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Preface

Random walks are among the most fundamental stochastic processes that occur

ubiquitously in various interdisciplinary contexts such as in biological networks, the

foraging of animals, the spread of diseases, in finance, human mobility in cities,

friendship networks, among many other “complex systems”. Generally, random

walks are microscopic models for diffusion processes and play a crucial role in the

development of “random search” strategies. One of the main goals of this field is to

find a strategy that a given set of targets distributed among a larger set is most

quickly visited by the walker. This and similar questions constitute one of the major

motivations and driving forces for the subjects of this book. The analysis of new

random walk strategies, especially those which allow faster exploration of a network

or a subset of it, is highly desirable for many interdisciplinary applications and

interesting from a theoretical point of view. Last but not least, the recent upswing of

online networks such as Google and social networks has launched a huge interest in

stochastic motions on networks. In many of these problems of real life such as in

population dynamics, chaotic motions, the time evolution of stock-market prices and

many others, it is impossible and even meaningless to describe time evolutions using

deterministic equations. Instead, one is interested in extracting a maximum of

“statistical information” from these processes. As a result, many different kinds of

random walk models have been proposed and extensively studied.

The “random walk history” started more than a century ago when the notion of

“random walk” was coined by K. Pearson in 1905 coming along with the

groundbreaking works of A. Einstein who formulated the stochastic motion of

particles, and similar ideas were developed by M. von Smoluchovski at about the

same time. Then later on P. Lévy together with R. von Mises, A. Kolmogorov,

N. Wiener, L. Doob and K. Itô were among the founders of modern probability

theory, and many further classical works are connected with the names of

L. Bachelier, R. Brown, G. Pólya, Lord Rayleigh, W. Feller, M. Kac, F. Spitzer,

A. Khinchin, E.W. Montroll, G.H. Weiss, A.A. Markov, B. Mandelbrot and many
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others. The systematic study of random walks was probably inspired by the

“Gambler’s Ruin” problem, which was analyzed by Bernoulli, Fermat, Huygens,

Pascal, among others.

Random walks are today a highly interdisciplinary basic approach to statistical

physics. In the meantime, a burst of remarkable literature has been published on the

subject. The features of random motions depend sensitively on the topology of the

“environments” and “spaces” where they occur. Many of them can be conceived as

taking place on well-defined and countable sets of “states”. If these sets of states are

finite and countable, then they can be considered as (finite) graphs or synonymously

networks. When random transitions within these well-defined sets of states occur,

then we can describe these processes as “random walks on graphs”. In more general

situations, where random walks are performed either in continuous compact spaces

or on disjoint (often fractal sub-) sets where the points are uncountable, it appears to

be fruitful to describe such walks in terms of “probability measures” by means of the

language of measure theory.

G. Pólya was one of the first to demonstrate the importance to study random

walks on simple multidimensional integer lattices. He disclosed in a celebrated paper

the crucial role of the dimension of the lattice for the recurrence/transience behavior

of a walk. This behavior emerges in the so-called Pólya walks having a most simple

generating law, namely, that the walker in one time step can jump with equal

probabilities only to connected neighbor nodes. The great achievement of that work

was also to have shown that universal behavior can be obtained already by most

simple generating laws. We consider in Chapter 7 a generalization of the Pólya walk

problem and by assuming a “fractional generating law” we derive a generalized

recurrence theorem as a universal feature of the “fractional random walk” and all

walks with asymptotic Lévy flight behavior emerging from the fractional dynamics

on infinite multidimensional lattices and spaces.

We will see in the course of this book that whatever be the generating law for a

Markovian walk on an undirected network, after sufficiently many time steps the

probability distributions may converge only to two distinct kinds of limiting

distributions, namely either Gaussian distributions when the jump lengths on the

network in one time step are limited (e.g. to neighbor nodes or light-tailed distributed

to further distant neighbors) with finite mean squared jump distance, or Lévy

distributions when the jump lengths on the network are heavy tailed with infinite
mean square jump distance. Any further complication or sophistication in the

generating laws apart from these essential features does not affect this universal

asymptotic behavior. We will analyze these behaviors for Markovian walks on

networks thoroughly in the course of the book. By this observation for the behavior

after sufficiently long times of observation, it is sufficient to consider “simple”

generating laws leading to the same of the two possible universal asymptotic
behaviors as the “real” perhaps complicated unknown generating law.
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In this book, we uniquely consider Markovian walks where the walker undertakes

uncorrelated steps on a network or in the continuum limit on a continuous space.

