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Preface

Most of the theorems published recently in leading mathematical journals are so
difficult that even their exact formulation is hard to understand for
non-mathematicians, and, in some cases, even for mathematicians working in
unrelated areas. For example, in 2009 Ngô Båo Châu proved the result called the
“Fundamental lemma of the Langlands program”, which was listed by Time
magazine as one of the Top 10 scientific discoveries of 2009, and earned him a
Fields Medal, one of the most prestigious awards in mathematics. However, even
the exact formulation of the lemma (with all the notations defined) takes several
pages to write down, and requires a high-level mathematical education to under-
stand. We can compare this result with an abstract painting or a piece of modern art,
which can be fully appreciated by a relatively small group of people. However,
music, poetry, paintings, films, etc., tend to be described as “best” if they can be
appreciated by millions.

Do there exist mathematical theorems like the songs of The Beatles, who had
stadiums of fans at their concerts? That is, theorems which are sufficiently difficult
and important to be accepted for publication into a leading mathematical journal,
but at the same time with a sufficiently simple formulation which can be understood
and appreciated by readers with at most an undergraduate (ideally high-school)
education. The Theorems of the 21st Century project aims to show that such the-
orems do exist, and possibly, that there are more such theorems than you expected.

For this book, which is the first in the Theorems of the 21st Century series, we
examine theorems published in the first decade of the twenty-first century in the
Annals of Mathematics, which is undoubtedly one of the leading mathematical
journals, and discover that the formulation of a significant portion of them (we
selected 106 theorems published between 2001 and 2010) can indeed be explained
to a reader with relatively little background.

This book consists of short introductions, each being 3–4 pages in length, aimed
at explaining the formulations and importance of the selected theorems. Although
we sometimes refer to earlier sections of the book “for more details”, each intro-
duction is essentially self-contained and can be read independently. Because of this,
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some repetitions are unavoidable. For example, the definition of a group is repeated
multiple times throughout the book.

We aim to explain each theorem to the reader with the minimal possible
background. For some easier-to-understand theorems, the introductions are aimed at
a high-school audience, with very little preliminary knowledge assumed: sometimes
even the definition of a prime number is included. Introductions to more advanced
theorems assume at least an undergraduate level.

While aiming to be accessible, we also try to maintain mathematical rigor
whenever possible. Instead of adopting a newspaper-style exposition, saying that
“mathematicians have proved an important result, but the details are too difficult to
be presented here,” we formulate each theorem rigorously, and, when possible, give
the formal definitions of all the concepts involved. The main focus is on the
formulation of each theorem, its importance, and applications—the proofs of the
vast majority of the theorems are not discussed at all.

Each section is devoted to one theorem, and ends with the reference to the paper
in which this theorem has been proved. Some papers have several main results, in
which case we have selected one of them (the most important or most accessible) as
the main “theorem” to be explained, sometimes giving brief informal descriptions
of the other results.

Of course, the theorems described in this book form just a small portion of the
amazing mathematical discoveries of the twenty-first century. Many theorems of the
highest importance, such as Perelman’s proof of the Poincaré conjecture, were not
published in the Annals of Mathematics, while some other important theorems have
been omitted because we found their formulations to be too difficult to explain.
Also, the period after 2011 is not covered at all. The descriptions of other great
theorems will be included in future volumes of the series.

Leicester, UK Bogdan Grechuk
March 2019
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Acronyms

Some standard mathematical notation.

• Z – the set of all integers: . . .;�3;�2;�1; 0; 1; 2; 3; . . ..
• Q – the set of rational numbers, that is, numbers of the form n

m, where n and
m 6¼ 0 are integers.

• R – the set of all real numbers.
• Rd – standard (Euclidean) d-dimensional space. For example, R2 is the plane,

while R3 is the 3-dimensional space we live in.
• ½a; b� denotes the set of all real numbers x such that a � x � b.
• ða; bÞ denotes the set of all real numbers x such that a\ x\ b.
• ½a; bÞ and ða; b� denote the set of all real numbers x such that a � x\ b, and

a\ x � b, respectively.
• If x is a real number, jxj denotes the absolute value of x. For example, j3j ¼ 3,

while j � 5j ¼ 5.
• expðxÞ denotes ex, where e ¼ 2:71828. . . is the base of the natural logarithm.
• 2 denotes membership of a set. For example, n 2 Z means that n is an integer,

while x 2 R states that x is a real number.
• X � Y indicates that the set X is a subset of the set Y . For example, Z � Q,

while Q � R.
• 8 – for every. For example, “8n 2 Z…” means “For every integer n…”.
• 9 – exists. For example, “9n 2 Z…” means “There exists an integer n…”.
• f. . .j. . . : . . .g is a notation used to describe a set. For example, let A be the set

of all even integers. In other words, A is the set of all integers n for which there
exists an integer k such that n ¼ 2k. This can be written as
A ¼ fn 2 Z j9k 2 Z : n ¼ 2kg.

• If S is a finite set, jSj denotes the number of elements in S. For example,
jf7; 9; 11gj ¼ 3.

