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17.5 The Bühlmann Model 418
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PREFACE

The preface to the first edition of this text explained our mission as follows:

This textbook is organized around the principle that much of actuarial science consists of
the construction and analysis of mathematical models that describe the process by which
funds flow into and out of an insurance system. An analysis of the entire system is beyond
the scope of a single text, so we have concentrated our efforts on the loss process, that is,
the outflow of cash due to the payment of benefits.

We have not assumed that the reader has any substantial knowledge of insurance
systems. Insurance terms are defined when they are first used. In fact, most of the
material could be disassociated from the insurance process altogether, and this book could
be just another applied statistics text. What we have done is kept the examples focused
on insurance, presented the material in the language and context of insurance, and tried
to avoid getting into statistical methods that are not relevant with respect to the problems
being addressed.

We will not repeat the evolution of the text over the first four editions but will instead
focus on the key changes in this edition. They are:

1. Since the first edition, this text has been a major resource for professional actuarial
exams. When the curriculum for these exams changes it is incumbent on us to
revise the book accordingly. For exams administered after July 1, 2018, the Society
of Actuaries will be using a new syllabus with new learning objectives. Exam C
(Construction of Actuarial Models) will be replaced by Exam STAM (Short-Term
Actuarial Mathematics). As topics move in and out, it is necessary to adjust the
presentation so that candidates who only want to study the topics on their exam can

xiii
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do so without frequent breaks in the exposition. As has been the case, we continue to
include topics not on the exam syllabus that we believe are of interest.

2. Thematerial on nonparametric estimation, such as theKaplan–Meier estimate, is being
moved to the new Exam LTAM (Long-Term Actuarial Mathematics). Therefore, this
material and the large sample approximations have been consolidated.

3. The previous editions had not assumed knowledge of mathematical statistics. Hence
some of that education was woven throughout. The revised Society of Actuaries
requirements now include mathematical statistics as a Validation by Educational
Experience (VEE) requirement. Material that overlaps with this subject has been
isolated, so exam candidates can focus on material that extends the VEE knowledge.

4. The section on score-based approaches to model selection now includes the Akaike
Information Criterion in addition to the Schwarz Bayesian Criterion.

5. Examples and exercises have been added and other clarifications provided where
needed.

6. The appendix on numerical optimization and solution of systems of equations has
been removed. At the time the first edition was written there were limited options
for numerical optimization, particularly for situations with relatively flat surfaces,
such as the likelihood function. The simplex method was less well known and worth
introducing to readers. Today there are many options and it is unlikely practitioners
are writing their own optimization routines.

As in the previous editions, we assume that users will often be doing calculations
using a spreadsheet program such as Microsoft ExcelⓇ.1 At various places in the text we
indicate how ExcelⓇ commands may help. This is not an endorsement by the authors but,
rather, a recognition of the pervasiveness of this tool.

As in the first four editions, many of the exercises are taken from examinations of
the Society of Actuaries. They have been reworded to fit the terminology and notation
of this book and the five answer choices from the original questions are not provided.
Such exercises are indicated with an asterisk (*). Of course, these questions may not be
representative of those asked on examinations given in the future.

Although many of the exercises either are directly from past professional examina-
tions or are similar to such questions, there are many other exercises meant to provide
additional insight into the given subject matter. Consequently, it is recommended that
readers interested in particular topics consult the exercises in the relevant sections in order
to obtain a deeper understanding of the material.

Many people have helped us through the production of the five editions of this text—
family, friends, colleagues, students, readers, and the staff at John Wiley & Sons. Their
contributions are greatly appreciated.

S. A. Klugman, H. H. Panjer, and G. E. Willmot

Schaumburg, Illinois; Comox, British Columbia; and Waterloo, Ontario

1MicrosoftⓇ and ExcelⓇ are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.
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PART I

INTRODUCTION





1

MODELING

1.1 The Model-Based Approach

The model-based approach should be considered in the context of the objectives of any
given problem. Many problems in actuarial science involve the building of a mathematical
model that can be used to forecast or predict insurance costs in the future.

A model is a simplified mathematical description that is constructed based on the
knowledge and experience of the actuary combined with data from the past. The data
guide the actuary in selecting the form of the model as well as in calibrating unknown
quantities, usually called parameters. The model provides a balance between simplicity
and conformity to the available data.

