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Preface

This volume is a compilation of research and survey papers in number theory,
written by members of the Women in Numbers (WIN) network, principally by the
collaborative research groups formed at Women in Numbers 4 (WIN4), a conference
at the Banff International Research Station in Banff, Alberta, on August 14–18,
2017.

The WIN conference series began in 2008. The series introduced a novel
research-mentorship model: women at all career stages, from graduate students
to senior members of the community, joined forces to work in focused research
groups on cutting-edge projects designed and led by experienced researchers. This
model has proven so successful that to date there are nearly 20 research networks for
women in mathematics, each of which holds Research Collaboration Conferences
for Women as well as other conferences, workshops, special sessions, and symposia.
The Association for Women in Mathematics (AWM), funded by the National
Science Foundation ADVANCE program, is now supporting and researching the
effectiveness of this research-mentorship model (https://awmadvance.org/rccws/).

The goals for WIN4 were to generate research in significant topics in number
theory; to broaden the research programs of women and gender minorities working
in number theory, especially pre-tenure; to train graduate students and postdocs
in number theory by providing experience with collaborative research and the
publication process; to strengthen and extend a research network of potential
collaborators in number theory and related fields; to enable faculty at small colleges
to participate actively in research activities including mentoring graduate students
and postdocs; and to highlight research activities of women in number theory.

The majority of the week was devoted to research activities. Before the confer-
ence, the participants were organized into nine project groups by research interest
and asked to learn background for their project topics. During the workshop, the
group leaders gave short talks to all the participants introducing their general areas
of research and their groups’ projects. On the final day, the group members described
their progress and shared their plans to complete the work.
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viii Preface

Forty-two mathematicians attended the WIN4 workshop, which was organized
by Editors Balakrishnan and Manes along with Chantal David (Concordia Univer-
sity) and Bianca Viray (University of Washington).

The editors solicited contributions from the working groups at the WIN4
workshop and sought additional articles through the Women in Numbers Network
(mailing list and web site). All submissions to this volume were sent to anonymous
referees, who assessed the work as correct and worthwhile contributions to these
proceedings. This volume is the sixth proceedings released after a WIN conference.

The articles collected here span algebraic, analytic, and computational areas of
number theory, including topics such as elliptic and hyperelliptic curves, mock mod-
ular forms, arithmetic dynamics, and cryptographic applications. Several papers in
this volume stem from collaborations between authors with different mathematical
backgrounds, allowing the group to tackle a problem using multiple perspectives
and tools. In what follows, we highlight some connections between the articles in
this volume and also the subjects covered.

Bridging the areas of number theory and cryptography is the article Ramanujan
Graphs in Cryptography (Costache et al.). From the perspective of both subjects,
this paper studies the security of a proposal for post-quantum cryptography.

Four papers in this volume surround computational aspects of curves, varieties,
and surfaces. Computational Aspects of Supersingular Elliptic Curves (Bank et al.)
studies the problem of generating the endomorphism ring of a supersingular elliptic
curve by two cycles in �-isogeny graphs, while Chabauty-Coleman Experiments on
Genus Three Hyperelliptic Curves (Balakrishnan et al.) describes a computation of
rational points on genus three hyperelliptic curves defined over Q whose Jacobians
have Mordell-Weil rank 1. Weierstrass Equations for the Elliptic Fibrations of a
K3 Surface (Lecacheux) concludes a study of the classification of elliptic fibrations
of a singular K3 surface by giving all Weierstrass equations. Lastly, within this
theme, Newton Polygons of Cyclic Covers of the Projective Line (Li et al.) applies
the Shimura-Taniyama method for computing the Newton polygon of an abelian
variety with complex multiplication to cyclic covers of the projective line branched
at three points and produces multiple new examples.

Arithmetic dynamics is another subject explored in multiple papers and from
different standpoints: Arithmetic Dynamics and Galois Representations (Juul et al.)
proves a version of Jones’ conjectures on the arboreal representation of a degree
two rational map, and Dessins d’enfants for Single-Cycle Belyi Maps (Manes et al.)
describes the dessins d’enfants for two infinite families of dynamical Belyi maps,
completing a correspondence given by Riemann’s existence theorem.