•
P

denotes summation. For example,
Pn

i¼1
xi is a notation for x1 þ x2 þ . . .þ xn. In

particular,
P3

i¼1
i2¼ 12 þ 22 þ 32 ¼ 14.
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•
PP

denotes double summation for all pairs of the corresponding indices. For

example,
P2

i¼1

P2

j¼1
xij ¼ x11 þ x12 þ x21 þ x22. Or,

X2

i¼1

X2

j¼1

i2j¼ 12 � 1þ 12 � 2þ 22 � 1þ 22 � 2 ¼ 15:

•
Q

denotes a product. For example,
Qn

i¼1
xi is a notation for x1 � x2 � . . . � xn

(sometimes we omit � and just write x1x2. . .xn). Or,

Y2

i¼1

Y2

j¼1

ð2iþ jÞ ¼ ð2 � 1þ 1Þð2 � 1þ 2Þð2 � 2þ 1Þð2 � 2þ 2Þ ¼ 360:

• [ denotes the union of sets. For example, f1; 2g[ f2; 3; 4g ¼ f1; 2; 3; 4g.
Also,

Sn

i¼1
Ai denotes the union A1 [A2 [ . . .[An.

• \ denotes the intersection of sets. For example, f1; 2g\ f2; 3; 4g ¼ f2g. Also,
Tn

i¼1
Ai denotes the intersection A1 \A2 \ . . .\An.

• For a positive integer n, n! denotes the product of all integers from 1 to n, for
example, 3! ¼ 1 � 2 � 3 ¼ 6. We also define 0! to be 1.

• :¼ denotes “equal by definition”. For example, n! :¼ 1 � 2 � . . . � n for every
positive integer n.

• min denotes the operation of finding the minimum. For example,
minð�2; 7; 3Þ ¼ �2. Also, min

�1� x� 2
ðx2 þ 1Þ ¼ 1, because the minimum value of

x2 þ 1 for x 2 ½�1; 2� is equal to 1.
• Similarly, max denotes the operation of finding maximum. For example,

maxð�2; 7; 3Þ ¼ 7, and max
�1� x� 2

ðx2 þ 1Þ ¼ 5.

• inf denotes the infimum. For a set S � R, inf S is the largest real number x such
that y � x for all y 2 S. For example, inf

1\x\3
ðx2 þ 1Þ ¼ 2.

• Similarly, sup denotes the supremum. For a set S � R, sup S is the smallest real
number x such that y� x for all y 2 S. For example, sup

1\x\3
ðx2 þ 1Þ ¼ 10.

• a � bð mod cÞ means that integers a and b give the same remainder after
division by c, or, in other words, a� b is divisible by c. For example,
11 � 2ðmod 3Þ.

xvi Acronyms



Chapter 1
Theorems of 2001

1.1 Moderate Deviations for the Volume of the Wiener
Sausage

Heat Conduction, and Particle Trajectories

When you turn on a radiator in your house, it first heats the air within a small
distance from it. How long will it take for the “hot air” to “spread out”, mix well with
the “cold air”, and make your house uniformly warm? This process is called heat
conduction. To understand it, let us look at the trajectory of an individual particle
which starts near the radiator. Of course, this trajectory is complicated, frequently
changing direction (due to particle collisions), but initially it is local, that is, it moves
within a small region near the radiator. If we wait long enough, however, the particle
will eventually travel throughout the room. To understand heat conduction (and other
similar important processes and phenomena), we need to understand how “big” the
region “covered” by the trajectory of a particle gets before any given time t .

The Volume of the “Covered” Space

Let us be a bit more formal. Particle trajectories can be studied in any dimension
d: for example, for d = 1, we can study particles moving in a very thin tube. Let
the particle be modelled as a point, and let W (t) = (w1(t), . . . ,wd(t)) denotes its
coordinates at time t . For any a > 0, define

Wa(t) = {x ∈ R
d | ∃s ∈ [0, t] : ρ(x,W (s)) ≤ a}, (1.1)

where ρ denotes the usual distance in R
d . In other words, Wa(t) is the set of all

points at distance at most a from the particle trajectory (Fig. 1.1). The question
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B. Grechuk, Theorems of the 21st Century,
https://doi.org/10.1007/978-3-030-19096-5_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19096-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-19096-5_1


2 1 Theorems of 2001

Fig. 1.1 The set Wa(t) in
(1.1) for a piecewise-linear
curve W (t) in dimension
d = 3

“How big is the region covered by the trajectory?” can be formalized as “What is the
(d-dimensional)1 volume of Wa(t)?”. We will denote this volume by |Wa(t)|.

For example, let us assume for a moment that d = 3 and the particle moves in
a straight line with constant velocity v during the time period t . In this case, W (t)
is a line segment of length vt , and Wa(t) is a cylinder with radius a, height vt , and
with semi-spheres attached to the top and the bottom. Hence, its total volume is
|Wa(t)| = 4

3πa
3 + πa2vt . In particular, |Wa(t)| grows as a linear function of t . One

could derive a similar result if W (t) is a non-straight but smooth curve without too
many self-intersections, because in this case Wa(t) is essentially the same cylinder
but bent.

However, the trajectories of the movement of actual particles are very far from
being either straight or smooth lines. In fact, individual particle trajectories are so
complicated and unpredictable that the best we can do is to consider them as “ran-
dom”, and study them using the language and tools of probability theory. That is,
instead of answering questions like “Where will this particle be after time t?”, we
will be talking about the chance that the particle, after time t , will be in this or that
region.

