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MAPK kinase kinase regulation of SAPK/JNK 
pathways 

Lisa Stalheim and Gary L. Johnson 

Abstract 

SAPK/JNK members of the MAPK family are regulated by at least fourteen 
known MAPK kinase kinases (MKKKs). In addition to the kinase domain, each 
MKKK encodes different protein interaction domains and motifs to control their 
interaction with upstream GTPases such as Rho, Rac and Cdc42, downstream 
MAPK kinases, and scaffold proteins that assemble the MKKKs into signaling 
complexes for the control of physiological responses to a plethora of different 
stimuli. Several MKKKs coordinately regulate the SAPK/JNK pathway with other 
MAPKs including p38, ERK1/2 and ERK5. It is the diversity of MKKKs within 
the MAPK signaling network that provides the signaling specificity for activation 
of MAPKs including SAPK/JNKs and the integration with other signaling path-
ways within cells. 

1 Introduction 

SAPKs are MAPKs shown to be activated by many different stress stimuli, hence 
their name stress-activated protein kinases (SAPKs) (Kyriakis et al. 1994). The 
same kinases were shown to phosphorylate c-Jun at Ser 64 and 73 (Pulverer et al. 
1991; Smeal et al. 1992; Derijard et al. 1994), hence the name Jun N-terminal 
kinases (JNKs). There are three SAPK/JNK genes (JNK1, JNK2, JNK3). Herein, 
for simplicity they are referred to as JNKs. JNK1 and JNK2 are expressed ubiqui-
tously while JNK3 has a more limited expression primarily in brain, heart, and tes-
tis (Pulverer et al. 1991; Derijard et al. 1994; Kyriakis et al. 1994; Yang et al. 
1997). Including c-Jun, several members of the AP-1 transcription factors are sub-
strates for JNKs including JunD, ATF2, and ATF3 (Behrens et al. 1999; Shaulian 
and Karin 2001). Phosphorylation of AP-1 members by JNKs enhances AP-1 tran-
scriptional control of specific gene expression. The importance of AP-1 in the 
transcriptional control of many different genes involved in homeostasis and the 
role of JNKs in regulating AP-1 activity led to an intense study of JNK regulation 
and it is now clear that JNKs have many substrates in addition to AP-1. The tar-
geted gene disruption of JNK1, JNK2, and JNK3 has defined tissue-specific func-
tions for each isoform including the control of metabolism, apoptosis, motility, 
proliferation,  DNA repair,  and the  regulation of  genes  involved in  homeostasis 

© Springer-Verlag Berlin Heidelberg 2008
DOI 10.1007/4735_2007_0238 / Published online: 1 August 2007

Topics in Current Genetics, Vol. 20
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Fig. 1. MKKKs that control the MAPK pathways. There are twenty defined MKKKs 
known to regulate MAPK pathways. MKKKs phosphorylate and activate specific MKKs. 
Activated MKKs phosphorylate and activate specific MAPKs. The MKKKs and MKKs 
that regulate JNKs are highlighted in dark grey. 

such as proteases and cytokines (Yang et al. 1997; Kuan et al. 1999; Sabapathy et 
al. 1999; Chang et al. 2003).  

JNKs, like all MAPKs, are part of a three kinase signaling module (Fig. 1). 
JNKs are phosphorylated and activated by the MAPK kinases, MKK4 and MKK7. 
MKK4 and MKK7 are phosphorylated and activated by MAPK kinase kinases 
(MKKKs). Interestingly, whereas there are eleven MAPKs (JNK1/2/3, ERK1/2, 
p38, α/β/γ/δ, ERK5 and ERK7), there are only seven MKKs and at least twenty 
MKKKs. It is noteworthy that fourteen of the twenty defined MKKKs activate the 
MKK4/7→JNK1/2/3 pathway, demonstrating the importance of the JNK signaling 
pathway in the cellular response to stimuli that frequently involve potentially 
harmful or lethal consequences for the cell. Such stress stimuli include irradiation, 
toxins, drugs, osmolarity, temperature, changes in cell shape, adherence, cy-
toskeletal dynamics, and responses to antigens, growth factors and cytokines. Ta-
ble 1 shows a partial list of substrates for JNKs that control adaptive responses of 
the cell to these different stimuli.  
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Table 1. Phosphorylation substrates for JNKs 

