abstract This chapter provides historical and structural context for models and
approaches presented in this volume, by presenting an overview of important
predecessors of diagnostic classification models which we will refer to as DCM
in this volume, or alternatively cognitive diagnostic models (CDMs). The chapter
covers general notation and concepts central to latent class analysis, followed by an
introduction of mastery models, ranging from deterministic to probabilistic forms.
The ensuing sections cover knowledge state and rule space approaches, which can
be viewed as deterministic skill-profile models. The chapter closes with a section on
the multiple classification latent class model and the deterministic input noisy and
(DINA) model.

1.1 Introduction

This chapter provides historical and structural context for models and approaches
presented in this volume, by presenting an overview of important predecessors of
diagnostic classification models which we will refer to as DCM in this volume, or
alternatively cognitive diagnostic models (CDMs). We are attempting to organize
the growing field somewhat systematically to help clarify the development and
relationships between models. However, given the fact that DCMs have been
developed based on at least two, if not three traditions, not all readers may
necessarily agree with the order in which we put the early developments. While
there is a multitude of approaches that can be considered predecessors of current

M. von Davier (�)
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2 M. von Davier and Y.-S. Lee

approaches to cognitive diagnostic modeling, there are many connections between
these seemingly different approaches, while several different lines of development
may be later understood as variants of one common more general approach (e.g.,
von Davier, 2013, 2014). In essence, any attempt to organize the many different
approaches that exist today may lead to simplifications, and potentially omissions
of related approaches.

The aim of all these approaches, however, can be summarized as the attempt to
provide powerful tools to help researchers learn about how observed behaviors, such
as responding to test items, can be used to derive information about generalizable
behavioral tendencies.

We begin the chapter with a section on general notation and concepts central to
latent class analysis, followed by an introduction of mastery models, ranging from
deterministic to probabilistic forms. The ensuing sections cover knowledge state and
rule space approaches, which can be viewed as deterministic skill-profile models.
The chapter closes with a section on the multiple classification latent class model
and the deterministic input noisy and (DINA) model.

1.2 Notation, Log-linear Models, and Latent Class Analysis

This section introduces notation used in subsequent chapters. We use the case of
binary observed variables as a standard example but note that all definitions can
be directly extended to polytomous nominal or ordinal response variables. Let
X = (X1, . . . , XK) denote K binary (or polytomous) response variables and let
xn = (xn1, . . . , xnK) denote the observed responses for test takers n= 1, . . . , N. Let
G denote a grouping variable with gn ∈ {1, . . . , M} for all test takers. In the case of
discrete mixture (or latent class) models, gn is unobserved, while for multiple group
models, gn is completely or partially observed (von Davier & Yamamoto, 2004; von
Davier & Carstensen, 2007).

The probability of observing x = (x1, . . . , xK) will be denoted by

P (X = x) = P (x1, . . . , xK) .

Obviously, these probabilities are unknown, while we may have some idea which
observed variables have higher or lower probability of exhibiting certain values. For
cognitive tasks, we may have some idea about the order of items with respect to the
likelihood of successful completion, but typically, there is no complete knowledge
about the joint distribution of response variables.

The aim of modeling response data is to provide a hypothesis of how this
unknown joint distribution can be constructed in a systematic way, either through
associations and interactions between observables, or by means of predictors, or
through assumed unobserved variables, or a combination of these.
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1.2.1 Log-linear Models

One customary way to model the joint distribution of the responses x1, . . . , xK

is using log-linear models (e.g., Haberman, 1979; Hagenaars, 1993). Log-linear
models can be used with or without assuming latent variables. Log-linear models
describe transformed probabilities, using the natural logarithm. We can write

lnP (x1, . . . , xK) = f (x1, . . . , xK) ,

where f (x1, . . . , xK) is a function of the observed responses. One possible
assumption is that the log of the response probabilities can be expressed as

f (x1, . . . , xK) = λ0 +
K∑

i=1

λ1ixi +
∑

{i �=j}
λ2ijxixj + . . .+

∑

{i �=... �=k}
λKi...k

[
K∏

v=1

xv

]
.