A Simple Example of Random Movement

To understand what we mean by a “random trajectory” imagine a very drunk man
moving along a street. He makes one step every second, but the direction of every

1For example, for d = 3 we are talking about the “usual” volume, for d = 2 about the covered area,
while for d = 1, about the length of the covered interval.
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step may be left or right, with equal chance. For example, after 2 steps, he can move
right and then again right (we denote this scenario as RR), or right and then left
(RL), or left and then right (LR), or left and again left (LL). If we put him on the
coordinate line, assume that he starts at 0, and his step length is 1, then, after 2 steps,
he will reach point 2 in the RR scenario, return to 0 in the LR and RL scenarios,
and reach point −2 in the LL scenario. In other words, if Xt denotes his position
after t steps, then X2 may be equal to 2, 0, or −2. We cannot answer the question
“what is X2?”, we can only list its possible values, and we can also talk about the
chances, or probabilities, that these values will happen. In our case, the probability
that X2 = 2, denoted as P(X2 = 2), is equal to 1/4, because this can happen in 1
out of 4 possible scenarios. Similarly, P(X2 = 0) = 2/4 = 1/2, because X2 = 0 in
2 scenarios (LR and RL) out of 4. Finally, P(X2 = −2) = 1/4.

The Average Length of the Covered Interval

Now, let Vt be the length of the interval the man “covered” up to time t . For example,
let t = 2. In the RR scenario, the man moves straight from 0 to 2, the covered
interval is [0, 2], and V2 = 2. In the RL scenario, the man moved from 0 to 1 and
back to 0, hence he covered only the interval [0, 1], and V2 = 1. Similarly, in the
LR scenario, the covered interval is [−1, 0], and V2 = 1, while in the LL scenario,
the covered interval is [−2, 0], and V2 = 2. In summary, V2 can take values 1 or
2, with probabilities P(V2 = 1) = P(V2 = 2) = 2/4 = 1/2. If t = 3, there are 8
scenarios of movements, RRR, RRL , RLR, RLL , LRR, LRL , LLR, and LLL ,
and a similar calculation shows that V3 can take values 1, 2, and 3, with probabilities
P(V3 = 1) = P(V3 = 3) = 2/8 = 1/4, and P(V3 = 2) = 4/8 = 1/2.

In general, after t steps, there arem = 2t possible scenarios of movements, which
we can denote as ω1, . . . , ωm (ω1 = RRR . . . RR, ω2 = RRR . . . RL , . . . , ωm =
LLL . . . LL). For each ωi , i = 1, 2, . . . ,m, we can calculate the length Vt (ωi ) of
the covered interval in this scenario, which then allow us to list all possible values
of Vt with the corresponding probabilities.

While we cannot predict what the actual value of Vt will be (because we do not
know which particular scenario the drunk man will implement), we can at least cal-
culate the average (also called expected) value of Vt over all possible scenarios:
E[Vt ] = 1

m

∑m
i=1 Vt (ωi ). Equivalently, E[Vt ] = ∑k

i=1 vi · pi , where v1, v2, . . . , vk is
the list of values Vt may take, and p1, p2, . . . , pk are the corresponding probabili-
ties. For example, E[V2] = 1

4 (1 + 1 + 2 + 2) = 1 · 2
4 + 2 · 2

4 = 1.5, while E[V3] =
1
8 (1 + 1 + 2 + 2 + 2 + 2 + 3 + 3) = 1 · 2

8 + 2 · 4
8 + 3 · 2

8 = 2.

The Probabilities of “Moderate” Deviations from the Average

The value of E[Vt ] gives us an approximate idea about how large Vt is. However, how
good is this “approximation”? For example, what is the probability that the actual
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covered length Vt will be no greater than, say, 70%of its average value E[Vt ]? For t =
2, P(V2 ≤ 0.7E[V2]) = P(V2 ≤ 0.7 · 1.5) = P(V2 ≤ 1.05) = 2/4 = 1/2. For t = 3,
P(V3 ≤ 0.7E[V3]) = P(V3 ≤ 0.7 · 2) = P(V3 ≤ 1.2) = 2/8 = 1/4 < 1/2. If we
could prove that, for large t , P(Vt ≤ 0.7E[Vt ]) becomes negligibly small, and the
same is true for P(Vt ≥ 1.3E[Vt ]), we could conclude that, with very high proba-
bility, 0.7E[Vt ] < Vt < 1.3E[Vt ], that is, E[Vt ] approximates Vt with at least 70%
accuracy. Similarly, proving that P(Vt ≤ 0.99E[Vt ]) andP(Vt ≥ 1.01E[Vt ]) are small
for large t would allow us to conclude that E[Vt ] approximates Vt with at least 99%
accuracy. Probabilities of the formP(Vt ≤ cE[Vt ]) for some constant c < 1 are called
probabilities of moderate2 deviations. Estimates from above for such probabilities
are crucial for understanding how well E[Vt ] approximates Vt .

The Standard Model of Particle Movement: The Wiener Process

In some sense, particle movement resembles the movement of a drunk man con-
sidered above. If the particle is modelled as a point and forces are ignored, we can
assume that it moves in a straight line until the first collision, then changes direction
randomly, moves until the next collision, changes direction again, and so on.