Category Substrate 
Transcription factors c-Jun 
 JunD 
 ATF2 
 ATF3 
 Elk-1 
 Elk-3 
 P53 
 NFAT4 
 HSF-1 
 c-Myc 
 Androgen receptor 
 RXRα 
 RARα 
Signaling proteins IRS-1 
 Paxillin 
 14-3-3 
Microtubule-associated proteins MAP1 
 MAP2A 
 Tau 
 Doublecortin (DCX) 
 Amyloid β precursor protein 
Bcl family proteins Bcl-2 
 Bcl-xl 
 Mcl-1 
 Smac 
 Bim 
 Bmf 
Nuclear core complex Nup214 

2 Organization of the MKKK-MKK4/7-JNK1/2/3 signaling 
module 

Specificity in the organization of JNK signaling modules is controlled in part by 
recognition motifs for MKKK-MKK4/7 and MKK4/7-JNK1/2/3 interactions. A 
docking site referred to as DVD (domain for versatile docking) encoded near the 
C-terminus of MKK4 and 7 interacts with the N-lobe of the kinase domain of the 
specific MKKK (Takekawa et al. 2005), providing a docking mechanism for se-
lective interaction of MKKKs and MKKs. Docking sites between the JNKs and 
MKK4 and 7 provide specificity in the interaction of the MKK and MAPK 
(Jacobs et al. 1999; Sharrocks et al. 2000; Fantz et al. 2001; Ho et al. 2003; 
Mooney and Whitmarsh 2004; Ho et al. 2006). Similar recognition motifs are pre-
sent in JNK substrates such as c-Jun and ATF-2 (Sharrocks et al. 2000). 

There are also several scaffolding proteins that organize specific JNK signaling 
modules.  These scaffold proteins  generally have no  catalytic function,  but rather 
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Fig. 2. Dendrogram showing the twenty MKKKs based on homology of their kinase do-
main primary amino acid sequences. The MAPKs activated by each MKKK are shown in 
the highlighted circles on the dendrogram. 

have docking sites for binding specific MKKKs, MKKs, and MAPKs. Scaffold 
proteins that regulate the JNK signaling module include the JIP (JNK Interaction 
Proteins) 1-4 proteins, POSH (Plenty of SH3s), JKAP1 (SKRP), filamin, CrkII 
and IKAP (Morrison and Davis 2003). Scaffold proteins play an important regula-
tory role in controlling JNK signaling because they frequently bind specific 
MKKKs and localize the signaling module within the cell. Thus, scaffold proteins 
can regulate the spatio-temporal dynamics of JNK signaling. 

3 MKKKs as signaling hubs controlling JNK activation 

Figure 1 shows the MKKKs that have been defined to regulate MKK-MAPK 
modules. Of the twenty MKKKs, fourteen have been shown to regulate JNK activ-
ity. Six MKKKs regulate the ERK1/2 pathway while only two MKKKs are de-
fined to regulate the ERK5 pathway. Nine MKKKs are known to regulate the p38 
pathway. The restricted number of MKKKs regulating the ERK1/2 and ERK5 
pathways implies a more restricted response and function for these MAPKs. For 
example, ERK1/2 is important in regulating cell proliferation in response to tyro-
sine kinases. The fact that ERK5 has a single MKK and only two defined MKKKs 
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shown to physiologically regulate ERK5 activity suggests a rather restricted func-
tion for this MAPK. Physiologically, ERK5 appears important in regulating vascu-
lar development and maintenance of the vasculature in adults. In contrast, the 
large number of MKKKs that regulate JNK and p38 indicates a role for these 
MAPKs in the response to diverse stress stimuli. 

Figure 2 shows a dendrogram for the relationship of the different MKKKs 
based on sequence homology of their kinase domains. Based on the kinase ho-
mologies, the MKKKs can be divided into six groups: MEKK, MLK, Raf, 
Tao/Tpl2, Mos, and TAK1. Among these twenty known MKKKs, members of the 
MEKK, MLK, TAO, and TAK1 groups regulate JNK activation. The properties of 
each group of MKKKs controlling JNK activation is discussed below. 