We mainly analyze time discrete walks but also derive limiting transitions to time

continuous walks. One principal focus is concentrated on the analysis of “long-range

navigation” of walks with “long-range steps” where the walker in one-time step can

reach far distant nodes. The notion of “distance” may appear in two different senses,

either as the distance on the network counting the smallest number of steps between

two nodes, or especially important for continuum limit analysis, where “distance”

means the Euclidean distance in the embedding space. “Long-range step” means in the

first place that the walker during one-time step can cover a large “network distance”.

For different kinds of random walks, especially walks exhibiting long-distance

jumps strategies, we derive dynamic characteristics such as first passage quantities,

mean occupation times, the number of distinct nodes visited by a walker, recurrence

features and several further quantities of interest. One might expect that there is an

infinite family of generating laws leading to an infinite set of different long-range

behaviors. However, as mentioned on “sufficiently large” networks the limiting

distributions after sufficiently large observation times (on undirected connected

networks and lattices) are either Gaussian distributions with Brownian motion or

Lévy distributions with Lévy flights. Both cases can be classified by symmetric α
stable distributions where the only real long-range navigation that is stable toward

rescaling of the network are “fractional walks” with fat-tailed (Lévy) distributions

emerging after many time steps. The jump patterns that occur from such heavy-tailed

jump distributions with the occurrence of long-range steps leading to diverging mean

square jump distances are indeed characteristic for Lévy flights (these can also be

referred to as Lévy motions). This behavior is contrasted by the finite mean square

displacements of normal diffusive Brownian motions with localized short-distance

jumps.

The present book consists of two parts comprising eight principal chapters. The

first part “Dynamics on General Networks” (Chapters 1–5) is devoted to the analysis

of Markovian random walk features that generally hold in connected undirected
networks where we consider both finite and infinite networks. The second part

“Dynamics on Lattices” (Chapters 6–8) is devoted to Markovian walks that take

place on regular networks and lattices such as hyper-tori and multidimensional

integer lattices. All results presented and discussed are systematically derived either

within the main text in the chapters or, when the derivations become too lengthy or

may disturb the course of the explanations, we have put them into appendices at the

ends of the chapters. In the derivations, we have chosen a rather intuitive approach

avoiding a formalistic and abstract level of the proofs. All the derivations are

performed by employing elementary mathematical methods that students of physics,

engineering science or mathematical disciplines in a progressed level should be

familiar with.
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In Chapter 1, we give a general introduction to basic graph theory where we

introduce the Laplacian matrix containing the topological information of the

network. We also consider some examples such as the ring and interacting cycles

where the eigenvectors and eigenvalues of the Laplacian matrix are explicitly known.

In this chapter, we derive the good properties of Laplacian matrices and define

matrical functions of the Laplacian matrix that conserve these good properties. In this

way, we can later define generalized random walk strategies with new generating

rules allowing fast navigation and long-range moves on the network. Among the

most interesting candidates, we identified power law matrix functions of the

Laplacian matrix, the so-called “fractional Laplacian matrix”, where we demonstrate

in detail that its powers are restricted to be between zero and one. We will see in the

course of the book that the fractional Laplacian stands out to be the essential

generator for asymptotically scale-free long-range navigation and emergence of Lévy

flights. Once we have derived the good properties that admissible Laplacian matrix

functions need to fulfill, we construct these functions and obtain, when these

functions are continuously differentiable, the family of good Laplacian functions as a

class of functions with completely monotonic derivatives. In all cases, the family of

good Laplacian functions constitutes a certain class of “Bernstein functions”. An

essential outcome of this chapter is that any admissible Laplacian matrix function

starts with the lowest order either with the Laplacian matrix (“type (i) matrix

functions”) or by non-integer fractional power of the Laplacian matrix where the

power is restricted between zero and one (“type (ii) matrix function”). Then, we

consider several examples of admissible Laplacian matrix functions that define new

random walk strategies. We demonstrate in the course of the book, coming from

several directions, that the lowest order determines the limiting distribution of the

walks generated by these functions after many time steps, namely type (i) walks

converge to Gaussian distributions and type (ii) walks to Lévy distributions given that

the network is sufficiently large. This universal limiting behavior is purely

determined by the lowest orders of the series expansion of the functions explored.

The effect of all the higher orders is wiped out and therefore is irrelevant.

