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Supervisor’s Foreword

The Earth’s climate is a fascinating system made of multiple and complex inter-
actions among its constituents the atmosphere, hydrosphere, cryosphere, litho-
sphere, and the biosphere. The awareness of climate change has put forward to
society that the climate system is far from static and that it rather presents variability
at very different timescales. In particular, climate can vary from one decade to the
next, which can have important societal implications. Being able to foresee these
changes would undoubtedly be of great value, as it would have applications in
long-term planning. A necessary first step in this direction is enhancing our
understanding of climate variability at decadal-to-multidecadal timescales, which is
the general objective of this Ph.D. Thesis.

The continental regions in the Tropical Atlantic are among the most affected by
changes in their rainfall regime. Water availability in the semiarid region of
Northeast Brazil in South America affects the economy and shapes the population
in the region. Also in South Africa, the Amazon’s economic and ecological
resources highly depend on rainfall. These regions are affected by the seasonal
occurrence of the South American Monsoon and by its climate variability. In turn,
to the east, the West African Monsoon modulates rainfall over the Sahel. This
region is prone to drought occurrence, which has devastating humanitarian and
economic impacts. The long-lasting Sahel drought in the 1980s stirred a great
scientific effort to better understand its causes. Through its impact on the economy,
rainfall variability at decadal timescales in these regions can also lead to stress in
local population and migrations, affecting indirectly populations in other regions.

One of the main sources of tropical rainfall variability at decadal-to-multidecadal
timescales is the change in the sea surface temperatures (SST). Previous research
suggested links among changes in the rainfall regimes of the Sahel, Northeast
Brazil, and Amazon regions and patterns of decadal-to-multidecadal variability in
SSTs. However, the mechanism underlying such links and their simulation by
state-of-the-art general circulation models had not been addressed in a systematic
way, which constitutes the specific objective of this Ph.D. Thesis.
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In this Thesis, Julián analyses the decadal-to-multidecadal patterns of SST
variability simulated by 17 state-of-the-art general circulation models and evaluates
their impact on rainfall associated with the South American and the West African
Monsoons and the mechanisms underlying such impact. The analysis allows Julián
to delve into issues like the effect of the external forcing in shaping this impact, the
changes of the impacts under a climate change scenario with a strong increase
of these forcings, and the relative contribution of the different SST variability
patterns to the decadal variability of rainfall. Finally, as a case study, Julián anal-
yses the late nineteenth century anomalously humid period in the Sahel, which has
been little documented due to the scarcity of observations. By performing simu-
lations with an atmospheric general circulation model driven by observed sea
surface temperatures as boundary conditions, Julián is able to pinpoint the oceanic
basin responsible for this humid period and explain the mechanism causing it.

Throughout his Thesis, Julián has been supported and advised by different
internationally renowned researchers. For the analysis of the South American
Monsoon, he enjoyed a 3-month visit at the University of São Paulo (Brazil) under
the supervision of Tércio Ambrizzi, expert on climate variability in the region. For
the West African case study, Julián collaborated with Myriam Khodri, Juliette
Mignot, and Serge Janicot, experts in climate modeling, decadal variability, and the
West African Monsoon, at the Institute Pierre Simon Laplace (IPSL) in Paris
(France).

This Ph.D. Thesis constitutes a step forward in our understanding of changes in
rainfall regimes in the regions studied and is also of great use to improve decadal
prediction systems and to foresee the societal impacts of such changes. I, therefore,
invite you to immerse yourself in this fascinating reading.

Madrid, Spain
March 2019

Elsa Mohino
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Abstract

Introduction

The Sahel is the semiarid West African region between the Sahara desert and the
wet tropical savanna. The Sahel rainfall depends on the West African Monsoon
(WAM) system and peaks between July and September. The rainfall regimes of the
Amazonia and Northeast regions, located in northern Brazil, depend on the South
American Monsoon system. The Amazonia is the region covered by the Amazon
River basin, where heavy rains occur throughout the year but with a rainier season
extending from December to May. The Northeast is a semiarid region with a short
rainy season between March and May.

Precipitation regimes in these three regions have undergone changes over time
with important humanitarian, environmental and economic consequences and have
been a major topic of study (e.g., Rodríguez-Fonseca et al. 2015; Zhou and Lau
2001; Marengo et al. 2016). At decadal-to-multidecadal timescales, these changes
have been mainly associated with the global sea surface temperature (SST) vari-
ability. Particularly, the Sahel precipitation has been associated with the global
warming (GW), the Atlantic Multidecadal Variability (AMV), and the Interdecadal
Pacific Oscillation (IPO) modes of decadal-to-multidecadal SST variability
(e.g., Mohino et al. 2011a). The Amazonia and Northeast rainfall changes have
been related to the Pacific and the Atlantic SST variability at decadal timescales
(e.g., Grimm and Saboia 2015), which is led by the AMV and IPO.

