(++17 Standard
Library Quick
Reference

A Pocket Guide to Data Structures,
Algorithms, and Functions

Second Edition

Peter Van Weert
Marc Gregoire

Apress’

C++17 Standard
Library Quick
Reference

A Pocket Guide to Data Structures,
Algorithms, and Functions

Second Edition

Peter Van Weert
Marc Gregoire

Apress®

C++17 Standard Library Quick Reference: A Pocket Guide to Data
Structures, Algorithms, and Functions

Peter Van Weert Marc Gregoire
Kessel-Lo, Belgium Meldert, Belgium
ISBN-13 (pbk): 978-1-4842-4922-2 ISBN-13 (electronic): 978-1-4842-4923-9

https://doi.org/10.1007/978-1-4842-4923-9

Copyright © 2019 by Peter Van Weert and Marc Gregoire

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no inten-
tion of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibil-
ity for any errors or omissions that may be made. The publisher makes no warranty, express or
implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www. freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www. springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress . com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook ver-
sions and licenses are also available for most titles. For more information, reference our Print and
eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located atwww. apress.com/9781484249222.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4923-9
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:editorial@apress.com
mailto:bookpermissions@springernature.com
http://www.apress.com/bulk-sales
www.apress.com/9781484249222
http://www.apress.com/source-code

Dedicated to my parents and my brother,
who are always there for me.
Their support and patience helped me
in finishing this book.

—DMarc Gregoire

In loving memory of Jeroen.
Your enthusiasm and courage will forever remain
an inspiration to us all.

—Peter Van Weert

Contents

/

About the AUthOrS......ccceuremeeimremmessmrsnsssssmsesssssessssssssssnnsnssssnnsnnsessnnnns XV
About the Technical ReVIEWErcoremeessrrennnsssrensnsssrsnnnnssssnnsnssssensas XVil

T110 0 Lo [T (0] 1 R () 4

Chapter 1: Numerics and Math...........cc.ccsicemmnnssseenmmmsssessmnnssssnnnns 1

Common Mathematical Functions...........c.ccvniiiincncsnenennnnnnns <cmath> 1
BasiC FUNCHIONS ... 1
Exponential and Logarithmic FUNCHONSccccocvcevrvererre v seseresseneene 2
POWET FUNCHIONS......viceiurie e sessasnns 2
Trigonometric and Hyperbolic FUNCEIONSccocvvevrevecerere e 3
Integral Rounding of Floating-Point NUMDEIScccverererriereniereneresesenesesesserenns 3
Floating-Point Manipulation FUNGLIONS..........cccceverrvererererererere s sessesesesesseneens 3
Classification and Comparison FUNCHONS..........ccvceevererierenseresereseseresesseseseesessenens 4
GCU/ICIN (CHATT) ceererererererererererere e e e e se e e se e e e se e se e e e e e e nesenenens <numeric> 4
Error HANAIING......cocceerereeerecrerereresevee e see e sseressesessesas e sassessesessesassesassessenessesansesanas 5

Special Mathematical Functions (C++17)........cccceerererererresnennens <cmath> 5
Bessel FUNCLIONS ... 6
POIYNOMUAIS ... s 7
Elliptic INTEQIalS......cov e s 7
Exponential INtegrals...........ccocerienneiecre s 8
Error FUNCHONS ... 8
GaMMA FUNCHIONS......cceiereierere e 8

vi

CONTENTS

Beta FUNCLIONS......coo et 9
2618 FUNCHIONS ...ttt 9
Minimum, Maximum, and Clampingcccceeevrerrereriernenen <algorithm> 9
Fixed-Width Integer TYpesScccvvvrerererienene e <cstdint> 10
Arithmetic Type Properties.........ccccevvvrrveniersnnsensenssessenssenns <limits> 11
Complex NUMDEXS ... <complex> 13
Compile-Time Rational NUMDErS........cccvverierveererreererieerenens <ratio> 14
Random NUMDErS........ccceeeeerererere e <random> 15
Random NUMDEr GENEIALOFS ... 15
Random Number DiStribUutionsoococonriiennnrere s 18
NUMEKIC AITAYS ... <valarray> 23
(0 B OSSR 24
STAIIGSHICE vt 25
STAIIMASK_AITAY.....ceceeereecce et 26
STA:ZINAIFECT_AITAY ...c.ceeeeece e 27
Chapter 2: General Utilitiesc..ccvssemrmssensnssensssssnsssssnsesssnsesssnnenss 29
Moving, Forwarding, SWapping........ccceevrerrerrerienesessesenaenns <utility> 29
VIOVING ettt e e 29
FOWAITING ..ottt s 31
Swapping and EXChangingccoeeeeeeenernnencsennesesese s esees 32
Pairs and TUPIES......ccouvierrerierreree e ree e ssse s s s e ssessse e ssse e s snesanssnesnnenns 33
PalirS....co v —————— <utility> 33
TUPIES ottt ——————— <tuple> 34
std::byte (C+H17)cvrr - <cstddef> 35
Relational Operators ..o <utility> 36
SMart POINTErS.........ccoeererrerese e <memory> 36
Exclusive OWnership POINTEYScccceererererererreresreres s ssesesesessesessessssesassesaenes 36
Shared OWNErship POINTEIScveeerererererreree s s s eres e sse e sae s e e s e sasesaens 39

CONTENTS

Function ODJECES........cccvrrcerrerrerrer s <functional> 42
ReferenCe WrappErSocevrerrirene e ss e s sss e s se s s sns s 43
Predefined FUNCLOFS ..o 43
Binding FUNction Arguments ... 44
Negating a Callable (CH+17)ccvvverererererererereresesesesesesese e se e e s ss s ssnens 45
Generic FUNCLION WIAPPETScovceverererirerissesse s se e e ssssesssens 45
Functors for Class MEMDErS...........cooiiiiics s 46