3.1 MLKs (mixed lineage kinases) 

The MLK group has seven members that can be further divided into the MLKs 
(MLK1, 2, 3, 4), DLKs (DLK, LZK), and ZAK (Gallo and Johnson 2002). The 
members of the MLK subgroup each have an N-terminal Src-homology-3 (SH3) 
domain, kinase domain, leucine zipper region and a Cdc42/Rac interactive binding 
(CRIB) domain. DLKs and ZAK have kinase domains and leucine zipper regions 
but lack the CRIB and SH3 domains. ZAK is structurally similar to the DLKs but 
also encodes a sterile-alpha motif that mediates homo- or hetero-dimerization.  

3.2 MEKKs (MAPK-ERK kinase kinases) 

MEKK1, MEKK2, and MEKK4 have each been shown to regulate the JNK path-
way in response to different stimuli. MEKK1 is a large 196 kDa protein with 
complex regulation. MEKK1 appears to be regulated by both Rac/Cdc42 and 
RhoA GTPases (Fanger et al. 1997; Gallagher et al. 2004). Furthermore, MEKK1 
is the only member of the MKKK-MKK-MAPK signaling network that has a cas-
pase 3 cleavage site. MEKK1 is also the only member of the MAPK signaling 
network to encode a RING domain containing E3 ubiquitin ligase function. The 
MEKK1 RING domain has been shown to regulate auto-ubiquitination of MEKK1 
that inhibits its kinase activity as well as ubiquitinate and stimulate the degrada-
tion of ERK1 and c-Jun (Lu et al. 2002; Witowsky and Johnson 2003; Xia et al. 
2007). MEKK1 is also one of only a few proteins in defined proteomes to encode 
a SWIM domain whose function in MEKK1 remains undefined (Makarova et al. 
2002). 

Whereas MEKK1 regulates both the ERK1/2 and JNK pathways, MEKK2 
regulates the ERK5 and JNK pathways. MEKK2 is only one of two MKKKs, the 
other being MEKK3, which regulate the MEK5-ERK5 pathway (Nakamura and 
Johnson 2003; Uhlik et al. 2004; Nakamura et al. 2006). MEKK2 and MEKK3 
encode PB1 (Phox-Bem1p) domains that selectively heterodimerize with the 
MEK5 PB1 domain to form a functional MEKK2 (or MEKK3)–MEK5-ERK5 ter-
nary complex (Nakamura and Johnson 2003; Nakamura et al. 2006). The C-
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terminal moiety of the MEKK2 domain is also capable of binding MKK7 for JNK 
activation. In contrast, the MEKK3 PB1 domain does not bind MKK7. Thus, 
MEKK2, but not MEKK3, regulates JNK activation.  

MEKK4 selectively phosphorylates MKK3, MKK4, and MKK6 leading to the 
activation of both JNK and p38. MEKK4 binds Cdc42 and Rac via a CRIB do-
main and kinase-inactive MEKK4 inhibits Cdc42 and Rac activation of JNK 
(Fanger et al. 1997; Gerwins et al. 1997). MEKK4 also binds GADD45 α, β and γ 
proteins (Mita et al. 2002; Chi et al. 2004; Miyake et al. 2007), resulting in activa-
tion of MEKK4 kinase activity. MEKK4 and MEKK1 also bind the scaffold pro-
tein Axin, leading to JNK activation (Zhang et al. 1999; Zhang et al. 2001; Luo et 
al. 2003; Wong et al. 2004), suggesting MEKK4 and MEKK1 control JNK activa-
tion in the non-canonical Wnt signaling pathway.  

3.3 ASK1 (apoptosis signal-regulating kinase 1) 

ASK1 binds thioredoxin near its N-terminus and is activated in response to reac-
tive oxygen species that cause the release of thioredoxin (Hayakawa et al. 2006). 
In addition, ASK1 binds JIP scaffold proteins and phosphorylates MKK4, MKK7, 
and MKK3, thereby activating both JNK and p38. ASK1 has been found to be ac-
tivated by LPS and various pro-inflammatory cytokines.  