Log-linear models in the context of CDMs have been discussed for example by
von Davier and Yamamoto (2004) and Xu and von Davier (2008) for dichotomous
and ordinal skill attribute variables. von Davier (2018) showed how certain log-
linear models used in the context of CDMs can be considered generalizations of
models recently discussed under the term network psychometrics (e.g., Marsman
et al., 2018; von Davier, 2018). In the example above, all products of any possible
subset of observed variables are included, however, it is customary to also consider
models that only include terms up to a certain degree D, assuming for higher degrees
E > D that λEi...,iE = 0.

One central issue when estimating log-linear models for large num-
bers of observables is that a normalization factor is needed. Since, 1 =∑
(x1,...,xK)

P (x1, . . . , xK) =∑(x1,...,xK)
exp f (x1, . . . , xK), it follows that

λ0=log
⎡

⎣
∑

(x1,...,xK)

exp

⎡

⎣
K∑

i=1

λ1ixi+
∑

{i �=j}
λ2ijxixj+ . . .+

∑

{i �=... �=k}
λKi...k

[
K∏

v=1

xv

]⎤

⎦

⎤

⎦ .

This normalization factor involves a sum over all possible configurations
(x1, . . . , xK). For K binary variables, this is a sum involving 2K terms, for K = 30
items this is a summation over 1,073,741,824 terms. von Davier (2018) describes
how noise contrastive estimation (e.g., Guttmann & Hyvärinen, 2010, 2012) can
be used for estimation of log-linear and network psychometrics models, as well as
extended log-linear models for polytomous and dichotomous CDMs.

Log-linear models can be extended by assuming latent variables (Haberman,
1979; Hagenaars, 1993) so that the distribution of observed response variables
depends on an unobserved variable α,

f (x1, . . . , xK |α) = λ0 (α)+
K∑

i=1

λ1i (α) xi + . . .+
∑

{i �=... �=k}
λKi...k (α)

[
K∏

v=1

xv

]
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and by definition

P (x1, . . . , xK |α)= exp

⎡

⎣λ0 (α)+
K∑

i=1

λ1i (α) xi+ . . .+
∑

{i �=... �=k}
λKi...k (α)

[
K∏

v=1

xv

]⎤

⎦ .

If the latent variable is discrete, it can be written as α ∈ {g1, . . . , gG}, with G sets
of each parameter type λdgi1...,id = λdi1...,id (g) for g= g1, . . . , gG and d = 0, . . . ,
K. With this modification, the model becomes more complex. All parameters
may depend on some unobserved quantity α, some grouping variable g, or some
combination of both.

1.2.2 Latent Class Analysis

Latent Class Analysis (LCA) can be understood as an approach that assumes the
dependence of response probabilities on an unobserved discrete variable, which we
denote by c. In this sense, LCA is a direct application of the definition of conditional
response probabilities, as introduced above. LCA assumes a latent categorical
variable that cannot be directly observed. The LCA model equation follows from
a set of three assumptions, some of which match assumptions commonly used in
other latent variable models:

1. Class dependent response probabilities: For response variables xi, LCA assumes
class specific response probabilities. While there is no direct constraint that
imposes

P (xi |cv) �= P (xi |cw) ,

it is a prerequisite for class separation so that respondents who are mem-
bers of different classes cv �= cw can be reliably classified given their observed
responses.

2. Local independence: A central assumption is local independence given class
membership c,

P (x1, . . . , xK |c) =
∏K

i=1
P (xi |c) .

In LCA the class membership variable c is the latent variable that is expected
to ‘explain’ the dependencies between observed responses. Once conditional prob-
abilities are considered, the dependencies between observed variables vanish, under
this assumption.
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3. Classes are mutually exclusive and exhaustive: For each examinee v there is one,
and only one, ‘true’ latent class membership cv ∈ {1, . . . , G}. While the latent
variable in LCA is nominal, this assumption is analogous to the assumption of
a true (but unobserved expected) score in classical test theory (CTT) or a true
ability θ in item response theory (IRT).