Initializer Lists.......c.coocvrrerernenerneeseseeseseenes <initializer list> 47

VoCabulary TYPES ([CH+17).cuerrrerererereererersesersersserssssssessesessessssesssssssenes 48
SE:OPLIONAL.......cecrriricr i —————— <optional> 48
StzVANANT....cc s ——————— <variant> 50
SHALIANY v ———————— <any> 55

Date and Time Utilities..........oconvrnnsninnnnsnsss s <chrono> 56
DUFALIONS ..o 57
TIME POINTS ... s 58
CIOCKS ..ottt s 59
C-Style Date and Time ULIlitieSccocvcevrreresesesnie e <ctime> 60

TYPE ULIlIIES ...veeeeeereereer et 62
Runtime Type Identificationcccocovveiinniinnnnenns <typeinfo», <typeindex> 62
TYPE TrAIS....evcecrcrtcsc bbb s <type_traits> 63
TYPE OPEratiONS.......ceeeeerrreeereresreese e sa e sas s nnnns <utility> 70

GENErIC ULIlITIES...crvreircrieciire e 71
(0 B 11T 0 G (s <functional> 71
StA::addrESSOf....cucvirircrir i ————— <memory> 72

vii

CONTENTS

Chapter 3: Containersccocusssmmmmmmsssssnnmssssssnnsssssssnsssssssnnnsssssnnnns 13

ITerators ... ————— <iterator> 73
1C2] £ L (0] g P T 74
Non-member Functions to Get Rerators...........cooeeeerererererenerescseseseseseseseseseseeenes 75
Non-member Operations on RErators...........ccovreererernesesesnssesess s sesesens 76

Sequential ContaiNers........cccvveverererene e ees 76
SHEIVECION. .o —————— <vector> 76
SHAIABQUE. ... ————————— <deque> 83
SHALIAIMAY cvvrrircrrr i —————— <array> 84
std::list and std::forward_list..........cccoeeeiiiiiniiinninnns <list>, <forward list> 84
Sequential Containers REfEIENCEcvvveverererererre e resse e ssesessesessesessesassens 86

Std::bitSet....c e ———— <bitset> 89
0] 18] TP 90
RETEIBNCE ...ttt s 90

Container Adaptorscocccceeererererere e saesnesn s e nnas 91
SHALIQUELB ... ——————————— <queue> 91
StAIPHOMTY_QUEUE ...t <queue> 91
SEA:ISTACK ... ————————— <stack> 92
16 11110 T 92
RETEIBNCE ... 93

Ordered Associative CONtaiNers.........c.cocurerminenssesesssssssssssssesesssenens 93
SHALIMAD. e —————————— <map> 94
INSErting iN @ MAP......coceiiririre e r e e sa e saeae 95
SEA:MUIIMAD v ———————— <map> 98
std::set and Std::MUItISEL ... ——— <set> 98
Order Of EIBMENTS.......coveirirrisissssirisssss s sssns 98
ST 1)1 1 o 99
Moving Nodes Between Containers (C++17)cccvvrrerererennsesesessssssesessssssssessssssenes 100
Merging CONtAINEIS (C++17).cvererrererrererrerersererersssersssessesessesessessssessssessssesssssssenssaes 100

viii

CONTENTS

0] 01 10] L 1 OSSR 101
RETEIBNCE ... s 101
Unordered Associative Containers.............cocvvvenerrncnensssnessnssesesssennns
.. <unordered map>, <unordered set> 103
L T 1 Y oSS 104
Template Type Parameters ... s 104
Hash FUNCLIONS ... s 104
0] T 01 1= 106
RETEIENCE ... ————— 106
ANIOCALONS ... <memory> 108
Polymorphic All0Cators C++17)......ccvuvemiennssnnsssnsssnsssnnanns <memory_resource> 108
Allocators for Multilevel Containers............cccvuveecnunne. <scoped_allocator> 111
Chapter 4: Algorithms..........ccccnvmnsmmmsmmmssmmmmesms s 113
Input and OQutput terators..........coeeeeecece s 113
General GUIAEIINES.......ccvveeverieererree e e a e s neenes 114
AlGOrithm ArQUMENTS.......cceeeererreesisesree e as s s s e sessssennnnns 114
LT 111 10] 0)RR 115
AIGOrtAMS ... <algorithm> 115
Applying @ Function 10 @ RANGE.........ccccerireererireeesi e 115
Checking for the Presence of Elements............ccooreeennennncncnnneseseseseeseseseees 117
FINding EIEMENTS ... s 117
Finding Min/Max EIEMENTS ..o s 118
BiNary SEArCHveeeeeeee s 119
SUDSEQUENCE SEAICH.......c.eivieteece e 120
SequenCe COMPATISON.......cccucierererererererss s se e s s se s s sae s 121
GENErating SEOUENCES........cccocrurreerereriee e se s e snane s 122
COPY, MOVE, SWADcueciireiririre sttt e e s a e enas 123
Removing and Replacing........ccceeeeerereeenerinereiesisseee e s 124
Reversing and ROatingcooeoeerneeicnncscre s 125

ix

CONTENTS

PartitioNiNGceceeeeeecereee s 126
B0 3o TSRS 127
Sampling and ShUfflingcccoerreinr s 128
Operations on SOrted RANGEScccoururererereeeieririeee e 129
PermUtation ..o 130
HBAPS .. et 131
Numeric Algorithmsccccoviernrmrennsersse s <numeric> 132
REUUCTIONS ... 132
INNEF PIOAUCLScvcierrrccirr s 133
PIEfiX SUMS ... 134
Element DIffErBNCESc.coceeeererererererereresesese e 135
Algorithms for Uninitialized Memoryc.cceevrveerrerrersenne <memory> 135
Parallel AIgorithms (C++17)ccocvrerierrnereressesesesesessesnas <execution> 136
Parallel EXECULION ... 137
Parallel Unsequenced EXECULIONcccccieverievnicnsscnesese e ses e senes 138
Iterator Adaptors.........cccocvvrveccrcec e <iterator> 138