Climate study through Global Circulation Models (GCMs) is crucial to under-
stand climate changes and assessing its effects. So, in the first part of this Thesis, a
multi-model analysis is done addressing the influence of the main decadal-to-
multidecadal modes of SST variability on precipitation in the Sahel, Amazonia, and
Northeast using different GCMs simulations from the 5th phase of the Coupled
Model Intercomparison Project (CMIP5) (Taylor et al. 2012).

Particularly, in the Sahel, the decadal-to-multidecadal precipitation variability
along the recent past and even for the future has been extensively studied, but
barely prior to the twentieth century. Only a few studies suggest that the Sahel
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experienced a long wet period throughout the late nineteenth century. This moti-
vates the second part of this Thesis, which seeks to reproduce this period with an
atmospheric GCM (AGCM) forced with observed SST since 1854.

Objectives

The objective of this Thesis is to achieve a better understanding of the SST
decadal-to-multidecadal variability on rainfall in the Sahel, Amazon, and Northeast
regions. For that purpose, a multi-model analysis is done aiming to characterize the
main modes of SST variability (GW, AMV, and IPO) in observations and CMIP5
simulations, assess their impacts on precipitation in the three regions and the causes
of such links. Other goals are to seek whether these links are expected to change in
the future, discuss an eventual role of the radiative forcing on the AMV and IPO,
and assess the contribution of the SST modes to the total decadal-to-multidecadal
rainfall variance in the regions of interest. A final objective is to find out whether
the long rainy period of the late nineteenth century can be reproduced with an
AGCM forced with observed SST and the factors that caused it.

Data and Methodology

Monthly data from different simulations of 17 CMIP5 models are used. The sim-
ulations analyzed are historical (simulates the recent past with imposed observed
external radiative forcing), piControl (radiative forcing is fixed to pre-industrial
values), RCP8.5 (future projections with a representative concentration pathway of
high concentrations of greenhouse gases), and historicalGHG (similar to the his-
torical simulation but with greenhouse gas forcing only) (Taylor et al. 2012). For
the sake of robustness in the observational results, different SST and precipitation
databases and reanalyses are analyzed.

A set of simulations is performed using the fifth version of the Laboratoire de
Météorologie Dynamique (LMDZ) AGCM (Hourdin et al. 2013). In the first set of
simulations, the LMDZ is run with imposed observed boundary conditions over
1854–2000. Second, a set of sensitivity experiments has been done for 1854–1910
imposing full variability of the SST only in the Atlantic or in the Indo-Pacific while
the rest is fixed to the climatological seasonal cycle.

The methodology used is based on mathematical tools commonly used in cli-
mate studies, such as EOF, linear regression, and correlation analysis and filtering
of time series, among others.
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Results and Conclusions

The results are presented in two parts:

1. The first part shows the results of the multi-model analysis. CMIP5 models, on
average, can reproduce the main observed features of the GW, AMV, and IPO
and their impacts. The main results and conclusions obtained are:

• The GW has been prone to aerosol changes in the recent past. This induces
inter-model differences but does not affect the way CMIP5 models, on
average, reproduce the rainfall response: a drying in the Sahel and more
precipitation in Amazonia and Northeast of Brazil. The GW reduces the
WAM low-level circulation in response to a tropical SST warming. It also
enhances convection over northern Brazil through anomalous Walker cir-
culation related with the tropical Pacific SST anomalies (SSTA) in obser-
vations. But CMIP5 models fail in reproducing the tropical Pacific SSTA in
the GW pattern, affecting the reliability of the simulated precipitation
response in northern South America.

• During positive AMV phases, the Sahel and Amazonia precipitation are
enhanced and reduced in the Northeast (the opposite during negative pha-
ses). Positive (negative) AMV induces interhemispheric pressure gradient
promoting anomalous northward (southward) shifts of the Intertropical
Convergence Zone.

• The IPO has negative impact on rainfall in the three regions. Positive
(negative) IPO produces Walker circulation anomalies from the tropical
Pacific with anomalous subsidence (rise) over West Africa and northern
South America.

The results also show that the aerosol radiative forcing effects induce inter-model
uncertainties as to the simulated AMV, which shows slight differences between
historical and piControl. The IPO signal, instead, shows no noticeable differences.
This suggests that the AMV may have a component of external forcing, while the
IPO is dominated by internal variability.

The RCP8.5 future projections reveal a different GW pattern and impacts on
rainfall to the historical simulations. However, they show similar AMV and IPO
behaviors. This suggests that changes in the precipitation response to the GW in the
three regions studied are expected under the future scenario described by the
RCP8.5 projections, but not in the case of the AMV and the IPO.

A multi-linear regression analysis between the GW, AMV, and IPO indices and
the precipitation index of each region show that CMIP5 models, in general, do not
reproduce the observed contribution of each mode of SST to the total
decadal-to-multidecadal rainfall variability.