These three assumptions make the LCA a discrete mixture distribution model,
since it follows from this set of assumptions that the marginal probability of a
response pattern is given by

P (x1, . . . , xK) =
G∑

c=1

πcP (x1, . . . , xK |c) =
G∑

c=1

πc
∏K

i=1
P (xi |c)

with mixing proportions (class sizes) πc = P(C = c). A logarithmic transform
following assumption 2 above yields,

lnP (x1, . . . , xK |c) =
K∑

i=1

lnP (xi |c) =
K∑

i=1

[xi lnP (Xi = 1|c)

+ (1− xi) lnP (Xi = 0|c)]

and further, using standard rules for the logarithm,

lnP (x1, . . . , xK |c) =
K∑

i=1

lnP (Xi = 0|c)+
K∑

i=1

xi

[
ln
P (Xi = 1|c)
P (Xi = 0|c)

]
.

As such, LCA can be understood as a log-linear model without interactions (as
local independence is assumed), conditional on a nominal latent variable. This can

be seen by setting λ1ci =
[
ln P(Xi=1|c)
P (Xi=0|c)

]
(a term that represents the log-odds for item

i conditional on class membership c) and λ0c =∑K
i=1 lnP (Xi = 0|c) (an intercept

term) and observing that

lnP (x1, . . . , xK |c) = λ0c +
K∑

i=1

xiλ1ci .

Note that the log-odds λ1ci and the conditional response probabilities have the
following relationship:

exp (λ1ci)

1+ exp (λ1ci)
= P (Xi = 1|c) .

While the within-class model of LCA is rather restrictive, as independence of
all responses is assumed, the LCA is a very flexible model, since the number of
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classes C is not specified a priori. Any dependence between observed variables can
be modeled by increasing the number of classes, however, identifiability may be an
issue (e.g., Goodman, 1974; Allman, Matias, & Rhodes, 2009; Xu, this volume).
Therefore, this flexibility is also a weakness of the LCA. With the addition of
classes to the model the fit between model predictions and observed data will
always improve, which may result in a LCA solution that overfits the observed
dependencies. In addition, the increase in number of classes leads to a substantial
increase in the number of parameters to be estimated. For additional details on
applications of LCA, see the volumes by Langeheine and Rost (1988), Rost and
Langeheine (1997), and Hagenaars and McCutcheon (2002), as well as the chapter
by Dayton and Macready (2006).

Confirmatory approaches to LCA constrain the number of classes and often also
impose inequality or equality constraints on class specific response probabilities
(e.g., Croon, 1990). Most DCMs covered in this volume can be written as
constrained variants of LCA (von Davier, 2009). Some constrained versions of
LCA share many interesting similarities with (M-)IRT models (e.g., Haberman, von
Davier, & Lee, 2008) and can be used to replace these models.

1.3 Mastery Models

Mastery models assume a skill domain for which we can sort any person into one of
two classes: expert versus novice, master versus non-master, or professional versus
amateur. This may not be adequate for most domains, even if there is a distinct ‘can
do’ versus ‘cannot do’; there are often gradual differences in the ‘can do’. In this
section, however, we use this notion of mastery and assume all respondents can be
classified into two groups without further distinction.

While these types of distinctions may be oversimplifications, can they still be
useful categories to describe how test takers respond to a test? If we consider
ideas from developmental psychology (e.g., Piaget, 1950; Wilson, 1989), we find
that some things in life are thought of as being acquired or learned in terms of
qualitative jumps. We may want to entertain the idea of mastery learning for a
while and examine where this leads us in terms of how a latent variable model may
represent this concept. For example, young children cannot perform or solve task
X until they mature and ‘get it’, after which the same task becomes quite easy for
them.

The mastery-state can be represented by a random variable that takes on two
values: ‘1’ = mastery and ‘0’ = non-mastery. Formally, we define a latent variable
A, with av ∈ {0, 1} for all respondents v = 1, . . . , n, and with

av = 1 if person v masters the skill of interest
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and

av = 0 if person v does not master the skill.