Chapter 5: Input/Outputcccerrriirrnnnnnssnsssssssssseesnnnes 141

Input/Output with Streams ... 141
HEIPEE TYPES ..o <ios> 142
Formatting Methods (Std::i0S_Dase).......c.corrverererrnenerernsseneressesesesessenenes <ios> 143
1/0 Manipulators ... <ios>, <iomanip> 145
6 11 110 146
3 (0 01 <ios> 147
CY (0 0L =T o <ostream> 149
SEAISIIRAM.....c v <istream> 151

LY (0 B0 (= 11 <istream> 153

CONTENTS

String Streams........ccocecececrcrce e <sstream> 153
[111][S 154
File Sreams........ccccveenieresnesnsese s <fstream> 155
EXAMPIC...cocieiiitrrci i 156
Streaming Custom TYPESccevevverrerierrr s 156
Custom << and >> OPEratorsS.......cccccvererererieresiersrere e s ras e sse e saesesaesenees 156
Custom 1/0 Manipulatorsccceerereerereereresereressessssessesessesessesassessssenes <ios> 157
Stream Rerators..........covriinnnsnnn <iterator> 160
Std::0Stream_iterator........ci i ————— 160
Std::istream_iterator........ooin s ———— 160
Stream BUfers.........covvvricnnnsnnees s <streambuf> 161
File SYSIEMS ..o <filesystem> 162
Files, Paths, and Pathnames.........cccccviiiieniininins s ssssssessssssssssessssssssnees 162
0Tl 21T 010] T S 163
THE PAth ClaSSccereerrerere et r e sa e sa e s e saesesnenesaenanaens 164
FIlE LINKS ..eoveeeeeeeceeeeeses et sse st sssens 168
Path Normalization ... 169
The Current Working DIr€CIOIYeccvererrereriersnerseersesersesessessssessssessesessesessensnsens 170
Absolute and Relative Paths...........ccovnnnnnn 170
00 T 0 LT T o LT 172
File STALUS. ..ot 172
Creating, Copying, Deleting, and Renaming..........ccceceverererereresseressessssessssessenenees 176
File SizeS and Free SPACEccoveerrererrerererereresersssessesessesessesessesassessssesssnsssesnaes 177
T TH (0] T S (] S 178
C-Style File ULIlItIEScocoreererrerrerrerrereessessesse e sessessnssnssnnsnnns <cstdio> 180
C-Style Output and Inputcceeeeeeeeeere e <cstdio> 181
Std:zprintf() FAMIIY ...cvveeeeeeeeeeeee e 181
Std::SCaANF() FAMIIY ...cvveeceeeeeee e 185

xi

CONTENTS

Chapter 6: Characters and Strings..........cousmmnmmmmminnnmsne. 189
SHINGS o ———— <string> 189
Searching in SIHNGScccovvreererr e 190
MOdiIfYiNg STHNGS ...vcveeeereeeererir e s 191
CONSLIUCHING STINGScoviveeeerererreeseses e e e s s 192
SEHNG LENGEN .. 192
CopYing (SUD)STIINGS ...coveveeeererrrreereseseesesesssssse e sesss s ssesesssssssssssssssenes 193
COMPANING SNGS...cuceeerrreeererrree s s r s s 193
SING VIEWS (CH+17) .. <string view> 194
Character Classification...........c.ccoccevvernierienennene <cctype>, <cwctype> 195
Character-Encoding Conversionccuoeeene. <locale>, <codecvt> 197
Localization..........cuenmninnnnsns s <locale> 200
LOCalE NAMES ... s 200
The GIODEAI LOCAIEcocecvrreriisriisesss i 201
Basic std::locale MEMDErS ... 202
Locale FaCetS.......c.cuvrrnnnnins 202
Combining and Customizing LOCAIES..........cccvvererrereererererereresesesassessesessssessesenaes 210
O T L <clocale> 213
Regular EXPreSsionscccuoveernessessesssssessssssssssssssssssssssssnnns <regex> 214
The ECMAScript Regular EXpression Grammarccoceevvennernneresesesessesenens 214
Regular EXpression ODJECTS.........cccorrrerererccicreseee e 216
Matching and Searching Patterns ... s 218
Match Herators ... ——————— 221
Replacing Patterns ... 223
NUMEriC CONVEISIONS........cccoerereerireere s 226
Convenient Conversion FUNCLIONS ... <string> 227
High-Performance Conversion FUNCtions (C++17).......coceereereerenenens <charconv> 229