The last two papers in this volume are in the areas of algebraic number theory,
Multiplicative Order and Frobenius Symbol for the Reductions of Number Fields
(Perucca) and, analytic number theory, Quantum Modular Forms and Singular
Combinatorial Series with Distinct Roots of Unity (Folsom et al.); the former
studies the density of a set of primes of a number field which is defined by some
conditions concerning the reductions of algebraic numbers, and the latter establishes
the quantum modularity of the (n + 1)-variable combinatorial rank generating
function for n-marked Durfee symbols.
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Workshop Project Titles

WIN4 was a working conference, with several hours each day devoted to research
in project groups.

• Apollonian circle packings
Group members: Holley Friedlander, Elena Fuchs, Piper H, Catherine Hsu,
Damaris Schindler, Katherine Stange

• Arithmetic dynamics and Galois representations
Group members: Jamie Juul, Holly Krieger, Nicole Looper, Michelle Manes,
Bianca Thompson, Laura Walton

• Chabauty-Coleman experiments on genus three hyperelliptic curves
Group members: Jennifer S. Balakrishnan, Francesca Bianchi, Victoria Cantoral-
Farfán, Mirela Çiperiani, Anastassia Etropolski

• Computational aspects of supersingular elliptic curves
Group members: Efrat Bank, Catalina Camacho, Kirsten Eisenträger, Jennifer
Park

• Horizontal distribution questions for elliptic curves over Q
Group members: Chantal David, Ayla Gafni, Amita Malik, Lillian Pierce, Neha
Prabhu, Caroline Turnage-Butterbaugh

• Newton polygons of cyclic covers of the projective line
Group members: Wanlin Li, Elena Mantovan, Rachel Pries, Yunqing Tang

• Quantum modular forms and singular combinatorial series
Group members: Amanda Folsom, Min-Joo Jang, Sam Kimport, Holly Swisher

• Ramanujan graphs in Cryptography
Group members: Anamaria Costache, Brooke Feigon, Kristin Lauter, Maike
Massierer, Anna Puskás

• Torsion structures on elliptic curves
Group members: Abbey Bourdon, Özlem Ejder, Yuan Liu, Frances Odumodu,
Bianca Viray

Participants and Affiliations at the Time of the Workshop

Jennifer S. Balakrishnan, Boston University, USA
Efrat Bank, University of Michigan, USA
Francesca Bianchi, University of Oxford, UK
Abbey Bourdon, University of Georgia, USA
Ana Catalina Camacho Navarro, Colorado State University, USA
Victoria Cantoral Farfán, ICTP, Italy
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Mirela Çiperiani, The University of Texas at Austin, USA
Anamaria Costache, University of Bristol, UK
Chantal David, Concordia University, Canada
Kirsten Eisenträger, The Pennsylvania State University, USA
Özlem Ejder, University of Southern California, USA
Anastassia Etropolski, Rice University, USA
Brooke Feigon, The City College of New York (CUNY), USA
Amanda Folsom, Amherst College, USA
Holley Friedlander, Dickinson College, USA
Elena Fuchs, University of California, Davis, USA
Ayla Gafni, University of Rochester, USA
Piper H, University of Hawai‘i at Mānoa, USA
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Neha Prabhu, Indian Institute of Science Education and Research-Pune, India
Rachel Pries, Colorado State University, USA
Anna Puskás, University of Alberta, Canada
Damaris Schindler, Utrecht University, The Netherlands
Katherine Stange, University of Colorado Boulder, USA
Holly Swisher, Oregon State University, USA
Yunqing Tang, IAS/Princeton University, USA
Bianca Thompson, Harvey Mudd College, USA
Caroline Turnage-Butterbaugh, Duke University, USA
Bianca Viray, University of Washington, USA
Laura Walton, Brown University, USA
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Ramanujan Graphs in Cryptography

Anamaria Costache, Brooke Feigon, Kristin Lauter, Maike Massierer,
and Anna Puskás

Abstract In this paper we study the security of a proposal for Post-Quantum Cryp-
tography from both a number theoretic and cryptographic perspective. Charles–
Goren–Lauter in 2006 proposed two hash functions based on the hardness of
finding paths in Ramanujan graphs. One is based on Lubotzky–Phillips–Sarnak
(LPS) graphs and the other one is based on Supersingular Isogeny Graphs. A 2008
paper by Petit–Lauter–Quisquater breaks the hash function based on LPS graphs.
On the Supersingular Isogeny Graphs proposal, recent work has continued to build
cryptographic applications on the hardness of finding isogenies between supersin-
gular elliptic curves. A 2011 paper by De Feo–Jao–Plût proposed a cryptographic
system based on Supersingular Isogeny Diffie–Hellman as well as a set of five hard
problems. In this paper we show that the security of the SIDH proposal relies on
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the hardness of the SSIG path-finding problem introduced in Charles et al. (2009).
In addition, similarities between the number theoretic ingredients in the LPS and
Pizer constructions suggest that the hardness of the path-finding problem in the two
graphs may be linked. By viewing both graphs from a number theoretic perspective,
we identify the similarities and differences between the Pizer and LPS graphs.