The standard model of particle movement is called the Wiener process. If d = 1
(movement in a thin tube), the Wiener process is, intuitively, the limiting case of the
movement of the drunk man. That is, we assume that the step length of the man is ε,
the number of steps is N = 1/ε2 per unit of time, and then let ε go to 0. The intuition
in dimensions d ≥ 2 is similar.

The Volume of a Wiener Sausage

IfW (·) is aWiener process, thenWa(t), as defined in (1.1), is called aWiener sausage.
It was introduced in 1964 by Frank Spitzer [355], and since then has been used in
the description of a number of physical phenomena, including heat conduction. It is
known [355] (but the proof is too difficult to be presented here) that the average (or
expected) volume E|Wa(t)| is, for large t , approximately equal to

E|Wa(t)| ≈

⎧
⎪⎨

⎪⎩

√
8t/π, if d = 1,

2π t/ ln t, if d = 2,

2πat, if d = 3,

(1.2)

and similarly E|Wa(t)| = C(a, d)t for d ≥ 3, whereC(a, d) is a constant depending
on a and d.

2The term “moderate” comes from the fact that probabilities of the form P(Vt ≤ f (t)E[Vt ]) for
some function f (t) such that lim

t→∞ f (t) = 0 are known as probabilities of large deviations.
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To understand how close |Wa(t)| is to its average value (1.2), we need to have
a good estimate from above for the probability of moderate deviation P(|Wa(t)| ≤
cE |Wa(t)|) for c < 1. The following theorem of M. van den Berg, E. Bolthausen
and F. den Hollander [384] answers this question in all dimensions d ≥ 2.

Theorem 1.1 For every a > 0, b ∈ (0, 2π),

lim
t→∞

1

ln t
ln P(|Wa(t)| ≤ bt/ ln t) = −I 2π (b), d = 2,

and for every a > 0, b ∈ (0,C(a, d)),

lim
t→∞

1

t (d−2)/d
ln P(|Wa(t)| ≤ bt) = −I C(a,d)(b), d ≥ 3.

Here,C(a, d) is the constant defined afterEq. (1.2), and I C(a,d)(b) is the “rate func-
tion”, for which a detailed analysis is given, with some analytic formulas, estimates,
graphs, etc. In short, Theorem 1.1 completely resolves the problem of estimating the
probabilities in question for large t .

Some Special Cases

For d = 2, b = 1.98π , and large t , Theorem 1.1 implies that

P(|Wa(t)| ≤ 1.98π t/ ln t) ≈ t−C ,

whereC = I 2π (1.98π) is a positive constant. So, the probability that volume |Wa(t)|
is just 1% less than the average value 2π t/ ln t goes to 0 as t → ∞.

Similarly, for d = 3, b = 1.98πa, and large t ,

P(|Wa(t)| ≤ 1.98πat) ≈ exp
(−Ct1/3

)
,

for some C > 0. In this case, the probability of 1% volume deviation from average
not only goes to 0, but in fact decreases exponentially fast with t . That is, if we wait a
little bit, we are guaranteed that the trajectory volume of essentially all particles will
be within 1% from 2πat . Obviously, 1% here can be replaced by any other arbitrary
small constant.

Reference

M. van den Berg, E. Bolthausen and F. den Hollander, Moderate deviations for the
volume of the Wiener sausage, Annals of Mathematics 153-2, (2001), 355–406.
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1.2 The Minimal Average Value of a Bounded
Multiplicative Function

Multiplicative Functions with Small Average Values

A function f : N → R, whereN is the set of positive integers andR is the real line, is
called completely multiplicative if f (mn) = f (m) f (n) for all positive integersm, n.
Assuming that | f (n)| ≤ 1 for all n ∈ N , what can the average value 1

x

∑

n≤x
f (n) be

for large x? Because | f (n)| ≤ 1 for all n,

∣
∣
∣
∣
∣

1

x

∑

n≤x

f (n)

∣
∣
∣
∣
∣
≤ 1

x

∑

n≤x

| f (n)| ≤ 1

x

∑

n≤x

1 ≤ 1

x
· x = 1,

hence 1
x

∑

n≤x
f (n) is always between −1 and 1. For the function f (n) = 1, ∀n, this

average is equal to 1, the maximal possible. However, it is not clear whether the
lower bound −1 is achievable. The average is −1 for the function f (n) = −1, ∀n,
but it is not completely multiplicative (for example, f (6) = −1 �= 1 = f (2) f (3)).

Let us try to ensure that the values f (n) are as small as possible. Because f (1) ·
f (1) = f (1 · 1) = f (1), we have f (1) = 0 or f (1) = 1. If f (1) = 0, then for any
n, f (n) = f (n · 1) = f (n) · f (1) = f (n) · 0 = 0, and 1

x

∑

n≤x
f (n) = 0. To try to do

better, we should choose f (1) = 1. Following our strategy to assign values as small
as possible, we can let f (2) = f (3) = −1, but then f (4) = f (2) f (2) = 1. Next, we
can assign f (5) = −1, but then f (6) = f (2) f (3) = 1. Continuing, we can choose
f (7) = −1, and also f (8) = f (4) f (2) = −1, but then f (9) = f (3) f (3) = 1 and
f (10) = f (2) f (5) = 1. Checking the average so far, we get 1

10

∑

n≤10
f (n) = 0: no

progress!