In Chapter 2, we discuss a particular case of the Laplacian functions that maintain

the good structure of the Laplacian as outlined in Chapter 1 to explore the properties

of the fractional Laplacian of a network. The introduction of the fractional Laplacian

is motivated by the emergence of long-range correlations in a network. In this way,

by using this information we can define different global quantities and dynamical

processes that consider the whole structure of a network. We discuss the construction

of Laplacian matrix functions and obtain integral representations, especially for the

fractional Laplacian matrix by Mellin transforms being equivalent to the so-called

“Lévy-Kintchin representation” by employing Lévy densities or Lévy measures. In

the appendix of Chapter 2 (section 2.5) we briefly discuss some basic relations and

definitions of “measures” by considering “probability measures”.
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In Chapter 3, we analyze general properties of Markovian random walks on finite

connected (undirected) networks where we can identify this type of walk with

Markov chains. The generating laws of time-discrete Markovian random walks are

defined by master equations involving the (one-step) transition matrix that contains

the Laplacian matrix (function) of the walk. We deduce good properties for a

Markovian random walk on connected finite graphs and relate these good properties

to ergodicity and aperiodic ergodicity of the Markov chain. We perform a detailed

analysis of the spectral properties of ergodic (irreducible) and aperiodic ergodic

Markov chains and consider some basic laws such as the “fundamental theorem of
Markov chains” and ergodic hypothesis and theorem of Markov chains. We further

discuss the relation to the “strong law of large numbers”. We derive further the

stationary distribution of normal walks (walks simply generated by the Laplacian

matrix) allowing only steps to connected neighbor nodes, and we obtain in this way

the mean recurrence time for finite Markov chains (Kac’s formula). Also, we discuss

in this chapter periodic ergodicity as realized in bipartite graphs and analyze the

related spectral structure of the one-step transition matrix. In an appendix, we

analyze the asymptotic behavior of the transition matrix of classical Pólya walks

taking place on infinite multidimensional integer lattices Zd that are bipartite. We

show there that in such classical Pólya walks Gaussian distributions emerge after

many time steps.

In Chapter 4, we explore the good properties of a Laplacian matrix to obtain a

Markovian stochastic random walk (one-step) transition matrix defining the

transition probabilities between the nodes of a network in order to generalize random

walk strategies to obtain walks with long-distance steps. The chapter is devoted to a

systematic study of the non-local dynamics generated by a series of important good

Laplacian matrix functions where we investigate characteristics describing the speed

of the navigation on the network such as global times the walker needs to visit any

node of the network. In this study, the outstanding random walk search capacity of

the “fractional walk” is demonstrated.

In Chapter 5, we discuss fractional classical versus fractional quantum transport.

First, in this chapter, by starting with master equations defining the random walks on

multidimensional lattices, we derive two cases. (1) The classical normal diffusion

equation as a continuum limit of a “normal walk” where the step length is constant.

This case corresponds to a Pólya type walk on the lattice. (2) The fractional diffusion

equation obtained from a master equation with inverse power law fat-tailed step

distributions. This walk corresponds to a “fractional walk” (Lévy flight) on the

lattice. After deducing several key quantities, such as return probabilities to the

departure nodes for the classical walk, we discuss the fractional Schrödinger

equation and its network counterpart. In this way, we analyze several essential

universal features of fractional quantum walks where remarkable phase effects

generate universal behavior independent from the fractional index that characterizes

the search efficiency of the fractional quantum walk.
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The second part of the book, “Dynamics on Lattices”, is devoted to the analysis

of Markovian walks in lattices where we strongly focus on the “fractional random

walk” generated by fractional powers of the Laplacian matrix. In Chapter 6, we

consider as the most simple one-dimensional cases finite and infinite rings. First, we

derive an explicit form of the fractional Laplacian matrix for the infinite ring and use

this result to construct the fractional Laplacian matrix for the finite ring. Finally, we

deduce pertinent continuum limit distributions of nodes: the infinite space continuum

limit and the periodic string continuum limit. In these continuum limits, the

fractional Laplacian matrix takes the distributional representations of the kernels of

the fractional Laplacian kernel (Riesz fractional derivative kernel). These explicit

representations allow a thorough explicit analysis of the fractional walk and its

continuum limits on rings. In this chapter, uniquely the fractional operators that

generate the fractional walk on the ring and their continuum limits are derived. These

results are then employed for an explicit analysis of the fractional walk on the infinite

ring in Chapter 7.