The two mastery levels are expected to differ with respect to the probabilities of
success, just as in assumption 1 presented in the section on LCA above. However,
in mastery models, there is an order expectation, or even an order restriction in place:
it is expected (and potentially specified directly in the model) that for all response
variables the probability of success is larger for masters than for non-masters. More
formally,

P (Xi = 1|a = 1) = 1− si ≥ gi = P (Xi = 1|a = 0)

may be assumed for all response variables X1, . . . , XK . For each item, there are
four probabilities to consider, the conditional probabilities of success and failure
under mastery and non-mastery. These are often denoted as follows (e.g., Dayton &
Macready, 1977):

• Guessing correctly by non-masters: gi = P(Xi = 1| a = 0)
• Incorrect response by non-masters: 1 − gi = P(Xi = 0| a = 0)
• Slipping = unexpected incorrect response by masters: si = P(Xi = 0
| a = 1)

• Correct response by masters: 1 − si = P(Xi = 1| a = 1)

A variety of constraints on these parameters have been suggested in the literature,
some examples are discussed by Macready and Dayton (1977). Nowadays, the
term ‘slipping’ is often used instead of ‘unexpected error’ while ‘guessing’ is
still in use (Junker & Sijtsma, 2001). Just like LCA, mastery models also assume
local independence and that masters and non-masters are mutually exclusive and
exhaustive. Based on the equivalency shown in the previous section, a mastery
model with two levels can be written either in the form of a 2-class LCA or as a
log-linear model with latent variables:

P (x1, . . . , xK |a) =
K∏

i=1

P (Xi = 0|a)
[
P (Xi = 1|a)
P (Xi = 0|a)

]xi

and with the definitions above, we have P (Xi=1|a)=(1−si)ag[1−a]
i , and for the

complement we have P (Xi = 0|a) = sai (1− gi)[1−a]. A logarithmic transforma-
tion and insertion of the definitions yields the following:

lnP (x1, . . . , xK |a)=
K∑

i=1

ln sai (1−gi)[1−a]+
K∑

i=1

xi ln

[
(1−si)
si

]a[
gi

(1−gi)
][1−a]

.
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As before, by setting
∑K
i=1 ln sai (1− gi)[1−a] = λ0a and ln

[
(1−si )
si

]a[
gi

(1−gi )
][1−a] =

λ1ai , the equivalency of the mastery model to a log-linear model with a binary latent
variable is obtained. Note that λ1ai can be written as

a ln

[
P (Xi = 1|a = 1)

P (Xi = 0|a = 1)

]
+ [1−a] ln

[
P (Xi = 1|a = 0)

P (Xi = 0|a = 0)

]
=λ10i+a [λ11i−λ10i] ,

which again contains the log-odds for masters and non-masters, multiplied by the
mastery status.

1.4 Located Latent Class or Multi State Mastery Models

The additional model specifications needed to move from LCA, which is character-
ized by a nominal latent class variable, to located classes are easily introduced.
The last section that examined mastery models provides the basis for these
developments. For a correct response xi = 1, the term λ1ai = λ10i + a[λ11i − λ10i]
is part of the sum. This term is linear in the mastery level a ∈ {0, 1} and if λ11i > λ10i

or equivalently, P(Xi = 1| a = 1) > P(Xi = 1| a = 0), the term λ1ai is monotone
increasing over the (in the case of mastery models: two) ordered mastery levels.

With more than two levels of mastery, for example an ordinal variable that
represents non-mastery as zero, but allows multiple levels of mastery represented
as successive integer, i.e., a

′ ∈ {0, 1, 2, . . .M}, a model can be defined as

lnP
(
x1, . . . , xK |a′

) = λ0a′ +
K∑

i=1

xiλ1a′i

with

λ1a′i < λ1a′′i for all a′ < a′′.

This ensures that

P
(
Xi = 1|a′) < P (Xi = 1|a′′) for all a′ < a′′.