xii

CONTENTS

Chapter 7: CONCUITENCYccurrsssssnsnssssssnnnsssssansnssssssnnnsssssnnnnssssnnns 231
Threads.......ccovvrnnn e ———— <thread> 231
Launching @ NeW TRIeadc.cceceeerrrrnerererrnesesesrssse e ssssssenes 231
AThread’s LIfEtime.........cooeeeerererrrererererererere s 232
Thread [AENTIfIErScocoeeeeereeerererererere e es 232
ULlity FUNCTIONScvecceeteceere e s 233
(0T 0 233
FUTUIES .. e <future> 234
Y U (0] 0 [=T 234
g 101 £ 235
EXCEPLIONS ... e e e e e s 237
Mutual EXCIUSIONcoviiriiiirinirss s <mutex> 238
Mutexes and LOCKS.........ccouururinninisiissins s snens 238
MUTEX TYPBS .ttt e 239
LOCK TYPBS ..ttt ss e sn e b b p e n s 241
Locking Multiple MUTEXES.....ccccerierererenere e ses e sss s sesnas 244
EXCEPLIONS ...t sr e e n e e n e n e nr s 244
Calling a Function ONCe.........ccueerenmresnnsesnsessssssessesessesessens <mutex> 245
Condition Variablesccovrvereressenereseserenns <condition variable> 246
L0 Ty To R {0 = 0 1 o 0 246
NOTIfICAtION ... ————————— 247
EXCEPLIONS ... e e 248
L1 Data Cache Line Size ([C++17)....cccccuermreriernnmrsesessesnssesesesesnns <new> 248
SYNCAIONIZALION ...t 249
Atomic 0perationscccevceeereresnsesesesse s sessens <atomic> 250
ALOMIC VariablESovreririssisisisisissss s 250
D (0] L[l =TSSR 255
Non-member FUnctions and MaCr0S ..o 255
FENCES ..o —————— 255

CONTENTS

Chapter 8: DiagnoStiCSccurmrsssummnmmssssnsnssssssnsnssssssnsnssssssnnnsssssnnns 257
ASSEITIONSveeceereerrerer e e se e s n e ae s nennes <cassert> 257
EXCEpLioNnScocceeriinnirine e <exceptiony, <stdexcept> 258
Exception POINters.........cccocvinerenericnsnesessese s <exception> 259
Nested EXCEPLIONSccovererrcrerrsese s s <exception> 260
SYSTEM EITOIS ... <system_error> 262
Y (0 BT (0 v =T 0 (0] S 263
(0 B (0] v [N 263
StA::error_Condition ... ———— 264

C Error NUMDErS ... <cerrno> 264
Failure Handling..........ccovvenerncnenncne e <exception> 265
std::uncaught_exceptions() (CHH17).....cviiinnninnsississsese s 265
SEA:erMINATE() ...veveeeeeseeerer e s 266
Appendix: Standard Library Headersccuseemmmssssanssnssssnnnsnsans 271
Numerics and Math (Chapter 1).........oornrnierreeeree s 271
General Utilities (Chapter 2).........ooeerniercrirrceere e 272
Containers (ChAPLEr 3)......cco e 273
Algorithms (ChAPLEr 4)........c.occeerereeere e 274
Input/Output (ChAPTEE 5)....cveceieirerirerir e 274
Characters and Strings (Chapter 6)c.ccovrrererernercneni s 275
ConcurrenCy (ChAPIEE 7)...c.cou et 276
Diagnostics (ChapIer 8)ccourerercrerirrcire e 277
The C Standard LiDrary ... 277
IN@X..eiiieriessimsssnsnes s s s ——————— 279

Xiv

About the Authors

Peter Van Weert is a Belgian software engineer and
C++ expert, mainly experienced in large-scale desktop
application development. He is passionate about
coding, algorithms, and data structures.

Peter received his master of science in computer
science summa cum laude with congratulations of the
Board of Examiners from the University of Leuven. In
2010, he completed his PhD thesis in Leuven at the
research group for declarative languages and artificial
intelligence. During his doctoral studies, he was a
teaching assistant for courses on software analysis
and design, object-oriented programming (Java), and
declarative programming (Prolog and Haskell).

After graduating, Peter joined Nikon Metrology to work on industrial metrology
software for high-precision 3D laser scanning and point cloud-based inspection. At
Nikon, he learned to handle large C++ code bases and gained further proficiency in all
aspects of the software development process—skills that serve him well today at Medicim,
the software R&D center for dental companies Nobel Biocare, Ormco, and KaVo Kerr.

At Medicim, Peter contributes to their next-generation digital platform for dentists,
orthodontists, and oral surgeons that offers patient data acquisition from a wide range of
hardware, diagnostic functionality, implant planning, and prosthetic design.

In his spare time, Peter writes books on C++ and is a regular speaker at and board
member of the Belgian C++ Users Group.

Marc Gregoire is a software architect from Belgium.
He graduated from the University of Leuven, Belgium,
with a degree in “Burgerlijk ingenieur in de computer
wetenschappen” (equivalent to a master of science in
engineering in computer science). The year after, he
received an advanced master’s degree in artificial
intelligence, cum laude, at the same university. After
his studies, Marc started working for a software
consultancy company called Ordina Belgium. As a
consultant, he worked for Siemens and Nokia Siemens
Networks on critical 2G and 3G software running on
Solaris for telecom operators. This required working in
international teams stretching from South America and
the United States to Europe, the Middle East, Africa,
and Asia. Now, Marc is a software architect at Nikon

XV

ABOUT THE AUTHORS

Metrology (www.nikonmetrology.com), a division of Nikon and a leading provider of
precision optical instruments and metrology solutions for 3D geometric inspection.

His main expertise is C/C++, specifically Microsoft VC++ and the MFC framework.
He has experience in developing C++ programs running 24/7 on Windows and Linux
platforms, for example, KNX/EIB home automation software. In addition to C/C++, Marc
also likes C#.

Since April 2007, he has received the annual Microsoft MVP (Most Valuable
Professional) award for his Visual C++ expertise.

Marc is the founder of the Belgian C++ Users Group (www.becpp.org), author of
Professional C++ (Wiley), technical editor for numerous books for several publishers, and
a member on the CodeGuru forum (as Marc G). He maintains a blog at www.nuonsoft.
com/blog/.

xvi

http://www.nikonmetrology.com/
http://www.becpp.org/
http://www.nuonsoft.com/blog/
http://www.nuonsoft.com/blog/

About the Technical

Reviewer

Christophe Pichaud is a French C/C++
developer based in Paris. Over the course of his
career, he has developed large scale server
implementations in the banking industry, where
he helped build the first French online bank
account service (for Banque-Populaire), as well as
Retail Services (Société Générale). He’s also
performed C++ migrations and developed hybrid
applications with the .NET stack. Among his past
clients are Accenture, Avanade, Sogeti, CapGemini,
Palais de Elysée (French Presidency), SNCF, Total,
Danone, CACIB, and BNP Paribas. He earned his
MCSD.NET certification and currently works for

a Microsoft Gold Partner called Devoteam
Modern Applications in Paris, a division of
Devoteam (www.devoteam.com).