The Proof of a Conjecture of Hall

In 1996, Richard Hall [187] constructed an example of a completely multiplicative
function f with average value 1

x

∑

n≤x
f (n) for large x approximately equal to

δ1 = 1 − 2 ln(1 + √
e) + 4

∫ √
e

1

ln t

t + 1
dt ≈ −0.656999, (1.3)

and conjectured that this is the lowest possible. This conjecture was proved by
A. Granville and K. Soundararajan [172].
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Theorem 1.2 For a completely multiplicative function f taking values in [−1, 1],
we have

δ1 ≤ lim
x→∞

1

x

∑

n≤x

f (n) ≤ 1, (1.4)

where δ1 is given by (1.3). Conversely, for any δ ∈ [δ1, 1] there exists an f as above
such that the limit is equal to δ.

Quadratic Residues and Non-residues

Applying Theorem 1.2 to various functions f , we can derive a number of interesting
and non-trivial results. Here is one example. An integer n is called a quadratic
residue modulo an integer p if x2 − n is divisible by p for some integer x , and a
quadratic non-residue otherwise. For example, 22 − 1 is divisible by 3, hence n = 1
is a quadratic residue modulo p = 3. However, what about n = 2? Can x2 − 2 be
divisible by 3? In fact, no. Indeed, every integer x can be written as either x = 3k, or
x = 3k + 1, or x = 3k + 2, for some integer k. In the first case, x2 − 2 = 9k2 − 2
is not divisible by 3. Similarly, in the second case x2 − 2 = (3k + 1)2 − 2 = 9k2 +
6k + 1 − 2 = 3(3k2 + 2k) − 1, while in the third case x2 − 2 = (3k + 2)2 − 2 =
9k2 + 12k + 4 − 2 = 3(3k2 + 4k) + 2. In any case, x2 − 2 is not divisible by 3,
hence n = 2 is not a quadratic residue modulo p = 3.

In general, to check if x2 − n is divisible by p for some x , we should consider p
cases: x = pk, x = pk + 1, . . . , x = pk + (p − 1). For case x = pk + r , x2 − n =
(pk + r)2 − n = p(pk2 + 2kr) + r2 − n, hence x2 − n is divisible by p if and only
if r2 − n is. For simplicity, assume that 0 < n < p. Then n is a quadratic residue
modulo p if and only if r2 gives remainder n after division by p for some r =
1, 2, . . . , p − 1. For example, for p = 5, numbers 12, 22, 32 and 42 give remainders
1, 4, 4, and 1, respectively, after division by 5, hence 1 and 4 are quadratic residues
modulo p = 5, while 2 and 3 are not. Similarly, for p = 7, 12, 22, 32, 42, 52 and
62 give remainders 1, 4, 2, 2, 4 and 1, respectively, hence 1, 2 and 4 are quadratic
residues, while 3, 5 and 6 are quadratic non-residues.

The Number of Quadratic Residues

In all these examples, exactly half of the positive integers less than p are quadratic
residues, and half are non-residues. This is not a coincidence: in fact, this half-half
distribution is true for every odd prime p. This is because for every odd p there exists
an a such that the integers a, a2, a3, . . . , a p−1 all give different remainders modulo
p. Then the remainders corresponding to a2, a4, . . . , a p−1 are quadratic residues,
while the ones corresponding to a, a3, . . . , a p−2 are quadratic non-residues. Figure
1.2 illustrates this fact for p = 13 and a = 2.
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Fig. 1.2 Quadratic residues
and non-residues modulo
p = 13

Quadratic residues have been intensively studied since the 17th and 18th centuries,
but some basic questions about their distribution proved to be very difficult. For
example, for some p > 200, can it be that all numbers from1 to 100 are quadratic non-
residues?Ok, they cannot, because perfect squares 1, 4, 9, 16, 25, 36, 49, 64, 100 are
obviously quadratic residues, but can it be that all other 90 numbers are quadratic
non-residues? More generally, for any large number x , can we find p > x such that
90% of all numbers less than x are quadratic non-residues modulo p? If this is
impossible, what is the highest percentage of non-residues up to x we can achieve?

The 17.15% Law

Theorem 1.2 can be used to answer this difficult question in a few lines. For an odd
prime p, define

f p(n) =

⎧
⎪⎨

⎪⎩

0, if n is divisible by p

1, if n is a quadratic residue modulo p, but not divisible by p,

−1, if n is not a quadratic residue modulo p.

One can check that f p(n) is a completely multiplicative function. For example, if
f p(n) = 0, then n is divisible by p, hence nm is divisible by p for every m, and
f p(nm) = 0 = f p(n) · f p(m). As a different example, consider the case f p(n) =
f p(m) = 1, that is, both n and m are quadratic residues. Then x2 − n is divisible by
p for some x , hence x2 = ap + n for some integer a. Similarly, y2 = bp + m for
some integers y and b. Then (xy)2 = (ap + n)(bp + m) = p(abp + am + bn) +
nm, hence (xy)2 − nm is divisible by p, and, by definition, nm is a quadratic residue
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modulo p, or f p(nm) = 1 = f p(n) · f p(m). The proofs of f p(nm) = f p(n) · f p(m)

in the other cases are just a bit more complicated.
For 0 < n < p, the expression 1+ f p(n)

2 is equal to 1 if n is a quadratic residue
modulo p and 0 otherwise, so the number of quadratic residues modulo p up to any
x < p is exactly equal to the sum 1

2

∑

n≤x
(1 + f p(n)).