This produces a monotone increasing sequence of response probabilities over
a
′ ∈ {0, 1, 2, . . .M}. Note, however, that this type of constraints (still) produces a

comparably large number of quantities that need to be estimated. However, this
model includes equality constraints (e.g., Formann, 1985, 1992) which may be
imposed via additional assumptions about how model parameters relate to the
ordered levels of mastery. Essentially, each latent class in this model becomes an
ordered mastery level, but the distances between classes differ by item i and class
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level a
′ ∈ {0, 1, 2, . . .M}. This model requires (M + 1)K parameters one set of K

item parameters for each class. As before, probabilities can be derived using the
equivalency

P
(
Xi = 1|a′) = exp (λ1a′i )

1+ exp (λ1a′i )
.

A more parsimonious model can be implemented by imposing the following
constraint

λ1a′i = βi + γiθa′
which requires 2K item location β i and slope parameters γ i and M + 1 ordered
class specific locations θa′ < θa′ ′ for a

′
< a

′ ′ ∈ {0, . . . , M}. With the transformation

βi + γiθa′ = a (θ − b)

it can be easily observed that located latent class models define the class specific
response probabilities as

P (Xi = 1|θa′ = θ) = exp (a (θ − b))
1+ exp (a (θ − b))

which is very similar to IRT (Lord & Novick, 1968), while assuming a discrete
latent variable with located latent classes (e.g., Formann, 1992; Haberman et al.,
2008).

1.5 Rule Space Methodology and Knowledge Spaces

Rule space (RS; e.g., Tatsuoka, 1983, 1990, 2009) and knowledge spaces (KS;
Doignon & Falmagne, 1985, 1998; Albert & Lukas 1999) are independently
developed approaches to the question of how the association between performance
on heterogeneous tasks and multiple skills can be conceptualized. Much like
mastery models, RS and KS assume that a respondent who masters a certain number
of skills is on a regular basis capable of solving tasks that require these skills. In
contrast to the first generation of mastery models, both RS and KS assume that
there are multiple skills to be considered, and that each respondent is characterized
by a skill pattern or attribute pattern – or a knowledge state – and that every task
requires a subset of the skills represented in the skill space of respondents.

Consider an example with two skills, addition and multiplication, ignoring for
a moment that there is an additional skill required that tells us in what order these
operations have to be executed. If asking examinees to solve tasks of the type
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(a) 3 + 4 =?
(b) 4 * 5 =?
(c) 3 * 3 + 2 =?

one could argue that there are four potential groups of test takers. Group 1 does
neither master addition nor multiplication and cannot solve any of the task types;
Group 2 masters only addition and can solve tasks of type (a) only; Group 3 only
masters multiplication (no matter how unlikely that may seem to a math educator)
and hence can solve only tasks of type (b); and Group 4 masters both addition and
multiplication, and hence can solve tasks of type (a), (b), and (c) on a regular basis.

More formally, for tasks that require a subset of D skills, we can assign to each
task i = 1, . . . , K a vector of skill requirements qi = (qi1, . . . , qiD) ∈ {0, 1}D that
indicates which skill (or attribute) is required for that task. The matrix

Q =
⎛

⎝
q11 . . . q1D

. . . . . . . . .

qK1 . . . qKD

⎞

⎠

is referred to as Q-matrix and represents a hypothesized relationship of how a skill
vector (skill state) or attribute pattern a = (a1, . . . , aD) is connected to expected
performance on each task. The ideal (the most likely, or expected given a skill
pattern) response on item i given can be written as

x
[I ]
i

(
qi , a

) =
D∏

d=1

a
qid
d ∈ {0, 1}

which equals one if the attribute mastery pattern a matches or exceeds non-zero
entries of the skill requirements qi, i.e., if at least all required skills are mastered,
and is zero otherwise. The above equation can be applied to all items to construct
an ideal response pattern

x[I ] (a) =
(
D∏

d=1

a
q1d
d , . . . ,

D∏

d=1

a
qKd
d

)