3.4 TAK1 (TGFβ-activated kinase 1) 

TAK1 is activated in response to IL-1, TNFα, and LPS stimulation of cells. In re-
sponse to pro-inflammatory stimuli, TAK1 forms a complex with TAB1, which 
forms a complex with TAB2, TAB3, and the E3 ubiquitin ligase TRAF6 (Wang et 
al. 2001; Kanayama et al. 2004). This activated TAK1 complex coordinates the 
activation of MKK4, MKK6, and IKK leading to the activation of JNK, p38, and 
NF-κB.  

3.5 TAO1 (thousand and one-amino acid kinase 1)  

TAO1 and the related kinase TAO2 were cloned using degenerate oligonucleo-
tide-based PCR cloning strategies for kinases related to the yeast Ste20 kinase 
(Chen et al. 1999; Zhou et al. 2004). Other than overexpression studies showing 
TAO kinases activate JNKs and p38, little is known about their function.  

The different MKKKs described above that regulate the JNK pathway should 
be thought of in the greater context of the MAPK signaling network. The differing 
regulatory domains and motifs encoded in each MKKK selectively control their 
activation, inactivation, and association with regulatory proteins and scaffold pro-
teins to mediate localization within the cell. As we see with most MKKKs that 
regulate the JNK pathway, MKKKs are often able to phosphorylate more than one 
MKK and thus regulate more than one MAPK pathway (see Fig. 1). Many 
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MKKKs that regulate JNK also regulate p38 consistent with a coordinated activa-
tion of JNK and p38 in response to stress stimuli. In contrast, MEKK1 activates 
JNK and ERK1/2, and MEKK2 activates JNK and ERK5. It is the differential 
control of MKKK activation and the organization of MKKKs with other proteins 
in signaling complexes that provide an amazing combinatorial diversity for the in-
tegration of MAPK networks for control of cellular responses to many different 
stimuli. 

4 Insight into the function of MKKKs regulating the JNK 
pathway from targeted gene knockouts  

The function of MKKKs controlling the JNK pathways have been defined using 
biochemical and cell biological approaches, but elucidation of physiological func-
tions has mostly come from targeted gene knockouts. Of the MKKKs that regulate 
the JNK pathway the phenotypes of MEKK1, MEKK2, MEKK4, ASK1, TAK1, 
and MLK3 knockouts in mice have been reported. A brief description of the phe-
notypes of these knockout mice demonstrates their selective function in cellular 
and animal physiology (see Table 2 for summaries of phenotypes).  

4.1 MEKK1 

Mice having the targeted deletion of MEKK1 generally appear normal at birth and 
are fertile. In a SVEV129 mouse genetic background, MEKK1-null neonates have 
open eyes at birth, indicative of an epithelial morphogenesis defect (Yujiri et al. 
1998, 2000; Zhang et al. 2003; Xia and Kao 2004; Xia and Karin 2004). In addi-
tion, MEKK1 deficient mice have wound healing and homeostasis defects associ-
ated with defective tissue remodeling. MEKK1-deficient cells have defective mi-
gration due to a loss of calpain activation required for release of focal adhesions at 
the rear of migrating cells (Cuevas et al. 2003). MEKK1 has also been shown to 
be required for activin-dependent epithelial cell migration (Zhang et al. 2005). In 
human breast cancer cell lines and mouse fibroblasts, MEKK1 has also been 
shown to be a primary regulator of urokinase-type plasminogen activator (uPA), 
which is required for cell invasion of the extracellular matrix (Witowsky et al. 
2003). MEKK1 has been shown to regulate c-Jun, JunB, and Fra-2 expression and 
degradation and hence is a key regulator of AP-1 function (Cuevas et al. 2005). 
The role MEKK1 plays in the control of AP-1 function, protease expression, cell 
migration, and invasion is consistent with its involvement in wound healing, tissue 
remodeling, and tumor metastasis. In a transgenic model of metastatic breast can-
cer, MEKK1 deficiency markedly delayed tumor metastasis to the lungs. This was 
found to be due to a delay in dissemination of tumor cells because of an inability 
of the tumor to breakdown the basement membrane surrounding the tumor cell-
filled ducts of the mammary gland (Cuevas et al. 2006). Recently, MEKK1 defi-
ciency in a C57/Bl6  background has also been shown to be  involved in fetal liver 
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Table 2. Phenotypes of MKKKs Regulating JNK 