Additionally, he participates in Microsoft Events as speaker for TechDays, and as
an MVP at Ask the Expert sessions. He’s regularly written C++ technical articles for the
French magazine Programmez since 2011. He is also the community manager of the
“NET Azure Rangers,” which includes 26 members and 9 MVPs and whose activities
include speaking, writing and community-building around Microsoft technologies.

When he is not developing software or reading books, Christophe spends his spare
time and holidays with his three daughters, Edith, Lisa, and Audrey along with his father
Jean-Marc and mother Mireille in the Burgundy region of France.

xvii

https://urldefense.proofpoint.com/v2/url?u=http-3A__www.devoteam.com&d=DwMGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=hBSr1R__kjUcST0tpDOpn6t2rvV4kaPHSZvoArp2MFA&m=TfkHoH0iDrzPfA5a-J5sXdFlbl12_mBKfxwy5GKlXV8&s=6FkQr7c0CjywwQTEwZJj3zoriuOp-3LX9olIYg_N5DQ&e=

Introduction

The C++ Standard Library

The C++ Standard Library is a collection of essential classes and functions used by
millions of C++ programmers on a daily basis. Being part of the ISO Standard of the
C++ Programming Language, an implementation is distributed with virtually every
C++ compiler. Code written with the C++ Standard Library is therefore portable across
compilers and target platforms.

The Library is more than 25 years old. Its initial versions were heavily inspired by
a (then proprietary) C++ library called the Standard Template Library (STL), so much
so that many still incorrectly refer to the Standard Library as “the STL.” The STL library
pioneered generic programming with templated data structures called containers and
algorithms, glued together with the concept of iterators. Most of this work was adapted by
the C++ standardization committee, but nevertheless neither library is a true superset of
the other.

Today the C++ Standard Library is much more than the containers and algorithms of
the STL, though. For decades, it has featured STL-like string classes, extensive localization
facilities, and a stream-based I/0 library, as well as the entire C Standard Library.

Earlier this decade, the C++11 and C++14 editions of the ISO standard have added,
among other things, hash map containers, generic smart pointers, a versatile random
number generation framework, a powerful regular expression library, more expressive
utilities for function-style programming, type traits for template metaprogramming,

and a portable concurrency library featuring threads, mutexes, condition variables, and
atomic variables. Most recently, C++17 has introduced, among many smaller additions,
parallelized algorithms, a file system library, and several key types for day-to-day use
(such as optional<>, variant<>, any, and string_view). Many of the C++11, C++14, and
C++17 additions are based on Boost, a collection of open source C++ libraries.

And this is just the beginning: the C++ community has rarely been as active and
alive as in the past decade. The next version of the Standard, tentatively called C++20, is
expected to add even more essential classes and functions.

Why This Book?

Needless to say, it is hard to know and remember all the possibilities, details, and
intricacies of the vast and growing C++ Standard Library. This handy reference guide
offers a condensed, well-structured summary of all essential aspects of the C++ Standard
Library and is therefore indispensable to any C++ programmer.

Xix

INTRODUCTION

You could consult the Standard itself, but it is written in a very detailed, technical

style and is primarily targeted at Library implementors. Moreover, it is very long: the
C++ Standard Library chapters alone are nearly 1,000 pages in length, and those on the
C Standard Library easily encompass another 200 pages. Other reference guides exist
but are often outdated, limited (most cover little more than the STL containers and
algorithms), or not much shorter than the Standard itself.

This book covers all important aspects of the C++17 and C18 Standard Libraries,

some in more detail than others, and is always driven by their practical usefulness. You
will not find page-long, repetitive examples; obscure, rarely used features; or bloated,
lengthy explanations that could be summarized in just a few bullets. Instead, this book
strives to be exactly that: a summary. Everything you need to know and watch out for in
practice is outlined in a compact, to-the-point style, interspersed with practical tips and
short, well-chosen, clarifying examples.

Who Should Read This Book?

The book is targeted at all C++ programmers, regardless of their proficiency with the
language or the Standard Library. If you are new to C++, its tutorial aspects will quickly
bring you up to speed with the C++ Standard Library. Even the most experienced C++
programmer, however, will learn a thing or two from the book and find it an indispensable
reference and memory aid. The book does not explain the C++ language or syntax itself,
but is accessible to anyone with basic C++ knowledge or programming experience.

What You Will Learn

XX

How to use the powerful random number generation facilities
How to work with dates and times

What smart pointers are and how to use them to prevent memory
leaks

How to use containers to efficiently store and retrieve your data
How to use algorithms to inspect and manipulate your data
How lambda expressions allow for elegant use of algorithms
What functionality the library provides for stream-based I/0

How to inspect and manipulate files and directories on your file
system

How to work with characters and strings in C++

How to write localized applications

INTRODUCTION

e How to write safe and efficient multithreaded code using the C++11
concurrency library

e How to correctly handle error conditions and exceptions

e And more!

General Remarks

o Alltypes, classes, functions, and constants of the C++ Standard Library
are defined in the std namespace (short for standard).

e All C++ Standard Library headers must be included using
#include <header> (note: no . h suffix!).

e All headers of the C Standard Library are available to C++
programmers in a slightly modified form by including <cheader>
(note the c prefix).! The most notable difference between the C++
headers and their original C counterparts is that all functionality
is defined in the std namespace. Whether it is also provided in the
global namespace is up to the implementation: portable code should
therefore use the std namespace at all times.

o This book generally only covers headers of the C Standard Library
if the C++ Standard Library does not offer more modern alternatives.

e More advanced, rarely used topics such as custom memory allocators
are not covered.