In Chapter 7, we consider the fractional walk, i.e. the Markovian random walk

that is generated by the fractional power of the Laplacian matrix on the

d-dimensional (d = 1, 2, 3, 4, ...) periodic d-torus and the infinite lattice limit, which

is the d-dimensional integer lattice Zd. We introduce basic quantities characterizing

random walks such as the probabilities of first passage; the numbers of first passage

paths connecting a pair of nodes; the probability that a node is ever visited; the mean

first passage time (MFPT), i.e. the number of time steps the walker is expected to

need to visit a node; the mean occupation time or mean residence time (MRT) the

walker stays on a node or a set of nodes; the mean recurrence time (Kac formula); the

mean step distance (MSD) (or average velocity) of the walker and the number of

distinct nodes visited by the walker, among other characteristics. We analyze these

characteristics for the “fractional random walk”, i. e. the random walk generated by a

fractional non-integer power of the Laplacian matrix (with an admissible exponent

between zero and one). This walk is the “fractional” generalization of the classical

Pólya walk. We derive in this chapter the recurrence theorem for this walk (being the

fractional counterpart of Pólya’s recurrence theorem) where the fractional walk for

exponent one recovers the Pólya walk and Pólya’s recurrence theorem. We further

derive asymptotic representations for the Green’s function matrix for the fractional

walk where its symmetric elements have the interpretation of mean occupation times.

In the recurrent regime, the Green’s function diverges due to infinitely many returns

to nodes, whereas in the transient regime the Green’s function exists and is finite. We

derive for the transient regime the asymptotic representation of the Green’s function

(far from the departure node) taking the representation of Riesz potentials where in

the Pólya limit the classical Newtonian potentials are recovered. In the second part,

the fractional walk on the infinite ring is analyzed. For the infinite ring, all results

including the Green’s functions and their Riesz limits are derived in an explicit form

by utilizing the results of Chapter 6.
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Finally, Chapter 8 is devoted to the asymptotic analysis of Markovian walks on

undirected networks. We derive from the characteristic matrices such as the

Laplacian matrix, adjacency matrix and transition matrix continuum limit kernels,

which have to be conceived as distributions or generalized functions. Further, we

deduce the convolutional diffusion equation governing the asymptotic behavior of

Markovian walks. We especially focus on universal asymptotic behavior, i.e. the

limiting probability distributions that emerge after sufficiently many time steps in

the infinite network limits. We further introduce some “constitutive assumptions” on

the node distributions in the infinite multidimensional embedding space where we

assume spatially homogeneous and isotropic node distributions leading to isotropic

kernels. We analyze especially the distinct asymptotic behavior of types (i) and (ii)

Laplacian kernels, where type (i) corresponds to light-tailed adjacency density

kernels and type (ii) corresponds to heavy-tailed adjacency density kernels. We

deduce the limiting distributions of walks generated by types (i) and (ii) densities:

the probability density functions (PDFs) of type (i) walks converge to Gaussian

distributions, whereas the PDFs of type (ii) walks converge to Lévy distributions. As

an example, we consider the Pearson walk that serves as a proto-example for a

type (i) walk with restricted (constant) step distance that the walker can cover in

one-time step. We also derive for the transient regime the asymptotic Riesz potential

Green’s functions for type (ii) walks taking in the Pólya walk limit (representing

hence the universal asymptotic Green’s functions of all type (i) walks) the

representations of Newtonian potentials. In this way, we demonstrate again the

emergence of Brownian motions for type (i) walks where the steps lengths are drawn

from normal distributions, and for type (ii) walks the asymptotic emergence of Lévy

flights where the step lengths are drawn from Lévy distributions. At the end of this

chapter, we outline some ideas about how to approach the asymptotic behavior of

fractal node distribution by considering a Cantor dust distribution of nodes. In the

appendices of this chapter, we derive several important integrals and normalization

constants that occur repeatedly in the context of Lévy flights and the involved

fractional continuum limit distributional kernels. Especially we outline some

properties of α-stable symmetric distributions occurring as limiting PDFs in the

present analysis. We also derive the “spectral dimension” of Lévy flights in an

appendix (section 8.4). The spectral dimension is a generalization of the dimension

of the reciprocal (dual) state space. In all demonstrations, we try to give physical

interpretations to the derived quantities, and special care is taken with signs of the

kernels and their physical interpretations related to the stochastic properties of PDFs.