The simplicity is measured in terms of such things as the number of unknown parame-
ters (the fewer the simpler); the conformity to data is measured in terms of the discrepancy
between the data and the model. Model selection is based on a balance between the two
criteria, namely, fit and simplicity.

1.1.1 The Modeling Process

The modeling process is illustrated in Figure 1.1, which describes the following six stages:

Loss Models: From Data to Decisions, Fifth Edition.
Stuart A. Klugman, Harry H. Panjer, and Gordon E. Willmot.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc. 
Companion website: www.wiley.com/go/klugman/lossmodels5e
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4 MODELING

Experience and
Prior Knowledge

Stage 2
Model Calibration

Stage 3
Model Validation

Stage 5
Model Selection

Stage 6
Modify for Future

Data

Stage 4
Others

Models?

Stage 1
Model Choice

NoYes

Figure 1.1 The modeling process.

Stage 1 One or more models are selected based on the analyst’s prior knowledge and
experience, and possibly on the nature and form of the available data. For example,
in studies of mortality, models may contain covariate information such as age, sex,
duration, policy type, medical information, and lifestyle variables. In studies of the
size of an insurance loss, a statistical distribution (e.g. lognormal, gamma, orWeibull)
may be chosen.

Stage 2 The model is calibrated based on the available data. In mortality studies, these
data may be information on a set of life insurance policies. In studies of property
claims, the data may be information about each of a set of actual insurance losses paid
under a set of property insurance policies.

Stage 3 The fitted model is validated to determine if it adequately conforms to the data.
Various diagnostic tests can be used. These may be well-known statistical tests, such
as the chi-square goodness-of-fit test or the Kolmogorov–Smirnov test, or may be
more qualitative in nature. The choice of test may relate directly to the ultimate
purpose of the modeling exercise. In insurance-related studies, the total loss given by
the fitted model is often required to equal the total loss actually experienced in the
data. In insurance practice, this is often referred to as unbiasedness of a model.

Stage 4 An opportunity is provided to consider other possible models. This is particularly
useful if Stage 3 revealed that all models were inadequate. It is also possible that more
than one valid model will be under consideration at this stage.

Stage 5 All valid models considered in Stages 1–4 are compared, using some criteria to
select between them. This may be done by using the test results previously obtained
or it may be done by using another criterion. Once a winner is selected, the losers
may be retained for sensitivity analyses.



THE MODEL-BASED APPROACH 5

Stage 6 Finally, the selected model is adapted for application to the future. This could
involve adjustment of parameters to reflect anticipated inflation from the time the data
were collected to the period of time to which the model will be applied.

As new data are collected or the environment changes, the six stages will need to be
repeated to improve the model.

In recent years, actuaries have become much more involved in “big data” problems.
Massive amounts of data bring with them challenges that require adaptation of the steps
outlined above. Extra care must be taken to avoid building overly complex models that
match the data but perform less well when used to forecast future observations. Techniques
such as hold-out samples and cross-validation are employed to addresses such issues. These
topics are beyond the scope of this book. There are numerous references available, among
them [61].

1.1.2 The Modeling Advantage

Determination of the advantages of using models requires us to consider the alternative:
decision-making based strictly upon empirical evidence. The empirical approach assumes
that the future can be expected to be exactly like a sample from the past, perhaps adjusted
for trends such as inflation. Consider Example 1.1.

EXAMPLE 1.1

A portfolio of group life insurance certificates consists of 1,000 employees of various
ages and death benefits. Over the past five years, 14 employees died and received a
total of 580,000 in benefits (adjusted for inflation because the plan relates benefits to
salary). Determine the empirical estimate of next year’s expected benefit payment.

The empirical estimate for next year is then 116,000 (one-fifth of the total), which
would need to be further adjusted for benefit increases. The danger, of course, is that
it is unlikely that the experience of the past five years will accurately reflect the future
of this portfolio, as there can be considerable fluctuation in such short-term results.□

It seems much more reasonable to build a model, in this case a mortality table. This table
would be based on the experience of many lives, not just the 1,000 in our group. With
this model, not only can we estimate the expected payment for next year, but we can also
measure the risk involved by calculating the standard deviation of payments or, perhaps,
various percentiles from the distribution of payments. This is precisely the problem covered
in texts such as [25] and [28].