for each attribute mastery pattern a. The observed response pattern xv produced
by respondent v can then be compared to each of these ideal response vectors,
and the closest match determined. This can be done in a variety of ways; for
example, Tatsuoka (1983, 1985) discussed methods based on distance measures,
but also presents classification based on IRT ability estimates and person fit. von
Davier, DiBello, and Yamamoto (2008) provide a summary of the IRT and fit based
approach. A simple measure of agreement can be defined as

sim (xv, a) =
∑K
i=1 xvi ∗ x[I ]

i

(
q i , a

)
√(∑K

i=1x
2
vi

)(∑K
i=1

[
x

[I ]
i

(
qi , a

)]2
)
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which equals the cosine similarity of the observed and ideal vectors. The cosine
similarity is a correlation related measure commonly used in data mining, machine
learning and natural language processing (Tan, Steinbach, & Kumar, 2005). Respon-
dents can be assigned to the attribute pattern that produces the largest similarity
measure relative to the observed vector xv.

Tatsuoka’s RS has demonstrated its utility in many applications over the years.
Recently, the method gained new interest under the name ‘attribute hierarchy
method’ (AHM; Leighton, Gierl, & Hunka, 2004). The authors describe the AHM as
being an instantiation of rule space that differs from Tatsuoka’s (1983, 1985, 1990,
2009) methodology in that it allows attribute hierarchies. Attribute hierarchies limit
the permissible attribute space, as some attributes have to be mastered before other
can be mastered, by definition of what a hierarchy encompasses. von Davier and
Haberman (2014) show how the assumption of hierarchical attributes restricts the
number and type of parameters of diagnostic classification and multiple mastery
models.

Both RS and KS were initially conceptualized as deterministic classification
approaches. Respondents would be classified according to their similarity to ideal
response patterns, regardless of the observation that only very few respondents will
produce exactly the ‘ideal’ patterns that can be expected based on the Q-matrix.
Attempts to produce a less deterministic version of these approaches have been
made, and Schrepp (2005) describes similarities between KS approaches and latent
class analysis. The next section describes models that share many of the features
of RS and KS approaches, but provide a structured latent attribute space, and a
probabilistic approach to define how multiple mastery levels relate to response
probabilities in a systematic way, rather than by means of unstructured class profiles
as used in LCA.

1.5.1 Multiple Classification Models and Deterministic Input
Noisy and (DINA) Models

Latent class models with multiple latent variables (Haberman, 1979; Haertel, 1989)
or multiple classification latent class models (MCLCM; Maris, 1999) extend latent
class analysis (LCA) in such a way that multiple nominal or ordinal latent variables
can be identified simultaneously. This approach retains the defining properties
of LCA, local independence given latent class, assumption of an exhaustive and
disjunctive latent classification variable, and distinctness of conditional probabilities
across classes.

The MCLCM approach can be viewed as a non-parametric precursor to many of
the diagnostic models introduced in subsequent chapters. For a MCLCM with two
latent variables c1 ∈ {0, . . . , C1}, c2 ∈ {0, . . . , C2} denote the joint distribution of
these with πc1,c2 and define

P (x1, . . . , xK) =
C1∑

c1=0

C2∑

c2=0

πc1,c2

K∏

i=1

P (xi |c1, c2) .
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This is a well-defined LCA that can be rewritten as a single latent1 variable
LCA with ‘attribute’ a = {c1, c2} and MNCL = (C1 + 1) (C2 + 1) latent classes
representing all possible combinations. However, one may introduce additional
structure – constraints on the response probabilities – for the two-variable case to
specify whether the conditional probabilities may for some items depend on only
one or the other component c1 or c2. More specifically, one may assume

P (xi |c1, c2) = P (xi |fi1 (c1) , fi2 (c2)) .

As a special case with specific relevance to diagnostic models, we will consider the
following form of these constraints in the example

fid (cd) = cqidd
for d = 1, 2 and with qi1, qi2 ∈ {0, 1}.