The present book represents a snapshot of some of our present results and is an

attempt to relate them with state-of-the-art contexts. At the same time, we hope that

this attempt may bear some fruit in terms of inspiration for the reader. We are happy

to receive any feedback.
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PART 1

Dynamics on General Networks





1

Characterization of Networks: the
Laplacian Matrix and its Functions

1.1. Introduction

The study of networks, their characteristics and dynamical processes taking place

on these structures have had a significant impact in different fields of science and

engineering, leading to important applications in the context of physics, biology and

social and computer systems among many others. In this chapter, we present an

introduction to several definitions in the context of the study of undirected connected

networks that are used and discussed in various parts of this book. We start with an

introduction to graph theory and concepts related to the connectivity of networks, in

particular, the concept of distance in networks and the average of this quantity that

gives a global characterization of the network connectivity. Different types of

networks and their characteristics are described as well as three common algorithms

to generate random networks.

In the second part of this chapter, the Laplacian matrix L of a network is

discussed along with general properties of the eigenvalues and the respective

eigenvectors of this matrix. The Laplacian matrix of a network has been explored in

connection with dynamical processes on networks, in particular, diffusive transport

and synchronization. Then we introduce a generalization of the notion of the

“Laplacian matrix” and study a class of matrix functions g(L) of the Laplacian

matrix that maintains its structure and general “good” properties. We demonstrate

that this generalization allows describing a rich variety of new dynamic processes

that cannot be captured by the Laplacian matrix. In the framework of this

generalization, we introduce the concept of the fractional Laplacian matrix, which is

explored in detail in Chapter 2, and we work in terms of general Laplacian matrix

functions in Chapter 4. In this way, we will define several types of random walk

strategies with long-range displacements on networks.
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1.2. Graph theory and networks

1.2.1. Basic graph theory

In order to study dynamical processes taking place on networks, it is necessary

to work within a mathematical formalism called graph theory. In the past decades,

graph theory and its applications in the context of networks have been an active field

of research in science [NEW 10]. In general, a graph G is defined by a set of elements

V of N nodes or vertices and a set of links or edges E composed of pairs of nodes

[DIE 05]. In general, a graph can represent multiple lines between two nodes and

loops connecting a node with itself. In Figure 1.1, we depict a graph illustrating these

types of links between nodes.

Figure 1.1. A graph with multiple edges. The set of nodes is
V = {1, 2, 3, 4, 5} and the set of edges is given by
E = {{1, 1}, {1, 2}, {2, 3}, {2, 3}, {3, 4}, {3, 5}}

In addition to the sets V and E , it is possible to incorporate additional information

to a graph by assigning values to nodes and edges; in this case, we have a weighted
graph. Also, when we consider the order of the pairs in the set of edges E , the resulting

structure is called a directed graph. A common graphical way to represent graphs is

assigning a point for each node and connecting the nodes with lines according to the

information in E . For directed graphs, the direction of the line is represented by an

arrow. The concept of graph constitutes an important tool to describe different types

of complex systems since with these structures we can assign nodes to the parts of the

system and represent the interactions between these parts through the use of edges.

In particular, an undirected graph without multiple edges and without loops is

called a simple graph. Simple graphs with i = 1, 2, . . . , N nodes are represented
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in terms of an N × N adjacency matrix A with elements Aij = Aji = 1 if there

exists an edge connecting the respective nodes, i.e. {i, j} ∈ E , and Aij = 0 when the

respective nodes are not connected by an edge. In this structure, the diagonal elements

satisfy Aii = 0 as a direct consequence of the absence of loops in the whole structure.

In simple graphs is defined the degree ki of the node i as ki =
∑N

l=1 Ail, and this

value gives the number of connections with other nodes that i has; in addition, the set

of nodes with direct links to i defines the neighborhood (or nearest-neighbors) of the

node i and where when we mention “neighbor nodes” i, j, we mean connected nodes

with Aij = 1.

In the following, we present some definitions that allow us to describe how the

nodes in a graph are connected [GRO 03]:

– A path in the graph G defined by the set of nodes V and edges E is a sequence of

nodes and edges

W = (v0, e1, v1, . . . , en, vn) ,

where {vi}ni=0 ⊆ V , {ei}ni=1 ⊆ E . For j = 1, . . . , n, the nodes vj−1 and vj are the

elements of the edge ej . In simple graphs, a path is represented by a sequence of nodes

W = (v0, v1, . . . , vn), with the additional condition that vj−1 and vj are connected

by an edge.

– A cycle in a graph is a path for which only the initial and final nodes coincide.

– The distance dij between nodes i, j in a graph is the number of edges of the

shortest path connecting the nodes i, j.

– A graph is called connected if for each pair of nodes there exists at least one path

connecting them.

– The diameter of a connected graph is the maximum distance between the nodes

in the graph.

– The average distance between pairs of nodes in a simple connected graph is

given by

〈d〉 ≡ 1

N(N − 1)

N∑
i=1

N∑
j=1

dij .