This approach was codified by the Society of Actuaries Committee on Actuarial
Principles. In the publication “Principles of Actuarial Science” [114, p. 571], Principle 3.1
states that “Actuarial risks can be stochastically modeled based on assumptions regarding
the probabilities that will apply to the actuarial risk variables in the future, including
assumptions regarding the future environment.” The actuarial risk variables referred to are
occurrence, timing, and severity – that is, the chances of a claim event, the time at which
the event occurs if it does, and the cost of settling the claim.



6 MODELING

1.2 The Organization of This Book

This text takes us through the modeling process but not in the order presented in Section
1.1. There is a difference between how models are best applied and how they are best
learned. In this text, we first learn about the models and how to use them, and then we learn
how to determine which model to use, because it is difficult to select models in a vacuum.
Unless the analyst has a thorough knowledge of the set of available models, it is difficult
to narrow the choice to the ones worth considering. With that in mind, the organization of
the text is as follows:

1. Review of probability – Almost by definition, contingent events imply probability
models. Chapters 2 and 3 review random variables and some of the basic calculations
that may be done with such models, including moments and percentiles.

2. Understanding probability distributions – When selecting a probability model, the
analyst should possess a reasonably large collection of such models. In addition, in
order to make a good a priori model choice, the characteristics of these models should
be available. In Chapters 4–7, various distributional models are introduced and their
characteristics explored. This includes both continuous and discrete distributions.

3. Coverage modifications – Insurance contracts often do not provide full payment. For
example, there may be a deductible (e.g. the insurance policy does not pay the first
$250) or a limit (e.g. the insurance policy does not pay more than $10,000 for any
one loss event). Such modifications alter the probability distribution and affect related
calculations such as moments. Chapter 8 shows how this is done.

4. Aggregate losses – To this point, the models are either for the amount of a single
payment or for the number of payments. Of interest when modeling a portfolio, line
of business, or entire company is the total amount paid. A model that combines the
probabilities concerning the number of payments and the amounts of each payment
is called an aggregate loss model. Calculations for such models are covered in
Chapter 9.

5. Introduction to mathematical statistics – Because most of the models being considered
are probability models, techniques of mathematical statistics are needed to estimate
model specifications and make choices. While Chapters 10 and 11 are not a replace-
ment for a thorough text or course in mathematical statistics, they do contain the
essential items that are needed later in this book. Chapter 12 covers estimation tech-
niques for counting distributions, as they are of particular importance in actuarial
work.

6. Bayesian methods – An alternative to the frequentist approach to estimation is
presented in Chapter 13. This brief introduction introduces the basic concepts of
Bayesian methods.

7. Construction of empirical models – Sometimes it is appropriate to work with the
empirical distribution of the data. This may be because the volume of data is sufficient
or because a good portrait of the data is needed. Chapter 14 covers empirical models
for the simple case of straightforward data, adjustments for truncated and censored
data, and modifications suitable for large data sets, particularly those encountered in
mortality studies.
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8. Selection of parametric models – With estimation methods in hand, the final step is
to select an appropriate model. Graphic and analytic methods are covered in Chapter
15.

9. Adjustment of estimates – At times, further adjustment of the results is needed. When
there are one or more estimates based on a small number of observations, accuracy can
be improved by adding other, related observations; care must be taken if the additional
data are from a different population. Credibility methods, covered in Chapters 16–18,
provide a mechanism for making the appropriate adjustment when additional data are
to be included.

10. Simulation – When analytic results are difficult to obtain, simulation (use of random
numbers) may provide the needed answer. A brief introduction to this technique is
provided in Chapter 19.





2

RANDOM VARIABLES

2.1 Introduction

An actuarial model is a representation of an uncertain stream of future payments. The
uncertainty may be with respect to any or all of occurrence (is there a payment?), timing
(when is the payment made?), and severity (how much is paid?). Because the most useful
means of representing uncertainty is through probability, we concentrate on probability
models. For now, the relevant probability distributions are assumed to be known. The
determination of appropriate distributions is covered in Chapters 10 through 15. In this
part, the following aspects of actuarial probability models are covered:

1. Definition of random variable and important functions, with some examples.

2. Basic calculations from probability models.

3. Specific probability distributions and their properties.

4. More advanced calculations using severity models.

5. Models incorporating the possibility of a random number of payments, each of random
amount.

Loss Models: From Data to Decisions, Fifth Edition.
Stuart A. Klugman, Harry H. Panjer, and Gordon E. Willmot.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc. 
Companion website: www.wiley.com/go/klugman/lossmodels5e
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The commonality we seek here is that all models for random phenomena have similar
elements. For each, there is a set of possible outcomes. The particular outcome that
occurs will determine the success of our enterprise. Attaching probabilities to the various
outcomes allows us to quantify our expectations and the risk of not meeting them. In this
spirit, the underlying random variable will almost always be denoted with uppercase italic
letters near the end of the alphabet, such as 𝑋 or 𝑌 . The context will provide a name and
some likely characteristics. Of course, there are actuarial models that do not look like those
covered here. For example, in life insurance a model office is a list of cells containing
policy type, age range, gender, and so on, along with the number of contracts with those
characteristics.

To expand on this concept, consider the following definitions from “Principles Under-
lying Actuarial Science” [5, p. 7]:

Phenomena are occurrences that can be observed. An experiment is an observation of a
given phenomenon under specified conditions. The result of an experiment is called an
outcome; an event is a set of one or more possible outcomes. A stochastic phenomenon is a
phenomenon for which an associated experiment has more than one possible outcome. An
event associated with a stochastic phenomenon is said to be contingent. . . . Probability
is a measure of the likelihood of the occurrence of an event, measured on a scale of
increasing likelihood from zero to one. . . . A random variable is a function that assigns
a numerical value to every possible outcome.

The following list contains 12 random variables that might be encountered in actuarial
work (Model # refers to examples introduced in the next section):

1. The age at death of a randomly selected birth. (Model 1)

2. The time to death fromwhen insurance was purchased for a randomly selected insured
life.

3. The time from occurrence of a disabling event to recovery or death for a randomly
selected workers compensation claimant.

4. The time from the incidence of a randomly selected claim to its being reported to the
insurer.

5. The time from the reporting of a randomly selected claim to its settlement.

6. The number of dollars paid on a randomly selected life insurance claim.

7. The number of dollars paid on a randomly selected automobile bodily injury claim.
(Model 2)

8. The number of automobile bodily injury claims in one year from a randomly selected
insured automobile. (Model 3)

9. The total dollars in medical malpractice claims paid in one year owing to events at a
randomly selected hospital. (Model 4)

10. The time to default or prepayment on a randomly selected insured home loan that
terminates early.

11. The amount of money paid at maturity on a randomly selected high-yield bond.

12. The value of a stock index on a specified future date.
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Because all of these phenomena can be expressed as random variables, the machinery
of probability and mathematical statistics is at our disposal both to create and to analyze
models for them. The following paragraphs discuss five key functions used in describing a
random variable: cumulative distribution, survival, probability density, probability mass,
and hazard rate. They are illustrated with four ongoingmodels as identified in the preceding
list plus one more to be introduced later.

2.2 Key Functions and Four Models

Definition 2.1 The cumulative distribution function, also called the distribution function
and usually denoted 𝐹𝑋(𝑥) or 𝐹 (𝑥),1 for a random variable 𝑋 is the probability that 𝑋 is
less than or equal to a given number. That is, 𝐹𝑋(𝑥) = Pr(𝑋 ≤ 𝑥). The abbreviation cdf
is often used.

The distribution function must satisfy a number of requirements:2

0 ≤ 𝐹 (𝑥) ≤ 1 for all 𝑥.

𝐹 (𝑥) is nondecreasing.

𝐹 (𝑥) is right-continuous.3

lim𝑥→−∞ 𝐹 (𝑥) = 0 and lim𝑥→∞ 𝐹 (𝑥) = 1.

Because it need not be left-continuous, it is possible for the distribution function to jump.
When it jumps, the value is assigned to the top of the jump.

Here are possible distribution functions for each of the four models.

Model 14 This random variable could serve as a model for the age at death. All ages
between 0 and 100 are possible. While experience suggests that there is an upper bound
for human lifetime, models with no upper limit may be useful if they assign extremely low
probabilities to extreme ages. This allows the modeler to avoid setting a specific maximum
age:

𝐹1(𝑥) =

⎧⎪⎨⎪⎩
0, 𝑥 < 0,
0.01𝑥, 0 ≤ 𝑥 < 100,
1, 𝑥 ≥ 100.