Code Examples

To compile and execute the code examples given throughout the book, all you need is
a sufficiently recent C++ compiler. We leave the choice of compiler entirely up to you,
and we further assume you can compile and execute basic C++ programs. All examples
contain standard, portable C++ code only and should compile with any C++ compiler
that is compliant with the C++17 version of the Standard. We occasionally indicate known
limitations of major compilers, but this is not a real goal of this book. In case of problems,
please consult your implementation’s documentation.

Nearly all code examples can be copied as is and put inside the main() function
of a basic command-line application. Generally, only two headers have to be included
to make a code snippet compile: the one being discussed in the context where the

'The original C headers may still be included with <header.h>, but their use is deprecated.

xxi

INTRODUCTION

example is given and <iostream> for the command-line output statements (explained
shortly). If any other header is required, we try to indicate so in the text. Should
we forget, the Appendix provides a brief overview of all headers of the Standard
Library and their contents. Additionally, you can download compilable source code
files for all code snippets from this book from the Apress web site (www.apress.
com/9781484218754).

Following is the obligatory first example (for once, we show the full program):

#include <iostream>

int main() {
std::cout << "Hello world!" << std::endl;
}

Many code samples, including those in earlier chapters, write to the standard
output console using std: :cout and the << stream insertion operator, even though these
facilities of the C++ 1/0 library are only discussed in detail in Chapter5. The stream
insertion operator can be used to output virtually all fundamental C++ types, and
multiple values can be written on a single line. The so-called 1/O manipulator std: :endl
outputs the newline character (\n) and flushes the output for std: : cout to the standard
console. Straightforward usage of the std: : string class defined in <string> may occur
in earlier examples as well. For instance:

std::string piString = "PI";
double piValue = 3.14159;

std::cout << piString << " =" << piValue << std::endl;

More details regarding streams and strings are found in Chapters5 and 6,
respectively, but this should suffice to get you through the examples in earlier chapters.

xxii

http://www.apress.com/9781484218754
http://www.apress.com/9781484218754

INTRODUCTION

Common Class

The following Person class is used in code examples throughout the book to illustrate the
use of user-defined classes together with the Standard Library:

#include <string>
#include <ostream>

class Person {

public:
Person() = default;
explicit Person(std::string first, std::string last = "",

bool isVIP = false)
: m_first(move(first)), m last(move(last)), m isVIP(isVIP) {}

const std::stringd CGetFirstName() const { return m first; }
void SetFirstName(std::string first) { m first = move(first); }

const std::string& GetLastName() const { return m_last; }
void SetlLastName(std::string last) { m last = move(last); }

bool IsVIP() const { return m_isVIP; }

private:
std::string m_first, m last;
bool m_isVIP = false;

};

bool operator<(const Persond lhs, const Person& rhs) {
if (lhs.IsVIP() != rhs.IsVIP()) return rhs.IsVIP();
if (lhs.GetLastName() != rhs.GetlLastName())
return lhs.GetLastName() < rhs.GetlLastName();
return lhs.GetFirstName() < rhs.GetFirstName();

}

bool operator==(const Persond lhs, const Person& rhs) {
return lhs.IsVIP() == rhs.IsVIP()
&& lhs.GetFirstName() == rhs.GetFirstName()
& 1lhs.GetlLastName() == rhs.GetLastName();

std::ostreamd operator<<(std::ostreamd os, const Person& person) {
return os << person.GetFirstName() << ' ' << person.GetLastName();
}

xxiii

CHAPTER 1

Numerics and Math

Common Mathematical Functions <cmath

The <cmath> header defines an extensive collection of common math functions in the
std namespace. Unless otherwise specified, all functions are overloaded to accept all
standard numerical types, with the following rules for determining the return type:

o Ifall arguments are float, the return type is float as well.
Analogous for double and long double inputs.

o Ifmixed types or integers are passed, these numbers are
converted to double, and a double is returned as well. If one of the
inputs is a long double, long double is used instead.

Basic Functions

Function Description

abs(x) Returns the absolute value of x. abs () and fabs () accept all numeric

fabs(x) types; fabsf() and fabs1() only float and long double. Starting with

fabsf(x) C++17, abs () no longer converts integers into doubles (as is

fabs1(x) conventional for <cmathy: see earlier). Instead, it behaves as abs() in
<cstdliby for integral x’s (explained next).

abs(x) Defined by <cstdlib>. Returns absolute value for an integral x. abs ()

labs(x) accepts int, long, or long long (smaller integral types are promoted

1labs(x) to int); labs() and 11abs() only long and long long. The result has

the same (possibly promoted) type as the input.
fmod(x, y) Returns the remainder of %/ . For fmod (), the result always has the
remainder(x, y) same sign as x; for remainder () that is not necessarily true. For example:
mod(1,4)=rem(1,4) =1, butmod(3,4) =3 and rem(3,4) = -1.
remquo(X, y, *q) Returns the same value as remainder(). qis a pointer to an int and
receives a value with the sign of %/ and at least the last three bits of

the integral quotient itself (rounded to nearest).

(continued)

© Peter Van Weert and Marc Gregoire 2019
P. Van Weert and M. Gregoire, C++17 Standard Library Quick Reference, 1
https://doi.org/10.1007/978-1-4842-4923-9_1

CHAPTER 1" NUMERICS AND MATH

Function Description

div(x,y) Defined by <cstdlib>. Returns a struct with two members, quot
1div(x,y) and rem, containing respectively x / y and x % y (though often
11div(x, y) computed with one instruction). div() accepts a pair of ints, longs,

fma(x,y, z)

fmin(x, y)
fmax(x, y)

fdim(x,y)

nan(string)
nanf(string)
nanl(string)

or long longs; 1div() two longs, and 11div() two long longs. The
results have the same (possibly promoted) type as the inputs.