In addition, it is worth noting that in several cases the shortest path connecting two

nodes in a network is not unique.

Once these basic concepts are introduced to characterize the connectivity of a

graph, we present the definition of some particular simple graphs that can be defined

by using these terms. The following structures are used in different parts of the text:



6 Fractional Dynamics on Networks and Lattices

– Complete graph: in this case, all the pairs of nodes are connected with an

edge, and this is a fully connected structure. In terms of the adjacency matrix A,

the respective elements for a complete graph with N nodes are Aij = 1 − δij for

i, j = 1, 2, . . . , N , where δij denotes the Kronecker delta.

– Tree: a tree is a connected graph without cycles.

– Ring: this is a graph defined by a cycle for which any node has only two

neighbors.

– Regular graph: in a regular graph, each node has the same degree k. For

example, a complete graph with N nodes is a regular graph with degrees k = N − 1.

On the other hand, a ring is a regular graph with degree k = 2.

With these definitions, we have introduced some general concepts and terms of

graph theory that will be useful in different parts of this book. In the next section, we

apply this theory in connection with the study of networks.

1.2.2. Networks

In the following, we use the term network to denote simple connected graphs;

in addition, variations of this term are common. For example, in directed networks

we include information about the direction of the edges; on the other hand, the term

weighted network refers to networks with additional information characterizing the

nodes and strength of connections. In the last decade, the study of networks and its

applications has started a revolution in the understanding of complex systems. The

capacity of networks to describe a system in terms of its parts and interactions is

of utmost importance and applications of this theory appear in the study of systems

at different scales, from the microscopic world in the context of quantum transport,

the structure of DNA and polymers, to macroscopic scales in the study of epidemic

spreading, the structure of communication systems, social networks and the Internet,

among a vast number of applications [NEW 10]. In terms of the connectivity, there are

two special types of networks with N 	 1 nodes: small-world networks, for which

the average distance between pairs of nodes 〈d〉 ≡ 1
N(N−1)

∑
i,j dij for N large scales

as 〈d〉 ∝ log(N) and large-world networks with 〈d〉 that asymptotically scales as a

power of the number of nodes N .

1.2.2.1. Large-world networks

In large-world networks, the average distance between nodes behaves

asymptotically as a power of the number of nodes in the network; thus, distances

between nodes are comparable to the size of the network and there are no nodes with

connections that shorten distances in the whole structure limiting the network

connectivity. Among the large-world networks are some trees, rings, square and

triangular lattices, and well-known regular networks common in solid-state physics
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models. Another common group of large-world network is constituted by geometric

random graphs that are obtained from randomly placing points in a plane and

assigning as neighboring nodes the points that are in a circular region with a radius

smaller than a fixed value R around each node [DAL 02]. For a particular interval of

R, structures are obtained with the large-world property. On the other hand, in the

context of search in networks, regular networks have been used with a fraction of

lines removed; the resulting network is an irregular network with the large-world

property. In Figure 1.2, we represent some of the large-world networks mentioned

before; in Figure 1.2(a), we have a regular square lattice with degree k = 4, and in

Figures 1.2(b) and (c), we have a tree and a random geometric graph.

Figure 1.2. Large-world networks with N = 50 nodes. (a) Regular
square lattice with k = 4. (b) Tree. (c) Random geometric graph

Other large-world networks are found in the study of fractal networks that arise by

implementing various algorithms that can be deterministic or random. In the context of

real networks, we find large-world networks in the analysis of transport networks like

streets, subway stations, electric towers networks [NEW 10], pixels in digital images

[GRA 06a], fractal networks in the modeling of glasses, proteins, among others.

1.2.2.2. Small-world networks

In small-world networks, the average distance between nodes is very small in

comparison to the size N of the network. This property is common in several real

networks and there are three typical models for creating random networks that

capture this feature. These models are the random networks introduced by

Erdös–Rényi (1959), Watts–Strogatz (1998) and Barabási–Albert (1999).

In the Erdös–Rényi model, we start with N nodes. The creation of lines between

each pair of nodes depends on a fixed probability p to decide whether each pair of

nodes is connected or not; these cases appear with probability p and 1−p, respectively

[ERD 59]. A random graph generated by this model for given values of N and p is

denoted by GN,p. As an example, in Figure 1.3 we represent a random network with
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N = 1, 000 nodes generated by using this procedure with a probability p = 0.0069,

and the resulting structure is a connected network.