MKK Described knockout phenotypes 
MEKK1 Epithelial morphogenesis defects (open eyes at birth, defective tissue re-

modeling) 
Defective cell migration, loss of calpain activation 
Inhibition of urokinase-type plasminogen activator expression  
Suppressed cell invasion and dissemination of tumor cells 
Defective fetal liver hematopoiesis 
CD40 control of germinal center formation and B cell antibody produc-
tion 
TH2 T cell tolerance 

MEKK2 Mice normal and fertile at birth 
Suppressed TNFα, IL1α & β and IL-6 production in response to FGF-2 
Defective IgE-Fc�R1 signaling in mast cells 
Role in osteoclast function 

MEKK4 Neural tube closure defects (exencephaly with enhanced apoptosis) 
Neuronal migration defects 
Skeletal defects 

ASK1 Viable and fertile 
Fibroblasts have altered response to reactive oxygen species 
Decreased TNFα production in response to LPS 
Resistant to LPS-induced toxic shock 

TAK1 Embryonic lethal due to vascularization defects 
Critical for IL-1 and TNFα signaling 

MLK3 Viable and fertile 
Mild defect in epidermal tissue of the dorsal midline 

 
hematopoiesis (Bonnesen et al. 2005), CD40 regulation of germinal center forma-
tion and B cell antibody production (Gallagher et al. 2007), and a JNK-Itch E3 
ubiquitin ligase-mediated TH2 process in TH2 tolerance and lung inflammation 
(Venuprasad et al. 2006). 

4.2 MEKK2 

Mice having the targeted deletion of MEKK2 appear normal at birth and are fertile 
(Kesavan et al. 2004). MEKK2 deficiency has been shown to inhibit activation of 
ERK5 in response to growth factors such as FGF-2 in fibroblasts and IgE stimula-
tion of the FcεR1 in mast cells (Garrington et al. 2000; Kesavan et al. 2004). Like 
MEKK1, MEKK2 has been shown to regulate the repertoire of proteins in the AP-
1 complex. MEKK2-/- fibroblasts are inhibited in the induction of c-Jun, Fra-1, 
and Fra-2 mRNA in response to FGF-2 (Kesavan et al. 2004). FGF-2-induced ex-
pression of TNFα, IL1α and β, and IL-6 was inhibited in MEKK2-/- fibroblasts as 
is the expression of specific mast cell cytokines in response to IgE (Garrington et 
al. 2000). Interestingly, the knockout of MEKK1 and MEKK2 both alter the con-
trol of AP-1 components but do so differently, rendering distinct phenotypes. It 
was also shown that in osteoblasts, TGFβ or bone morphogenesis protein (BMP) 
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activates MEKK2 and JNK. Smurf-1, a HECT domain ubiquitin ligase, binds 
MEKK2 to promote its degradation and negatively regulate osteoclast function to 
suppress osteogenic activity (Yamashita et al. 2005). 

