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Preface

Approximately 80% of the liquid chromatographic methods are gradient meth-
ods. In this book, we have tried to shed light on the "whole" world of the gra-
dient in a detailed and practical way. Thus, the use of gradients is discussed in
ion analysis and in biochromatography, apart from classical applications such as
RP and LC-MS coupling: the salt and the pH gradient. Newer separation tech-
niques such asHILIC andSFCaswell as flow and temperature gradients roundoff
the discussion. The book is intended for the experienced user and the practice-
oriented supervisor. Although the discussion is in depth in many places, we have
endeavored to always keep practice in view. We hope the reader finds useable in-
formation and tips on this widely used separation mode. I thankWiley-VCH and
especially Stefanie Volk and Frank-Otmar Weinreich for the good and trusting
cooperation.

Blieskastel, January 2019 Stavros Kromidas





XI

The Structure of the Book

The book consists of two parts: Part 1 provides the basic information on the
gradient technique, while Part 2 presents the specifics of the gradient in different
modes and separation techniques.

Part 1: The Principles of Gradient Elution

In Chapter 1 (Aspects of Gradient Optimization) Stavros Kromidas discusses in a
compact fashion what is important in gradient optimization and presents simple
“to-do” rules. Frank Steiner explains in Chapter 2 (Instrumental Influences on the
Quality and Performance of Gradient Methods and Their Transfer Between Dif-
ferent HPLC Devices) to what extent even the smallest differences betweenHPLC
systems can strongly influence chromatography. Part 1 ends with Chapter 3 by
Hans-Joachim Kuss (Optimization of a Reversed-Phase Gradient Separation Us-
ing EXCEL), which shows one way to predict gradients using EXCEL.

Part 2: The Specifics of the Gradient in Different Separation
Modes

Chapters 4 and 5 deal with the separation of ionic or ionizable components. In
Chapter 4 (Gradient Elution of Ionic Compounds) JoachimWeiss deals with both
the separation of small molecules such as inorganic ions and the separation of
largemolecules such asmonoclonal antibodies and shows the specifics of pH and
salt gradients. In Chapter 5 (The Gradient in Biochromatography) Oliver Genz
deals with the different separation modes in biochromatography, which should
also be noted here in particular for gradient runs. In Chapter 6 (Specifications of
Gradients in Hydrophilic Interaction Liquid Chromatography (HILIC)) Thomas
Letzel discusses all applicable gradients in HILIC, including temperature gradi-
ents. In Chapter 7 (Specifications of Gradients in Supercritical Fluid Chromatog-
raphy), Stefan Bieber and Thomas Letzel present the three possibilities of gradi-
ent elution in SFC in condensed form. In Chapter 8 (Aspects of Gradient Elution
in LC-MS Analysis) Markus Martin deals in detail with gradients in LC-MS cou-
pling. Here, instrumental aspects of the LC and MS parts as well as the prob-



XII The Structure of the Book

lem of quantification of gradients are discussed. Finally, in Chapter 9, Egidijus
Machtejevas describes some rare gradient modes (Additional Tools for Method
Development: Flow and Temperature Gradients).
The book does not have to be read linearly. The individual chapters have been

written in such a way that they represent completed stand-alone modules –
“jumping” between them is possible at any time. We have tried to do justice to
the character of the book as a reference work. Let the reader benefit from this.
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Part 1

Principles of Gradient Elution

Gradient HPLC for Practitioners, First Edition. Edited by S. Kromidas.
©2019Wiley-VCHVerlagGmbH&Co.KGaA.Published2019byWiley-VCHVerlagGmbH&Co. KGaA.
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Chapter 1

Aspects of Gradient Optimization
Stavros Kromidas (translated from German by Steve Ross)

1.1 Introduction

Gradients are versatile and therefore find wide application. For example, gradi-
ents are just as essential inmethoddevelopment of unknown samples as for quan-
tification at trace levels. The theoretical background of gradient elution is quite
complex, becausewhat happens in the columnduring gradient elution, compared
to isocratic separations, is affected by more factors; these sometimes act in op-
posite directions or are multiplicative.
Herein, we will focus on selected aspects of the optimization of gradient sepa-

rations in RP chromatography in deliberately simple form. Other important as-
pects of the gradient such as theory, equipment, and troubleshooting are left to
other sources [1–4]. First, we briefly describe the action of a gradient in the col-
umn, then using some basic formulas we discuss the characteristics/features of
the gradient. On the basis of this, possibilities for optimization of the following
objectives will be shown: low detection limit, high peak capacity, sufficient reso-
lution, and the shortest possible retention times. Finally, there is a summary with
some basic rules and recommendations.

1.2 Special Features of the Gradient

InHPLC, interactions of different strengths between the analytes on the one hand
and eluent components and the stationary phase on the other usually occur dur-
ing separation. In the case of isocratic separations there is a predetermined, con-
stant eluent composition, consequently during chromatography an interaction of
constant strength takes place between the eluent molecules and the phase mate-
rial.
What happens now in a gradient run? During gradient separations the strength

of the mobile phase increases, consequently its interaction with the stationary
phase also increases during the gradient run. The rule in RP chromatography is:
the more organic, nonpolar/hydrophobic the eluent becomes during the separa-
tion (more %B, ACN or MeOH), the stronger its interaction with the organic,
nonpolar surface of an RP material becomes – it is indeed “like with like,” that