Figure 1.3. Erdös–Rényi network with N = 1, 000 nodes. We choose
the percolation limit p = log(N)/N = 0.0069 for the probability to

establish links between pairs of nodes

For an Erdös–Rényi network, the average value of the number of lines in GN,p is

pN(N − 1)/2 and the average degree is 〈k〉 = p(N − 1). On the other hand, the

probability P (k) to obtain a node with degree k is given by [BOL 01, BAR 08b]:

P (k) =

(
N − 1

k

)
pk(1− p)N−1−k ≈ 〈k〉k exp(−〈k〉)

k!
, [1.1]

for a determined value of 〈k〉. Thus, for finite N , the resulting P (k) is the binomial

distribution. On the other hand, in the limit N → ∞, the degree distribution P (k)
converges to a Poisson distribution. In general, GN,p is not a connected graph; the

value pc =
logN
N is a percolation limit of the structure, that is, for p > pc the network

becomes connected [ERD 59, NEW 10]. The Erdös–Rényi model is named after Paul

Erdös, who made important contributions to mathematics and especially in graph

theory, and Alfréd Rényi. They introduced this model in 1959 in [ERD 59]; this was

the first work suggesting a method to generate random networks. It is a model where

percolation phenomena arise and is currently one of the structures commonly used in

the study of dynamical processes on networks [NEW 10, BAR 08b].

Another common structure with the small-world property is generated with the

Watts–Strogatz model [NEW 10, WAT 98]. In order to obtain networks with a short



Characterization of Networks: the Laplacian Matrix and its Functions 9

average distance between nodes 〈d〉, this model consists of the relocation of edges at

random starting from a regular network. The model for the case in which the initial

network is a ring is defined by the following rules: we start with a ring with N nodes

and lines are added to connect each node with its k nearby neighbors (k/2− 1 to both

sides of each node), then each node in the resulting structure has a degree k and to

avoid a complete graph it is required that N 	 k 	 logN 	 1. From this regular

network, the end of each line is relocated with a probability p. The relocation requires

changing one end of the line in order to establish a connection with nodes that are not

in the initial k neighbors and thus, on average, pNk/2 lines are relocated. The choice

p = 0 results in a regular network, whereas for values 0 < p < 1 the connections

reduce the average distance 〈d〉. When p = 1, the resulting network is a disordered

structure similar to the Erdös–Rényi random network. In Figure 1.4, we represent

different cases of Watts–Strogatz networks with N = 20 nodes obtained for different

rewiring probabilities p.

Figure 1.4. Watts–Strogatz model. In this example, the initial network is a ring with
N = 20 nodes. We add lines to connect each node to its two next neighbor’s neighbor
nodes, and the resulting structure has a constant degree k = 4. Then, for 0 < p < 1
edges are randomly selected and one of its extremes is relocated. In the limit p → 1,
the network is similar to an Erdös–Rényi network

The Watts–Strogatz model was introduced by Duncan J. Watts and Steven

Strogatz in their joint paper [WAT 98] in 1998 in the context of synchronization in

dynamical systems and was the first random graph model to explain how the

small-world property emerges. In addition, the Watts–Strogatz model describes

networks in which a large fraction of neighboring nodes are also connected. This

feature is common in real networks, for example in the case of social networks a

person can have many acquaintances who are friends with each other [WAT 98].

In addition to the networks described before, one of the most common networks in

diverse applications is the random network generated by the Barabási–Albert model

[NEW 10, BAR 99]. Through the implementation of this model a random network is

generated, where the lines are added with a tendency to establish connections with

higher degree nodes, and the resulting structure has a probability P (k) of obtaining

a node of degree k that follows a power-law relation for nodes with k 	 1. In order
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to build the network, the algorithm starts with a number m0 of fully connected nodes.

At each step of the network growth, a new node is connected to m (with m ≤ m0)

nodes in the network with a probability of connecting to a node i with degree ki given

by pi = ki/
∑m

l=1 kl. This algorithm with a preferential attachment of links allows

establishing a scale-free network with the small-world property. The Barabási–Albert

model generates networks with a power law in the distribution of degrees of nodes.

In these networks, there are a few nodes that have a large number of neighbors and a

large number of nodes with few neighbors as we illustrate in Figure 1.5.