Computes (x * y) + z in an accurate (better precision and rounding
properties than a naive implementation) and efficient (uses a single
hardware instruction if possible) manner.

Returns the minimum or maximum of x and y. std: :min() and
max () defined in <algorithm> are often more convenient, as they
do not convert integers into double. These are explained later in this
chapter.

x=yif x>y

Returns the positive difference, i.e., .
+0if x<y

Returns a quiet (nonsignaling) NaN (Not-a-Number) of type double,
float, long double, respectively, if available (0 otherwise). The
string parameter is an implementation-dependent tag that can

be used to differentiate between different NaN values. Both "" and
nullptr are valid and result in a generic quiet NaN.

Exponential and Logarithmic Functions

Function Formula Function Formula Function Formula
exp(x) e exp2(x) 2% expm1(x) e -1
log(x) Inx =log x log10(x) log, x log2(x) log,x
logip(x) In(1 +x)

Power Functions

Function Formula Function Formula
pow (X, y) XV sqrt(x) Jx
hypot(x, y) Jx*+y? cbrt(x) Yx
hyPOt(XJ Y z) \/xz +y2 +z°

CHAPTER 1 © NUMERICS AND MATH

Trigonometric and Hyperbolic Functions

<cmath> provides all basic trigonometric (sin(), cos(), tan(), asin(), acos(), atan())
and hyperbolic functions (sinh(), cosh(), tanh(), asinh(), acosh(), atanh()). All angles
are expressed in radians.

The lesser-known trigonometric function atan2() is available as well. You use it to
compute the angle between a vector (, y) and the positive X axis. atan2(y, x) is similar
to atan(y / x) except that its result correctly reflects the quadrant the vector is in (and
that it also works if x is zero). Essentially, by dividing y by x in atan(y / x), one loses
information regarding the sign of x and y.

Integral Rounding of Floating-Point Numbers

Function Description

ceil(x) Rounds up/down to an integer. That is, returns the nearest integer that
floor(x) is not less/not greater than x.

trunc(x) Returns the nearest integer not greater in absolute value than x.
round(x) Returns the integral value nearest to x, rounding halfway cases away
lround(x) from zero. The return type of round() is based as usual on the type of X,

11lround(x) while lround() returns long, and 11round() returns long long.

nearbyint(x) Returns the integral value nearest to x as a floating-point type. The
current rounding mode is used: see round_style in the section on
arithmetic type properties later in this chapter.

rint(x) Returns the integral value nearest to X, using the current rounding
lrint(x) mode. The return type of rint () is based as usual on the type of x, while
11lrint(x) 1rint() returns long, and 11rint() returns long long.

Floating-Point Manipulation Functions

Function Description

modf (x, *p) Breaks the value of x into an integral and fractional part. The latter
is returned, the former is stored in p, both with the same sign as x.
The return type is based on that of x as usual, and p must point to a
value of the same type as this return type.

frexp(x, *exp) Breaks the value of x into a normalized fraction with an absolute
value in the range [0.5, 1) or equal to zero (the return value), and an
integral power of 2 (stored in exp), with x = fraction * 2%,

logb(x) Returns the floating-point exponent of x, i.e., log,_, |x|, with radix
the base used to represent floating-point values (2 for all standard
numerical types, hence the name ‘binary logarithm’).

ilogb(x) Same as logb(x) but the result is truncated to a signed int.

(continued)
3

CHAPTER 1 © NUMERICS AND MATH

Function Description

ldexp(x, n) Returns x * 2" (with n an int).

scalbn(x, n) Returns x * radix" (with n an int for scalbn() and a long for
scalbln(x, n) scalbln()). Radix is the base used to represent floating-point

values (2 for all standard C++ numerical types).

nextafter(x,y) Returns the nextrepresentable value after x in the direction of y.
nexttoward(x,y) Returnsy ifx equalsy. For nexttoward(), the type of y is always
long double.

copysign(x,y) Returns a value with the absolute value of x and the sign of y.

Classification and Comparison Functions

Function Description

fpclassify(x) Classifies the floating-point value x: returns an int equal to
FP_INFINITE, FP_NAN, FP_NORMAL, FP_SUBNORMAL, FP_ZERO, or
an implementation-specific category.

isfinite(x) Returns true if x is finite, i.e., normal, subnormal
(denormalized), or zero, but not infinite or not-a-number.

isinf(x) Returns true if x is positive or negative infinity.

isnan(x) Returns true if x is not-a-number.

isnormal(x) Returns true if x is normal, i.e., neither zero, subnormal
(denormalized), infinite, nor not-a-number.

signbit(x) Returns a nonzero value if X is negative.

isgreater(x,y) Compares x and y. The names are self-explanatory, except

isgreaterequal(x,y) islessgreater() whichreturnstrueifx<y | x> y. Note that

isless(x,y) this is not the same as !=, as, e.g., nan("") '=nan("") is true,

islessequal(x,y) butnot islessgreater(nan(""), nan("")).

islessgreater(x, y)

isunordered(x, y) Returns whether x and y are unordered, i.e., whether one or
both are not-a-number.

gcd/lem <numericy

The functions gcd() and 1em() compute the greatest common divisor and least common
multiple, respectively. They are defined as follows:

template<typename M, typename N>
constexpr std::common_type t<M, N> gcd(M, N);

CHAPTER 1 © NUMERICS AND MATH

template<typename M, typename N>
constexpr std::common type t<M, N> lcm(M, N);

Both Mand N must be integer types. As explained in Chapter 2, std: : common_type_
t<M, N> is aso-called type trait, which in this case results in a type that both Mand N can
implicitly be converted to. Concretely, the common type of two integer types M and N is
determined by the following rules (applied in order):

e IfNandMare equal, their common type is that same type as well.
e IfNandMare both smaller than int, their common type is int.
o Ifthe size of N and M differs, their common type is the largest type.

e Otherwise, the common type is the one that is unsigned.