The proper simulation of the decadal-to-multidecadal rainfall variability in the
regions studied is related to the correct SSTA distribution in the simulated patterns
and with the monsoon atmospheric circulation sensitivity to the SST changes.
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2. The second part of results shows that the LMDZ model reproduces a long Sahel
rainy period in the late nineteenth century in response to observed SST forcing
since 1854. The sensitivity experiments show that the Atlantic SST plays a
dominant role inducing such a precipitation enhancement through enhanced
convection over the Sahel and more moisture supply from the tropical Atlantic.
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Chapter 1
Introduction

Abstract This Ph.D. Thesis addresses the influence that the sea surface temperature
(SST) has on the tropical precipitation changes at time scales from one to several
decades, which is typically referred to as decadal-to-multidecadal variability. Specif-
ically, the focus of this work is on the effect on rainfall variability of the Sahel in
West Africa and the Amazon and the Northeast of Brazil in South America. This
Chapter begins with a brief explanation of the motivation of this study. Thereafter,
some basic concepts are introduced to enter upon the subject, such as the global
climate system, the main mechanisms that govern it and its variability. Then, the
main modes of low-frequency SST variability and the mechanisms leading the trop-
ical rainfall in the regions of interest are explained in detail. The last section of this
Chapter is dedicated to review the research done on the relationship between the SST
and the Sahel, the Amazon and the Northeast of Brazil precipitation low-frequency
variability.

1.1 Motivation

The tropical precipitation is tightly related to the Intertropical Convergence Zone
(ITCZ), which is the near-equatorial band of maximum surface wind convergence
that is associated with strong convective activity. The ITCZ seasonally migrates
meridionaly from south to north and back along the year determining the rainy sea-
sons in tropical regions (Fig. 1.1). Over the Atlantic sector, the ITCZ latitudinal shifts
vary year to year resulting in precipitation variability in the surrounding continental
regions, especially in West Africa and northern South America (Nobre and Shukla
1996). The precipitation variability is particularly relevant for theWestAfrican region
of the Sahel and the Amazonia and the Northeast of Brazil in South America, which
are very sensitive to changes in their rainfall regimes.

The Sahel is the part of West Africa extending zonally between the Sahara desert
to the north and the tropical rainy savanna to the south (roughly between 10°and
18°N) (Fig. 1.2). Climatologically, it is a dry region with a mean annual rainfall rate
of 200mm to the north and 600mm to the south (Nicholson 2013). This region is
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4 1 Introduction

Fig. 1.1 Total seasonal precipitation (mm day–1) from December to February (DJF), March to
May (MAM), Jun to August (JJA) and September to November (SON) averaged over 1979–2012
using ERA-Interim reanalysis data. Image from Climate Reanalyzer (https://ClimateReanalyzer.
org), Climate Change Institute, University of Maine, USA

extremely sensitive to rainfall changes during its rainy season, going from July to
September (JAS), when the ITCZ reaches its northernmost position overWest Africa.
Indeed, the precipitation amounts in the Sahel have undergone important changes
over time, with strong variability at different time scales (Fig. 1.3). In particular,
the Sahel is one of the world’s regions with the most marked rainfall variability
at decadal time scales, which refers to changes in climate from some decades to
others. Considering the precariousness of the countries in the Sahel and the climatic
characteristics of the region itself, it is not surprising that such a change in the rainfall

https://ClimateReanalyzer.org
https://ClimateReanalyzer.org
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Fig. 1.2 The Sahel region in West Africa. Modified picture from Google Earth; data provided by
SIO, NOAA, U.S. Navy, NGA, GEBCO Landsat/Copernicus Mapa GISrael ORION-ME

regime and the long persistence of drought conditions had dramatic economic and
humanitarian consequences (Cook and Vizy 2006; Giannini et al. 2013). The decadal
variability of the Sahel rainfall along the 20th century has therefore been the focus of
numerous research works (e.g. Folland et al. 1986; Giannini et al. 2003; Caminade
and Terray 2010; Mohino et al. 2011a; Rodríguez-Fonseca et al. 2015).

The Northeast1 of Brazil is the northeastern tropical region of the country
(Fig. 1.4). It is mostly a plateau area with a semiarid precipitation regime, in which
typically no more than 400 mm of precipitation per year are recorded (Kousky 1979;
da Silva 2004). This region has a short rainy season between Mach and May, when
the ITCZ shifts to the south spanning this region. The Northeast is particularly prone
and sensitive to changes on precipitation, especially to droughts. The local economy

Fig. 1.3 JAS seasonal precipitation anomalies with respect to the 1901–2013 mean averaged over
the Sahel region (between 17.5°W–10°E and 10°–17.5°N). Bars represent the inter-annual values
and the curve is the 8-year low-pass filtered index. Data from GPCC.v7

1Also referred to as Nordeste in the literature.