Figure 1.5. Barabási–Albert random network with N = 1, 000 nodes.
We observe that there exists few nodes with a large number of

connections and many nodes with few connections

Finally, in addition to the artificial networks introduced in this section, it is worth

mentioning that diverse real systems can be described by means of networks and the

analysis of these has revealed structures with the small-world property. In particular,

scale-free networks have been found in the context of the Internet structure, social

networks that emerge in collaborations between scientists, online social networks,

actors in Hollywood movies, transport networks, among countless real networks

[NEW 10, COS 11]. Diverse characteristics of complex networks and how they

emerge in real cases are studied in [NEW 10].
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1.3. Spectral properties of the Laplacian matrix

The spectral analysis of diverse matrices associated with networks reveals

structural properties and is an important tool in the study of dynamical processes

taking place on networks [MIE 11, GOD 01]. In this section, we present some basic

definitions and results about the Laplacian matrix of a simple undirected graph that

describes the topology of a network. We also explore general properties related to the

eigenvalues and eigenvectors of this matrix.

1.3.1. Laplacian matrix

We consider undirected simple connected networks with N nodes i = 1, . . . , N .

The topology of the network is described by the adjacency matrix A with elements

Aij = Aji = 1 if there is an edge (or link) between the nodes i and j and Aij = 0
otherwise; in particular, Aii = 0 avoiding links that connect a node with itself. In

terms of the elements of the adjacency matrix, the degree ki of the node i is the number

of neighbors of this node and is given by ki =
∑N

l=1 Ail. Now, by using this notation,

the Laplacian matrix L of a network with N nodes is a symmetric N ×N matrix with

elements Lij given by [NEW 10, GOD 01]

Lij = kiδij −Aij [1.2]

for i, j = 1, 2, . . . , N , where δij denotes the Kronecker delta. In matrical

representation we have L = K − A, where we denote with K the diagonal matrix

with the node degrees k1, k2, . . . , kN in the diagonal entries. In addition, from

equation [1.2] we observe that non-diagonal elements of L are negative or null, and

then Lij ≤ 0 for i 
= j.

On the other hand, one of the most important properties of the Laplacian matrix is

that this matrix defines a quadratic form. In this way, for an arbitrary column vector x
in R

N with components x1, x2, . . . , xN , we have [GOD 01]

xT Lx =
∑

(i,j)∈E
(xi − xj)

2 ≥ 0, [1.3]

where E denotes the set of edges of the network and the row vector xT is the transpose

of x. The result in equation [1.3] implies that L is positive semidefinite.

EXAMPLE.– The Laplacian of an edge

In order to shed light on the general result in equation [1.3], it is convenient to

analyze a simpler graph formed by the two nodes i and j connected with an edge

ε = {i, j}. In this case, the Laplacian matrix Lε is

Lε =

[
1 −1
−1 1

]
. [1.4]
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Hence, for a vector

[
xi

xj

]
we have

[
xi xj

] [ 1 −1
−1 1

] [
xi

xj

]
= (xi − xj)

2. [1.5]

Now, by using this result for the Laplacian of a general network L and the arbitrary

column vector x in R
N , we obtain

xT Lx = xT

[∑
ε∈E

Lε

]
x =

∑
ε∈E

xT Lεx . [1.6]

Here, Lε is the N ×N matrix associated with the edge {i, j}. The structure of this

matrix Lε is similar to [1.4] but now described in terms of an N ×N matrix. For this

case, it is easy to show that the result in equation [1.5] is maintained and as a result,

we have xT Lx =
∑

{i,j}∈E(xi − xj)
2, a relation that proves that the Laplacian is a

quadratic form.

Going back to the general result in equation [1.3], this relation also can be deduced

from the definition of the Laplacian matrix. By using this approach, we have

1

2

N∑
i=1

N∑
j=1

Aij(xi − xj)
2 =

1

2

N∑
i=1

N∑
j=1

Aij

(
x2
i + x2

j − 2xixj

)

=
1

2

⎛
⎜⎜⎜⎜⎝

N∑
i=1

2x2
i

N∑
j=1

Aij

︸ ︷︷ ︸
ki

−2
N∑
i=1

N∑
j=1

Aijxixj

⎞
⎟⎟⎟⎟⎠ ,

where the prefactor 2 in the first term of the last expression comes into play by using

Aij = Aji, and this equation is then written as

1

2

N∑
i=1

N∑
j=1

Aij(xi − xj)
2 =

N∑
i=1

kix
2
i −

N∑
i=1

N∑
j=1

Aijxixj

=
N∑
i=1

N∑
j=1

(kiδij −Aij)xixj =
N∑
i=1

N∑
j=1

Lijxixj .

We can hence write equation [1.3] in the form of the last relation. In this way, the

result in equation [1.3] implies that L is a positive semidefinite matrix and therefore

its eigenvalues are all non-negative [GOD 01].