Error Handling

The mathematical functions from <cmath> can report errors in two ways depending on
the value of math_errhandling (defined in <cmath>, although not in the std namespace).
It has an integral type and can have one of the following values or their bitwise OR
combination:

e MATH_ERRNO: Use the global errno variable (see Chapter 8).

. MATH_ERREXCEPT: Use the floating-point environment, <cfenv>,
not further discussed in this book.

Special Mathematical Functions <cmath>

C++17 adds a collection of specialized mathematical functions. All of these are available in
multiple overloads. In the following table, the functions without an asterisk always return a
double. For the functions marked with an asterisk, the return type is always double, unless
one of its arguments is a long double, then the return type is long double as well.
Additionally, there are two extra versions of each function with a postfix f or 1.
These additional functions accept floats and return a float (f postfix), or accept
long doubles and return a long double (1 postfix). For example, assoc_laguerre(),
assoc_laguerref(), and assoc_laguerrel().
Explaining all the details of these mathematical functions falls outside the scope of
this book. The following table just shows the mathematical formula for each function.
Please consult a mathematical reference for more details.

Note At the time of writing, libc++, the implementation that ships with the Clang
compiler, has not implemented these special mathematical functions yet.

CHAPTER 1 © NUMERICS AND MATH

Bessel Functions

Function

Description

cyl bessel j(v, x)*

cyl neumann(v, x)*

cyl bessel i(v, x)*

cyl bessel k(v, x)*

sph_bessel(n, x)

sph_neumann(n, x)

Computesv thev cylindrical Bessel function of the first kind:

/V(X)=i(_l) (x/2

S kT (v+k+1)

)v+2k
for|x|>0

Computes the cylindrical Neumann function, also known as
the cylindrical Bessel function of the second kind:

J,(x)cosvr—J_,(x)
sinvr

N,(x)= []u(x)COS,U”_]u(x)

, for x >0and non-integral v

lim

=V

-], for x > 0 and integral v
sin ur

Computes the regular modified cylindrical Bessel function:

> x/2
1,(x)=2"], (i) kZ:(:‘k C(v+k+1)

)u+2k
for|x|>0

Computes the irregular modified cylindrical Bessel function:

K, (x)=(m /2)i" (J, (ix)+iN, (ix))
 L,(x)-1,(x)

————+—"—, for x>0and non-integral v
2 sinvr

gy Lttt

- , for x>0and integral v
2 v sin uw

Computes the spherical Bessel function of the first kind:

1/2
; n
Ja () :(ﬂj i (x), forx>0

Computes the spherical Neumann function, also known as
the spherical Bessel function of the second kind:

1/2
n.(x)= [%J N,..(x), forx>0

Polynomials

CHAPTER 1 © NUMERICS AND MATH

Function

Description

legendre(1, x)

assoc_legendre(1, m, x)

sph_legendre(1, m, 6)

laguerre(n, x)

assoc_laguerre(n, m, x)

Computes the Legendre polynomial of the first kind:

1 d
=g

Computes the associated Legendre function:

B () =(1-x) "2

——P(x), for|x|<1

dx™ l() | |

Computes the spherical associated Legendre function
Y (0,0),where:

(x2 —l)l , for|x|<1

v (0,6)=(-1)" (M(l_m)!jm Bf" (cos0)e™,

4w (I+m)!

for [m| <1

Computes the Laguerre polynomial of order » at point x:

e* d"
L,(x)="—=

Computes the associated Laguerre polynomial:

(x"e"‘), forx>0

() =(-1)" 4= 1 (x), forx=0

dxm n+m
hermite(n, x) Computes the Hermite polynomial of order » at point x:
n 2 d" —x?
H, (x)=(-1) e* e’
()= e L
Elliptic Integrals
Function Description
ellint _1(k, ¢)* Computes the incomplete elliptic integral of the first kind:
¢
do
F(k,§)=|—————, for|k|<1
(:9) '([\/l—kzsinze i
comp_ellint_1(k) Computes the complete elliptic integral of the first kind:
F(kﬁ), for |k| <1
2
ellint 2(k, ¢)* Computes the incomplete elliptic integral of the second kind:

[
E(k,¢) = [V1-k’ sin’ 00, for |k|<1
0

(continued)

7

CHAPTER 1 © NUMERICS AND MATH

Function Description

comp_ellint 2(k) Computes the complete elliptic integral of the second kind:
E(k%j for k| <1

ellint 3(k, v, ¢p)* Computes the incomplete elliptic integral of the third kind:
N(v.kd) —f a6
o o(l—vsin219)\/1—k2 sin®6

comp_ellint 3(k, v)* Computes the complete elliptic integral of the third kind:

, for|k|<1

I‘I[k,v,%), for|k|<1

Exponential Integrals

Function Description

© _t
expint(x) Computes the exponential integral: Ei(x)= —'f ert

-X

Error Functions

Function Description

erf(x) Computes the error function of a given value: erf (x)= 2 e dt

Vg

erfc(x) Computes the complement of the error function of a given value:

erfe(x)=1-erf (x) =%Te"zdt

Gamma Functions

Function Description

tgamma(x) Computes the “true gamma” of a given value:
I(x)= J.t"’le”dt
0

lgamma(x) Computes: In(|7'(x)|)