Keywords Post-Quantum Cryptography · Supersingular isogeny graphs ·
Ramanujan graphs

2010 Mathematics Subject Classification Primary: 14G50, 11F70; Secondary:
05C75, 11R52

1 Introduction

Supersingular Isogeny Graphs were proposed for use in cryptography in 2006 by
Charles, Goren, and Lauter [3]. Supersingular isogeny graphs are examples of
Ramanujan graphs, i.e., optimal expander graphs. This means that relatively short
walks on the graph approximate the uniform distribution, i.e., walks of length
approximately equal to the logarithm of the graph size. Walks on expander graphs
are often used as a good source of randomness in computer science, and the reason
for using Ramanujan graphs is to keep the path length short. But the reason these
graphs are important for cryptography is that finding paths in these graphs, i.e.,
routing, is hard: there are no known subexponential algorithms to solve this problem,
either classically or on a quantum computer. For this reason, systems based on
the hardness of problems on Supersingular Isogeny Graphs are currently under
consideration for standardization in the NIST Post-Quantum Cryptography (PQC)
Competition [21].

Charles et al. [3] proposed a general construction for cryptographic hash
functions based on the hardness of inverting a walk on a graph. The path-finding
problem is the following: given fixed starting and ending vertices representing
the start and end points of a walk on the graph of a fixed length, find a path
between them. A hash function can be defined by using the input to the function
as directions for walking around the graph: the output is the label for the ending
vertex of the walk. Finding collisions for the hash function is equivalent to finding
cycles in the graph, and finding preimages is equivalent to path-finding in the graph.
Backtracking is not allowed in the walks by definition, to avoid trivial collisions.

In [3], two concrete examples of families of optimal expander graphs
(Ramanujan graphs) were proposed, the so-called Lubotzky–Phillips–Sarnak (LPS)
graphs [14], and the Supersingular Isogeny Graphs (Pizer) [20], where the path-
finding problem was supposed to be hard. Both graphs were proposed and presented
at the 2005 and 2006 NIST Hash Function workshops, but the LPS hash function
was quickly attacked and broken in two papers in 2008, a collision attack [24] and
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a preimage attack [17]. The preimage attack gives an algorithm to efficiently find
paths in LPS graphs, a problem which had been open for several decades. The PLQ
path-finding algorithm uses the explicit description of the graph as a Cayley graph
in PSL2(Fp), where vertices are 2× 2 matrices with entries in Fp satisfying certain
properties. Given the swift discovery of attacks on the LPS path-finding problem,
it is natural to investigate whether this approach is relevant to the path-finding
problem in Supersingular Isogeny (Pizer) Graphs.

In 2011, De Feo–Jao–Plût [8] devised a cryptographic system based on super-
singular isogeny graphs, proposing a Diffie–Hellman protocol as well as a set of
five hard problems related to the security of the protocol. It is natural to ask what
is the relation between the problems stated in [8] and the path-finding problem on
Supersingular Isogeny Graphs proposed in [3].

In this paper we explore these two questions related to the security of cryptosys-
tems based on these Ramanujan graphs. In Part 1 of the paper, we study the relation
between the hard problems proposed by De Feo–Jao–Plût and the hardness of the
Supersingular Isogeny Graph problem which is the foundation for the CGL hash
function. In Part 2 of the paper, we study the relation between the Pizer and LPS
graphs by viewing both from a number theoretic perspective.

In particular, in Part 1 of the paper, we clearly explain how the security of
the Key-Exchange protocol relies on the hardness of the path-finding problem in
SSIG, proving a reduction (Theorem 3.2) between the Supersingular Isogeny Diffie
Hellmann (SIDH) Problem and the path-finding problem in SSIG. Although this
fact and this theorem may be clear to the experts (see, for example, the comment in
the introduction to a recent paper on this topic [1]), this reduction between the hard
problems is not written anywhere in the literature. Furthermore, the Key-Exchange
(SIDH) paper [8] states 5 hard problems, including (SSCDH), with relations proved
between some but not all of them, and mentions the paper [3] only in passing (on
page 17), with no clear statement of the relationship to the overarching hard problem
of path-finding in SSIG.