Basically, if one or the other qi∗ is zero, the dependency on that component of
the multiple classification LCM variable vanishes from the conditional probability
of item response xi. This is true because

c0
d = 1

for all levels of cd whenever qi1 = 0. With this constraint, the conditional
probabilities of a response variable may depend on both c1, c2 in MNCL levels
for some items, on c1 only in (C1 + 1) levels for some other items, or on c2 with
(C2 + 1) levels for a third set of items, or on neither one of them in a fourth group
of response variables.

Two additional restrictions lead to the model that is commonly known as the
DINA (Deterministic Input, Noisy And) model (Macready & Dayton, 1977; Junker
& Sijtsma, 2001). First, all components of the latent skill pattern a are assumed to
be binary (and as before, we use ad for binary attributes, while for nominal classes,
we use c1, c2, . . . ), that is

a = (a1, . . . , aD) ∈ {0, 1}D

and for the conditional probabilities we assume

P (xi |a1, . . . , aD) = P
(
xi |

D∏

d=1

a
qid
d

)
.

1Class variables are represented as integers, but the use of integers do not imply any ordering here;
only equivalence classes are used in the context of LCA.
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Note that the conditional probability depends on a binary variable ξaqi =∏D
d=1 a

qid
d ∈ {0, 1} which is a function of the skill pattern a and one row of

the Q-matrix, a vector that specifies the skill requirements for a specific item. Just
as in the section on mastery models, applying this definition leads to the following
expressions:

P
(
Xi = 1|ξaqi = 1

) = 1− si
and

P
(
Xi = 1|ξaqi = 0

) = gi.

The DINA model is said to be conjunctive because it reduces the respondent-skill
by item-attribute comparison to only two levels

∏D
d=1 a

qid
d = 1 or

∏D
d=1 a

qid
d = 0.

With this, we can write

P (xi |a1, . . . , aD) =
[
(1− si)ξaqi gi1−ξaqi

]xi[
si
ξaqi (1− gi)1−ξaqi

]1−xi
.

Only those respondents who possess all necessary skills have a “high” probability
1 − si of solving an item, while respondents who lack at least one of the required
skills have a “low” probability gi —the same “low” probability no matter whether
only one or all required skills are not mastered.

Note that the gi and the si denote the item parameters in the DINA model,
so that there are two parameters per item in this model. In addition, the skill
vectors av = (av1, . . . avK) are unobserved, so we typically have to assume that
the distribution of skills P (A = (a1, . . . aK)) = π(a1,...aK) is unknown. Therefore,
there are ‖{0, 1}K‖ − 1 = 2K − 1 independent skill pattern probabilities with∑
(a1,...aK)

π(a1,...aK) = 1.0 if an unconstrained estimate of the skill distribution is
attempted. There may be fewer parameters if a constrained distribution over the skill
space (von Davier & Yamamoto, 2004; Xu & von Davier, 2008) is used. For model
identification, no constraints are needed on the guessing and slipping parameters
(even though it is desirable that 1 − si > gi for somewhat sensible results).

While de la Torre (2009) does not make statements about identifiability of the
DINA model and the uniqueness of the model parameters, Junker and Sijtsma
(2001) discuss (a lack of) empirical identification in the context of their data
example used in conjunction with Markov chain Monte Carlo (MCMC) estimation.
Haertel (1989) describes identification of latent class skill patterns in the DINA
model, and notes that “it may be impossible to distinguish all these classes
empirically using a given set of items. Depending upon the items’ skill requirements,
latent response patterns for two or more classes may be identical (p.303).” One
of the remedies Haertel (1989) suggests is the combination of two or more latent
classes that cannot be distinguished. In subsequent chapters, identifiability of
diagnostic models is discussed in more detail (Xu, this volume; Liu & Kang, this
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volume; DeCarlo, this volume) and von Davier (2014) provides an example of how
the (lack of) empirical identifiability of diagnostic models can be checked.