This cdf is illustrated in Figure 2.1. □

Model 2 This random variable could serve as a model for the number of dollars paid on an
automobile insurance claim. All positive values are possible. As with mortality, there is

1When denoting functions associated with random variables, it is common to identify the random variable through
a subscript on the function. Here, subscripts are used only when needed to distinguish one random variable from
another. In addition, for the five models to be introduced shortly, rather than write the distribution function for
random variable 2 as 𝐹𝑋2

(𝑥), it is simply denoted 𝐹2(𝑥).
2The first point follows from the last three.
3Right-continuous means that at any point 𝑥0 the limiting value of 𝐹 (𝑥) as 𝑥 approaches 𝑥0 from the right is equal
to 𝐹 (𝑥0). This need not be true as 𝑥 approaches 𝑥0 from the left.
4The five models (four introduced here and one later) are identified by the numbers 1–5. Other examples use the
traditional numbering scheme as used for definitions and the like.
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Figure 2.1 The distribution function for Model 1.
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Figure 2.2 The distribution function for Model 2.

likely an upper limit (all the money in the world comes to mind), but this model illustrates
that, in modeling, correspondence to reality need not be perfect:

𝐹2(𝑥) =

⎧⎪⎨⎪⎩
0, 𝑥 < 0,

1 −
(

2,000
𝑥 + 2,000

)3
, 𝑥 ≥ 0.

This cdf is illustrated in Figure 2.2. □

Model 3 This random variable could serve as a model for the number of claims on one
policy in one year. Probability is concentrated at the five points (0, 1, 2, 3, 4) and the
probability at each is given by the size of the jump in the distribution function:

𝐹3(𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, 𝑥 < 0,
0.5, 0 ≤ 𝑥 < 1,
0.75, 1 ≤ 𝑥 < 2,
0.87, 2 ≤ 𝑥 < 3,
0.95, 3 ≤ 𝑥 < 4,
1, 𝑥 ≥ 4.
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While this model places a maximum on the number of claims, models with no limit
(such as the Poisson distribution) could also be used. □

Model 4 This random variable could serve as a model for the total dollars paid on a medical
malpractice policy in one year. Most of the probability is at zero (0.7) because in most
years nothing is paid. The remaining 0.3 of probability is distributed over positive values:

𝐹4(𝑥) =

{
0, 𝑥 < 0,
1 − 0.3𝑒−0.00001𝑥, 𝑥 ≥ 0. □

Definition 2.2 The support of a random variable is the set of numbers that are possible
values of the random variable.

Definition 2.3 A random variable is called discrete if the support contains at most a
countable number of values. It is called continuous if the distribution function is continuous
and is differentiable everywhere with the possible exception of a countable number of
values. It is called mixed if it is not discrete and is continuous everywhere with the
exception of at least one value and at most a countable number of values.

These three definitions do not exhaust all possible random variables but will cover all
cases encountered in this book. The distribution function for a discrete random variable will
be constant except for jumps at the values with positive probability. A mixed distribution
will have at least one jump. Requiring continuous variables to be differentiable allows the
variable to have a density function (defined later) at almost all values.

EXAMPLE 2.1

For each of the four models, determine the support and indicate which type of random
variable it is.

The distribution function for Model 1 is continuous and is differentiable except
at 0 and 100, and therefore is a continuous distribution. The support is values from
0 to 100 with it not being clear if 0 or 100 are included.5 The distribution func-
tion for Model 2 is continuous and is differentiable except at 0, and therefore is
a continuous distribution. The support is all positive real numbers and perhaps 0.
The random variable for Model 3 places probability only at 0, 1, 2, 3, and 4 (the
support) and thus is discrete. The distribution function for Model 4 is continuous
except at 0, where it jumps. It is a mixed distribution with support on nonnegative real
numbers. □

These four models illustrate the most commonly encountered forms of the distribution
function. Often in the remainder of the book, when functions are presented, values outside
the support are not given (most commonly where the distribution and survival functions
are 0 or 1).

5The reason it is not clear is that the underlying random variable is not described. Suppose that Model 1 represents
the percentage of value lost on a randomly selected house after a hurricane. Then 0 and 100 are both possible
values and are included in the support. It turns out that a decision regarding including endpoints in the support of
a continuous random variable is rarely needed. If there is no clear answer, an arbitrary choice can be made.