Gradient HPLC for Practitioners, First Edition. Edited by S. Kromidas.
©2019Wiley-VCHVerlagGmbH&Co.KGaA.Published2019byWiley-VCHVerlagGmbH&Co. KGaA.
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means the nonpolar ACN or MeOHmolecules naturally “like” for example non-
polar C18 alkyl groups.
In the course of a gradient, because of the ever increasing concentration of

ACN/MeOHmolecules, the substancemolecules become subject to increasingly
strong competition in their interactions with the C18 alkyl groups. Because of
this, the substancemolecules are increasingly forced to leave the stationary phase
faster, go into the mobile phase earlier and thus elute earlier compared to iso-
cratic separations. With 100% MeOH or ACN at the end of the gradient even
the very hydrophobic components of the sample elute, maybe even persistent or-
ganic contaminants that may have accumulated on the surface of the stationary
phase – as a side effect the column is flushed at the same time.
Focusing on the peak form, with gradients we have two opposing trends. On

the one hand, the later the peaks elute, the more the substance zone is subject to
dispersionprocesses in the columnand thus bandbroadening initially increases–
analogous to isocratic separations. On the other hand, the acceleration of themi-
grating substance zone increases to the same extent, since the elution strength of
the eluent permanently increases from the beginning to the end. As a result,
these effects compensate each other and with a gradient we usually have narrow
peaks. Note that with a gradient the concentration of the elution band constantly
increases leading to lower band broadening in comparison with isocratic separa-
tions, consequently resulting in low detection limits.
This is true both for the front and for the end part of the chromatogram, in the

ideal case the peak width remains constant. For this reason, in conjunction with
the gradient speaking of a “plate number” is not allowed. The plate number, a
measure of band broadening, is defined only for isocratic conditions. The phe-
nomenon described here means, among other things, that in practice a reduction
in packing quality and a suboptimal hardware (system dead space), which with
isocratic separations leads to broad peaks, is not as noticeable with gradient sep-
arations. Even with “poor” equipment and “poor” columns chromatograms from
a gradient elution look good, especially if the gradient is steep and ACN is used
as the organic content of the eluent – a welcome fact for sample chromatograms
in manufacturer’s brochures . . .
Positive from the user perspective is, that simple gradient separations using

20–50mm columns on conventional equipment generally prove to be no prob-
lem, at least as far as the peak shape is concerned. Also the advantage of smaller
particle sizes, for example 2 or 3 μm particles compared to 5 μm particles, is less
relevant in many applications. In the case of a difficult matrix, 3.5–5 μmmaterial
should therefore initially be considered. Unless one has to separate a large num-
ber of very similar analytes – then of course the separating efficiency of ≤ 2 μm
particles also becomes relevant for gradients. In this context, it is also pointed
out that as the eluent permanently becomes stronger (= nonpolar), the migrating
substancemolecules at the end of a peak, i.e., at the trailing edge,move faster than
those at the beginning of the peak as the later eluting molecules of the substance
band are always pushed “forward” faster. This fact, known as “peak compres-
sion,” has the effect that in gradient separations tailing is rarely observed. Peak
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symmetry is about 10% better compared to an isocratic run with equivalent elu-
ent composition (H.-J. Kuss, personal communication).

1.3 Some Chromatographic Definitions and Formulas

Let us now consider some chromatographic definitions which are known from
theory – which, by the way, was developed originally for GC and much later for
isocratic LC separations. The derivation of the formulas used below is omitted,
they are only used to elaborate the consequences for practical optimization. For
a more detailed discussion, see references [2–4] and in particular [1].
The resolution R is, in simplified form, the distance between two peaks on the

baseline. The retention factor k (formerly the capacity factor k′) is the ratio of the
time a component spends in/on the stationary phase and in themobile phase, that
is the quotient of the net retention time t′R (time spent in the stationary phase)
and the flow-through or dead or mobile time t0 and tm (time spent in the mo-
bile phase). It thus represents a measure of the strength of the interactions of
these components on this column under these conditions: k = t′R∕t0. However,
the retention factor is not constant for a gradient. Very high at the beginning
(with 100 or 95% water/buffer the substances literally “stick” to the beginning of
the stationary phase), it becomes less during the separation and at the end of the
gradient is very small. With 90 or 100%MeOH or ACN, the substance molecules
hardly have a chance to stay on the stationary phase, because the competition for
the “attraction” of the C18 group has now become huge. Put simply, with a gradi-
ent from 100% water/buffer to 100%MeOH/ACN, the k value at the beginning is
virtually infinite – in some references numbers between 3500–4000 are given –
and at the end almost zero. Since the k-value changes during gradient elution, a
k∗ value (or k) was introduced to take account of this particular feature [1]: this
is the k-value of a component when it is just in the middle of the column.
Although the need for such a term to describe the gradient may be questioned,

the k∗ value is used here because it has advantages for our deliberations. And that
the interactions, and therefore a measure for them, a retention size, is important
for optimization considerations, is clear – however such a term may be defined.
The separation factor α is the quotient of the retention factors of two com-

ponents that one wishes to separate, k1 and k2, and describes the ability of the
chromatographic system to separate these two components. In the literature,
different formulas are used for R and k∗. However, they are quite similar and ul-
timately lead, when the focus is on the practice, to similar numerical values and
thus to similar propositions.
Here is an example: in Eq. (1.1) for the second term (the selectivity term), in

addition to (α − 1) the terms ln α or α − 1∕α are also to be found in the literature.
Assuming a α-value of 1.05, the following numerical values for the selectivity
term are found: 0.048, 0.049, and 0.050. However, these different numbers affect
the value of the resolution only in the second decimal place.