Our Theorem 3.2 clearly shows the fact that the security of the proposed post-
quantum key-exchange relies on the hardness of the path-finding problem in SSIG
stated in [3]. Theorem 4.9 counts the chains of isogenies of fixed length. Its proof
relies on elementary group theory results and facts about isogenies, proved in
Section 4.

In Part 2 of the paper, we examine the LPS and Pizer graphs from a number
theoretic perspective with the aim of highlighting the similarities and differences
between the constructions.

Both the LPS and Pizer graphs considered in [3] can be thought of as graphs on

�\PGL2(Ql )/PGL2(Zl ), (1)

where � is a discrete cocompact subgroup, where � is obtained from a quaternion
algebra B. We show how different input choices for the construction lead to different
graphs. In the LPS construction one may vary � to get an infinite family of
Ramanujan graphs. In the Pizer construction one may vary B to get an infinite
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family. In the LPS case, we always work in the Hamiltonian quaternion algebra.
For this particular choice of algebra we can rewrite the graph as a Cayley graph.
This explicit description is key for breaking the LPS hash function. For the Pizer
graphs we do not have such a description. On the Pizer side the graphs may, via
Strong Approximation, be viewed as graphs on adèlic double cosets which are in
turn the class group of an order of B that is related to the cocompact subgroup
�. From here one obtains an isomorphism with supersingular isogeny graphs. For
LPS graphs the local double cosets are also isomorphic to adèlic double cosets, but
in this case the corresponding set of adèlic double cosets is smaller relative to the
quaternion algebra and we do not have the same chain of isomorphisms.

Part 2 has the following outline. Section 6 follows [15] and presents the
construction of LPS graphs from three different perspectives: as a Cayley graph,
in terms of local double cosets, and, to connect these two, as a quotient of an
infinite tree. The edges of the LPS graph are explicit in both the Cayley and local
double coset presentation. In Section 6.4 we give an explicit bijection between the
natural parameterizations of the edges at a fixed vertex. Section 7 is about Strong
Approximation, the main tool connecting the local and adelic double cosets for both
LPS and Pizer graphs. Section 8 follows [20] and summarizes Pizer’s construction.
The different input choices for LPS and Pizer constructions impose different
restrictions on the parameters of the graph, such as the degree. 6-regular graphs
exist in both families. In Section 8.2 we give a set of congruence conditions for the
parameters of the Pizer construction that produce a 6-regular graph. In Section 9 we
summarize the similarities and differences between the two constructions.
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Part 1: Cryptographic Applications of Supersingular Isogeny
Graphs

In this section we investigate the security of the [8] key-exchange protocol. We show
a reduction to the path-finding problem in supersingular isogeny graphs stated in [3].
The hardness of this problem is the basis for the CGL cryptographic hash function,
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and we show here that if this problem is not hard, then the key exchange presented
in [8] is not secure.

We begin by recalling some basic facts about isogenies of elliptic curves and
the key-exchange construction. Then, we give a reduction between two hardness
assumptions. This reduction is based on a correspondence between a path repre-
senting the composition of m isogenies of degree � and an isogeny of degree �m.

2 Preliminaries

We start by recalling some basic and well-known results about isogenies. They can
all be found in [23]. We try to be as concrete and constructive as possible, since we
would like to use these facts to do computations.

An elliptic curve is a curve of genus one with a specific base point O. This latter
can be used to define a group law. We will not go into the details of this, see, for
example, [23]. If E is an elliptic curve defined over a field K and char(K̄) �= 2, 3,
we can write the equation of E as

E : y2 = x3 + a · x + b,

where a, b ∈ K . Two important quantities related to an elliptic curve are its
discriminant � and its j -invariant, denoted by j . They are defined as follows:

� = 16 · (4 · a3 + 27 · b2) and j = −1728 · a
3

�
.

Two elliptic curves are isomorphic over K̄ if and only if they have the same j -
invariant.

Definition 2.1. Let E0 and E1 be two elliptic curves. An isogeny from E0 to E1 is
a surjective morphism

φ : E0 → E1,

which is a group homomorphism.

An example of an isogeny is the multiplication-by-m map [m],

[m] : E → E

P �→ m · P.

The degree of an isogeny is defined as the degree of the finite extension
K̄(E0)/φ

∗(K̄(E1)), where K̄(∗) is the function field of the curve, and φ∗ is the
map of function fields induced by the isogeny φ. By convention, we set