Now, applying Theorem 1.2 to f p(n), we get

lim
x→∞

1

x

∑

n≤x

1 + f p(n)

2
≥ 1 + δ1

2
≈ 0.171500.

In other words, we have proved the following statement: If x is sufficiently large
then, for all primes p > x , more than 17.15% of the integers up to x are quadratic
residues modulo p. This statement also holds for p ≤ x , and the estimate is the best
possible.

Similarly, for any power m > 2, we can say that n is an m-th power residue
modulo p if xm − n is divisible by p for some integer x . In this case, Granville
and Soundararajan proved a similar result: for a given integer m > 2, there exists a
constant πm > 0 such that, if x is sufficiently large, then, for all primes p, more than
πm% of the integers up to x are m-th power residues modulo p.

Extension to Complex-Valued Functions

Granville and Soundararajan also extended Theorem 1.2 to complex-valued func-
tions, which led to much more interesting results and applications. The set C of
complex numbers consists of numbers of the form z = x + y

√−1, where x, y are
real numbers. Any complex number can be represented as a point (x, y) in the
coordinate plane. The absolute value of a complex number z is |z| = √

x2 + y2.
Let S be any set of complex numbers such that |z| ≤ 1 for any z ∈ S. Geometri-
cally, S is a subset of the unit disk U = {(x, y) | x2 + y2 ≤ 1}. Let F(S) be the set
of all completely multiplicative functions f : N → C such that f (p) ∈ S for any
prime p. Then we can define ΓN (S) to be the set of complex numbers z repre-
sentable in the form z = 1

N

∑

n≤N
f (n) for some f ∈ F(S), and Γ (S) = lim

N→∞ ΓN (S).

Granville and Soundararajan called Γ (S) the spectrum of the set S. In this notation,
Theorem 1.2 corresponds to the special case S = [−1, 1], and can be formulated as
Γ ([−1, 1]) = [δ1, 1]. However, their theory goes far beyond this special case—they
proved many interesting properties of Γ (S) for a general set S. For example, they
proved that Γ (S), when drawn in the coordinate plane, always looks like a connected
picture, not a collection of disconnected pieces. However, an exact formula for Γ (S)

has been obtained only in the case S = [−1, 1], and its extension to general S remains
an intriguing open question.
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Reference

A. Granville and K. Soundararajan, The spectrum ofmultiplicative functions, Annals
of Mathematics 153-2, (2001), 407–470.

1.3 Counting Integer Solutions of Some Inequalities

Counting Integer Points in Disks and Balls

How many pairs of integers (x, y) are solutions to the inequality x2 + y2 ≤ 100?
We can answer this question approximately by first describing its real solutions. In
the coordinate plane, real solutions to this inequality form a disk with center (0, 0)
and radius r = 10. The question is, how many points with integer coefficients does
this disk contain? Let us put into correspondence to every such point (x, y) a unit
square, with vertices (x, y), (x, y + 1), (x + 1, y + 1), (x + 1, y). If (x, y) is not
close to the boundary of the circle, this square lies fully within it. Hence, the number
of integer solutions to x2 + y2 ≤ 100 is approximately the number of unit squares
within the circle, which, in turn, is approximately equal to its area, see Fig. 1.3. The
latter can be easily computed, and is equal to πr2 = 100π ≈ 314. In fact, the exact
number of integer solutions to x2 + y2 ≤ 100 is 309.

Similarly, the number of integer solutions to the inequality x2 + y2 + z2 ≤ 100
can be approximated by the volume of the corresponding ball, which is equal to
4
3πr

3 = 4
3π10

3 ≈ 4189. For the more general equation, x21 + x22 + · · · + x2n ≤ m,
we need to calculate the volume of the n-dimensional ball of radius r = √

m. What
is the formula for it? Well, such a ball is just a ball with radius 1 enlarged by a
factor of r . If we take any figure (not necessary a ball) in n-dimensional space, and
enlarge it by a factor of r , its volume increases by a factor of rn . Hence, the volume
of the n-dimensional ball of radius r is Vrn , where V is the volume of the ball
x21 + x22 + · · · + x2n ≤ 1. Because r = √

m, the volume is V (
√
m)n = Vmn/2.

Monomials, Polynomials, and Some Volume Estimates

In general, a monomial in n variables x1, x2, . . . , xn is any expression of the form
G(x1, x2, . . . , xn) = xa11 xa22 . . . xann for some non-negative integers a1, a2, . . . , an .
The degree d of the monomial is just a1 + a2 + · · · + an . For example, G(x, y, z) =
xy3z2 is a monomial of degree d = 1 + 3 + 2 = 6. If G is any monomial of degree
d, then, for any k ∈ R,

G(kx1, kx2, . . . , kxn) = (kx1)
a1(kx2)

a2 . . . (kxn)
an

= kd · (xa11 xa22 . . . xann )

= kdG(x1, x2, . . . , xn).
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Fig. 1.3 Counting integer points in a disk

For example, ifG(x, y, z) = xy3z2, thenwehaveG(kx, ky, kz) = (kx)(ky)3(kz)2 =
k6G(x, y, z).