The DINA model is a very restrictive model as it assumes only two parameters
per item, and skill attributes only enter the item functions through conjunction
function ξaqi =

∏D
d=1 a

qid
d . This restricts the probability space so that different

attribute mastery patterns, in particular those that are not a perfect match of the
Q-matrix for an item, are all mapped onto the same low “guessing” probability.
There are several issues with the assumption made in the DINA model. Formally,
this assumption is equivalent to assuming a log-linear model (see Eq. 1) in which
all parameters are set to zero except the one that parameterizes the highest order
interaction term. Additionally, from the point of view of most applications of
skills, compensation happens: Multiplication can be replaced by repeated addition,
a lack of vocabulary when acquiring a new language, or even learning disabilities
can be compensated for (and eventually remedied) by higher general intelligence
(e.g., Reis, McGuire, & Neu, 2000), etc. In total darkness, hearing can be used
to, admittedly poorly, compensate for lack of vision. For diagnostic models and
compensatory and non-compensatory MIRT models, it was found that real data
examples are often fit better (in terms of item fit, or overall goodness of fit assessed
with information criteria or similar) with additive/compensatory models rather than
conjunctive models (de la Torre & Minchen, this volume; von Davier, 2013).

In addition, it was found that the DINA model may be affected by model
identification issues. DeCarlo (2011) and Fang, Liu, and Ying (2017) show that the
DINA model is not identified unless there are what some may call ‘pure’ items in the
Q-matrix, that is, items that only measure a single attribute. DeCarlo (2011) shows
that the DINA model with the Q-matrix provided for the Fraction Subtraction data
(Tatsuoka, 1985) is not able to identify all attribute patterns. Fang, Liu, and Ying
(2017) provide more general results on the requirements for the Q-matrix. Xu (this
volume) and Liu and Kang (this volume) provide further results and more recent
examples.

1.6 Summary

The notation and models introduced in this chapter form the basis for many of the
subsequent chapters. Most, if not all DCMs can be written as constrained latent class
models or alternatively, log-linear models with discrete latent variables.

This introduction does not provide an in-depth coverage of how to evaluate the
different approaches. However, all models presented in this volume are approaches
that provide marginal probability distributions for multivariate discrete observables.
This means that methods from categorical data analysis can be used to compare
models and to evaluate model data fit.

While some of the models introduced above may be considered approaches for
diagnostic classification and may have been used as such, many more sophisticated
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approaches have been developed since, based on these initial modeling attempts.
The aim of the current volume is providing a systematic overview of these more
recent approaches.

The Handbook Diagnostic Classification Models aims at capturing the current
state of research and applications in this domain. While a complete overview of this
broad area of research would require a multi-volume effort, we tried to capture a
collection of major research streams that have been developed over several years
and that continue to produce new results.

The first part of the volume covers major developments of diagnostic models
in the form of chapters that introduce the models formally, provide information
on parameter estimation and on how to test model-data fit, and applications or
extensions of the approach.

The second part of the volume describes special topics and applications. Special
topics such as Q-matrix issues are covered, including the data driven improvement
and construction, as well as issues around model identifiability. The third part
presents applications of diagnostic models, as these are a centerpiece to reasons why
not only methodologists but also applied researchers may want to study the volume.
These applications show how diagnostic models can be used to derive more fine-
grained information about respondents than what traditional methods such as CTT
or IRT can provide.

The fourth part of the book includes a range of available software packages,
including the use of general purpose statistical software, specialized add-on pack-
ages, and available stand-alone software for estimation and testing of CDMs.

In many cases, latent class analysis, customary IRT, and other latent variable
models can directly be considered alternatives to diagnostic models, as these are
often more parsimonious (in the case of IRT) or do not make as strong (parametric)
assumptions about the latent structures and how these structures are related to the
conditional response probabilities in the levels of the latent variables. Standard
procedure should therefore be used as a comparison of more complex modeling
approaches with customary standard examples of latent variable models such as
IRT or LCA. Such a practice will ensure that researchers can compare their findings
to those obtained from less complex models to check whether the increased model
complexity provides added value, through improved model-data fit, and by means
of more useful derived quantities such as estimated mastery states.
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