4.3 MEKK4 

The MEKK4 protein is highly expressed in the developing central nervous system. 
MEKK4 knockout mice have been generated by homologous recombination and 
MEKK4 knockin mice have been generated by genetic mutation to generate a 
kinase-inactive MEKK4 (Abell et al. 2005; Chi et al. 2005). The phenotypes of 
MEKK4 knockout and knockin mice are overlapping but not identical. Prenatal le-
thality is often seen due to severe defects in both the neural tube and skeleton. 
Both the knockout and kinase-inactive MEKK4 have exencepahly associated with 
enhanced apoptosis in the neural tube and loss of both JNK and p38 activity. The 
phenotype of the MEKK4 knockout and kinase-inactive knockin are extremely 
similar to the knockout phenotype for the adaptor protein TRAF4 (Abell et al. 
2005; Abell 2005). Abell et al. (Abell and Johnson 2005) showed that MEKK4 
binds Traf4, promoting MEKK4 oligomerization and activation. This indicates 
that MEKK4 and TRAF4 are in a common biochemical and genetic pathway. Re-
cently, MEKK4 was shown to be involved in regulating filamin-A expression and 
controlling neuronal migration in developing forebrain (Sarkisian et al. 2006). 
Filamin-A is an actin-binding protein essential for cytoskeletal rearrangement and 
cell locomotion. Loss of MEKK4 expression disrupts filamin-A expression and 
phosphorylation. The loss of MEKK4 and the resulting phenotype seen in the de-
veloping forebrain is similar to that seen with filamin-A mutations that contribute 
to periventricular heterotopia (PVH), a congenital malformation of the human 
cerebral cortex.  

4.4 ASK1 

Mice deficient in ASK1 are viable and fertile. ASK1-/- mouse embryonic fibro-
blasts respond to reactive oxygen species (H2O2) with a normal transient activa-
tion of JNK and p38. However, the prolonged activation of these two MAPKs is 
lost, demonstrating that ASK1 is required for the prolonged phase of JNK and p38 
activity in response to H2O2 (Tobiume et al. 2001). A similar loss of prolonged 
JNK and p38 activation is seen in ASK1-/- fibroblasts in response to TNFα. 
ASK1-/- mice also have diminished TNFα production in response to LPS and are 
resistant to LPS-induced toxic shock (Matsuzawa et al. 2005). The regulation of 
ASK1 in response to LPS is through the MyD88/TRAF6 signaling pathway and 
plays an important role in the control of cytokines for the innate immune response.  
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4.5 TAK1 

The TAK1 knockout mouse is embryonic lethal (Shim et al. 2005; Omori et al. 
2006). There is defective vascularization of TAK1-/- embryos and yolk sacs, indi-
cating that TAK1 plays an essential role in vascular development (Jadrich et al. 
2006). The role of TAK1 in IL-1 and TNFα signaling suggests it plays an impor-
tant role in the inflammatory response (Sato et al. 2005, 2006). TAK1-/- fibro-
blasts show decreased IL-1β-induced IL-6 production (Sato et al. 2005) and 
TAK1-/- keratinocytes have a reduced survival when challenged with TNFα 
(Omori et al. 2006). Conditional keratinocyte deletion of TAK1 results in a severe 
post-natal inflammation with elevated levels of inflammatory cytokines and 
keratinocyte apoptosis (Omori et al. 2006).  

4.6 MLK3 

MLK3-/- mice have no obvious phenotype except for a mild defect in the epider-
mal tissue of the dorsal midline (Brancho et al. 2005). MLK3-/- mice are viable 
and fertile. TNFα -stimulated JNK activation was partially inhibited in MLK3-/-
fibroblasts, but there was no measurable inhibition of ERK1/2 or p38 signaling. 
The response to UV irradiation, sorbitol, anisomycin, and ceramide was normal in 
regards to JNK and p38 activation.  

Therapeutically, MLKs have been intensely studied. Inhibition of MLK kinase 
activity by small molecules such as CEP-1347, an indolocarbazole that is a deriva-
tive of K252a, protects neurons from apoptosis. The compound was well-tolerated 
in humans but performed poorly in trials for neurodegenerative diseases including 
Parkinson’s and Alzheimer’s disease (Wang et al. 2004).  

5 Conclusions 

MKKKs are upstream regulators of the MAPKs that integrate MAPK signaling 
networks with the complex cellular response to many different stimuli. MKKKs 
that regulate the JNK pathway are clearly involved in neural and vascular devel-
opment, immune response, and inflammation. MKKKs as therapeutic drug targets 
are now being explored for small molecule inhibition. Inhibition of a specific 
MKKK has the potential to selectively inhibit stimulus-specific activation of 
MAPKs (Johnson et al. 2005). The continued characterization of MKKKs and 
their function in cells and animal physiology is needed to define their utility as 
therapeutic targets in human disease.  
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