A polynomial in n variables x1, x2, . . . , xn is any sum of monomials, for example,
xy + xy3z2 + z15. In this example, we have a sum of three monomials of degree 2,
6, and 15, respectively. Here, we study only polynomials F which are the sums of
monomials of the same degree. In particular, F(x, y, z) = x6 + yz5 + xy3z2 is an
example of such a polynomial in n = 3 variables of degree d = 6. In this example,
for any k ∈ R, we have

F(kx, ky, kz) = (kx)6 + (ky)(kz)5 + (kx)(ky)3(kz)2

= k6(x6 + yz5 + xy3z2)

= k6F(x, y, z).

In general, we have
F(kx1, . . . kxn) = kd F(x1, . . . xn). (1.5)
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Now, let F be any polynomial in n variables with integer coefficients such that
every monomial has degree d, and let the volume of the set S1 ⊂ R

n defined by
the inequality |F(x1, . . . xn)| ≤ 1 be equal to V (F). Then what is the volume of the
set Sm ⊂ R

n defined by |F(x1, . . . xn)| ≤ m? It follows from (1.5) that S1 enlarged
by a factor of k is defined by the equation |F(x1, . . . xn)| ≤ kd , hence Sm is just S1
enlarged by a factor of k = m1/d . Thus, the volume of Sm is V (F)kn = V (F)mn/d .

Inequalities of Finite Type

Let NF (m) be the number NF (m) of integer solutions to |F(x1, . . . xn)| ≤ m. Moti-
vated by the examples above, we might hope that NF (m) is approximately equal to
the volume of Sm , that is,

NF (m) ≈ V (F)mn/d . (1.6)

Unfortunately, this is not always the case. For example, real solutions to |x − y| ≤
0 form a line y = x , and the 2-dimensional area of a line is 0. However, the number
of integer solutions is obviously infinite. We say that an inequality of the form
|F(x, y)| ≤ m is of finite type if the area of its set of real solutions is finite, and if its
intersection with any line with rational coefficients has finite length. Similarly, if S is
a set of real solutions to |F(x, y, z)| ≤ m, then F is of finite type if the 3-dimensional
volume of S is finite, the intersection of S with any plane with rational coefficients
has finite area, and its intersection with any line with rational coefficients has finite
length. The same definition extends to any dimension.

Decomposable Forms

Now, if the inequality |F(x1, . . . , xn)| ≤ m is of finite type, does it mean that it
has a finite number of solutions, and can this number be bounded in terms of the n-
dimensional volume of the set of its real solutions? In general, no: take F(x, y) = 0 if
y = x2 and F(x, y) > m otherwise. Then the real solutions form a parabola y = x2,
it has area 0, and it intersects any line in at most two points, hence it is of finite
type, but the number of integer solutions is infinite. However, Jeffrey Lin Thunder
[376] proved that the answer to the above question is “yes” for functions F called
decomposable forms. These are polynomials of degree d in n variables which are
expressible as

F(x1, . . . xn) = (a11x1 + · · · + a1nxn)(a21x1 + · · · + a2nxn) . . . (ad1x1 + · · · + adnxn),

where the coefficients ai j are non-zero complex numbers, that is, numbers of the
form x + y

√−1, with x, y being real numbers. For example, F = x2 + y2 belongs
to this class, because x2 + y2 = (x + y

√−1)(x − y
√−1).
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Theorem 1.3 Let F be a decomposable form of degree d in n variables with inte-
ger coefficients. Then the number NF (m) of integer solutions to the inequality
|F(x1, . . . , xn)| ≤ m is finite for allm if and only if F is of finite type.Moreover, if F is
of finite type, then NF (m) ≤ c(n, d)mn/d , where c(n, d) is an effectively computable
constant depending only on n and d.

Mahler [258] obtained similar results for d = 2 in 1933, and then essentially no
progress was made in the general case d > 2 for almost 70 years, until the work of
Thunder. Note that the bound in Theorem 1.3 does not depend on the coefficients
of F . That is, if we fix n, d,m and compute that c(n, d)mn/d is, say, one million,
then we can be sure that for any (integer) coefficients of a decomposable form F
of degree d in n variables, the inequality |F(x1, . . . , xn)| ≤ m either has an infinite
number of solutions, or at most a million. This resembles the fact that a quadratic
equation ax2 + bx + c = 0 can have either an infinite number of real solutions (if
a = b = c = 0), or at most 2, but never exactly 3.

Thunder also proved that, under the conditions of Theorem 1.3, the approximation
(1.6)workswell for largem. Intuitively, the reasonwhym should be large is to remove
some “boundary effects”. For example, the inequality x2 + y2 ≤ m with m = 0.99
has just 1 integer solution, x = y = 0, while the corresponding volume is 0.99π > 3.
With m = 1, the volume is still just above 3, but the number of solutions jumps to 5.
For large m, such effects are negligible, and (1.6) works. Thunder also derived the
exact form of the error term in this approximation.

A Concrete Example

As an application, let us approximately count the number of integer solutions to the
inequality x4 + 4y4 ≤ 1010. First, let us factor this polynomial to check that it is a
decomposable form.

x4 + 4y4 = (x2)2 − (2y2i)2 = (x2 − 2y2i)(x2 + 2y2i),

where i = √−1. Note that (1 + i)2 = 12 + 2i + i2 = 2i , hence x2 − 2iy2 = (x −
(1 + i)y)(x + (1 + i)y). Similarly, (i − 1)2 = −2i , and x2 + 2y2i = x2 − ((i −
1)y)2 = (x − (i − 1)y)(x + (i − 1)y). Hence,

x4 + 4y4 = (x − (1 + i)y)(x + (1 + i)y)(x − (i − 1)y)(x + (i − 1)y),

as required. Next, we need to calculate the area V of the shape x4 + 4y4 ≤ 1. By

symmetry, this is twice the area below the curve y = 4

√
1−x4
4 for −1 ≤ x ≤ 1, which

can be found by integration:

V = 2

1∫

−1

4

√
1 − x4

4
≈ 1.311.
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Finally, we apply (1.6) to conclude that the number of integer solutions in question
is approximately

N ≈ Vmn/d ≈ 1.311(1010)2/4 = 131100.

The method itself is based on the volume intuition and was known long before
Theorem 1.3was proved, always giving an accurate result in practice. However, there
was no formal proof that thismethod should work. Thework of Thunder finally filled
this gap, and now the method above can be applied with full confidence.

Reference
J.L. Thunder, Decomposable form inequalities, Annals of Mathematics 153-3,
(2001), 767–804.

1.4 On the Arithmetic Difference of Regular Cantor Sets

Sets of Small Length but Large Cardinality

Does the interval [0, 1] containmore real numbers than [0, 1/2]? If you are seeing this
question for the first time, you might answer “Yes”. Mathematicians, however, say
that two sets A and B have equal cardinality (that is, the same number of elements) if
there exists a one-to-one correspondence between their elements. Now, we can take
any number x ∈ [0, 1], and put it in correspondence with the number x/2 ∈ [0, 1/2].
Hence, the cardinalities of these sets are actually equal, although the lengths are
different.

By a similar argument, an interval of any length ε > 0 has the same cardinality
as [0, 1]. But what about even smaller lengths? A set S of real numbers has length
(or measure) 0 if, for any ε > 0, it can be covered by a set of intervals of total length
ε. For example, the set of rational numbers in [0, 1] has measure 0. Indeed, for any
ε > 0, every number m/n can be covered by an interval

(m/n − ε/2n2n,m/n + ε/2n2n)

of length ε/n2n . In this case, the n rational numbers 1/n, 2/n, . . . , n/n with denom-
inator n are covered by n such intervals with total length n · (ε/n2n) = ε/2n . So,
rational numbers with denominators n = 2, 3, 4, . . . are covered by intervals of
total length ε/2, ε/4, ε/8, . . . and the total length of all intervals is bounded by
ε/2 + ε/4 + ε/8 + · · · = ε.

It is known that one cannot create a one-to-one correspondence between the set of
rational numbers and the set of real numbers. One may ask, however, if there exists
a set with measure 0 which still has the same cardinality as [0, 1]. Again, if you are
new to the subject, you might guess that there is no such set, however there is, and
here is an example.
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Fig. 1.4 The first four steps in the construction of the Cantor set

Cantor Sets

Take the interval [0, 1], and delete the middle third (1/3, 2/3), resulting in the set
[0, 1/3] ∪ [2/3, 1]. Then delete the middle third from each of these two intervals,
resulting in [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1], and continue this process
indefinitely, see Fig. 1.4. Let C be the set of points which is never deleted. After step
1, we have deleted an interval of length 1/3, so the total length of the remaining part
is 2/3. At step 2, we have deleted 1/3 of this, and the total length of the remaining
part is 2/3 · 2/3 = 4/9. Similarly, the length of the part remaining after step n is
(2/3)n , hence the measure of C is lim

n→∞(2/3)n = 0. However, C is non-empty (in

particular, one can easily check that 0 ∈ C , and 1 ∈ C), and in fact there is a one-to-
one correspondence between C and the interval [0, 1].

Indeed, take any number x ∈ [0, 1], and assign to it the letter L or G according to
whether it belongs to the subinterval [0, 1/2) or [1/2, 1], respectively. For example,
x = 1/3 is assigned the letter L . Then divide the corresponding subinterval into
two halves again, and assign a second letter, for example, numbers from [0, 1/2) are
assigned L orG if they belong to the subintervals [0, 1/4) or [1/4, 1/2), respectively,
in particular x = 1/3 is assigned G this time. After repeating this infinitely, we can
associate to each x ∈ [0, 1] a unique infinite sequence of L’s and G’s. Now, in the
process of constructing the set C as above, we can similarly assign to every y ∈ C a
first letter L if y ∈ [0, 1/3] and G if y ∈ [2/3, 1]. Then, if, say, y ∈ [0, 1/3], assign
a second letter L if y ∈ [0, 1/9] and G if y ∈ [2/9, 1/3], and so on. In this way we
associate infinite sequence of L’s and G’s to every y ∈ C . Finally, we put x ∈ [0, 1]
into correspondence with y ∈ C if and only if x and y are associated with the same
sequence of letters.

Hence, we have constructed a set C with measure (length) 0, but with the same
number of elements as the full interval [0, 1]. Obviously, the construction above is
not unique. For each β ∈ (0, 1/2), we can delete the middle part (β, 1 − β) of [0, 1],
and then repeat the process as above. Also, we can start with any interval [a, b]
instead of [0, 1]. The resulting sets all have as many elements as [0, 1] but measure
0, and are examples of Cantor sets.


