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Introduction

The C++ Standard Library

The C++ Standard Library is a collection of essential classes and functions used by
millions of C++ programmers on a daily basis. Being part of the ISO Standard of the
C++ Programming Language, an implementation is distributed with virtually every
C++ compiler. Code written with the C++ Standard Library is therefore portable across
compilers and target platforms.

The Library is more than 25 years old. Its initial versions were heavily inspired by
a (then proprietary) C++ library called the Standard Template Library (STL), so much
so that many still incorrectly refer to the Standard Library as “the STL.” The STL library
pioneered generic programming with templated data structures called containers and
algorithms, glued together with the concept of iterators. Most of this work was adapted by
the C++ standardization committee, but nevertheless neither library is a true superset of
the other.

Today the C++ Standard Library is much more than the containers and algorithms of
the STL, though. For decades, it has featured STL-like string classes, extensive localization
facilities, and a stream-based I/0 library, as well as the entire C Standard Library.

Earlier this decade, the C++11 and C++14 editions of the ISO standard have added,
among other things, hash map containers, generic smart pointers, a versatile random
number generation framework, a powerful regular expression library, more expressive
utilities for function-style programming, type traits for template metaprogramming,

and a portable concurrency library featuring threads, mutexes, condition variables, and
atomic variables. Most recently, C++17 has introduced, among many smaller additions,
parallelized algorithms, a file system library, and several key types for day-to-day use
(such as optional<>, variant<>, any, and string_view). Many of the C++11, C++14, and
C++17 additions are based on Boost, a collection of open source C++ libraries.

And this is just the beginning: the C++ community has rarely been as active and
alive as in the past decade. The next version of the Standard, tentatively called C++20, is
expected to add even more essential classes and functions.

Why This Book?

Needless to say, it is hard to know and remember all the possibilities, details, and
intricacies of the vast and growing C++ Standard Library. This handy reference guide
offers a condensed, well-structured summary of all essential aspects of the C++ Standard
Library and is therefore indispensable to any C++ programmer.
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You could consult the Standard itself, but it is written in a very detailed, technical

style and is primarily targeted at Library implementors. Moreover, it is very long: the
C++ Standard Library chapters alone are nearly 1,000 pages in length, and those on the
C Standard Library easily encompass another 200 pages. Other reference guides exist
but are often outdated, limited (most cover little more than the STL containers and
algorithms), or not much shorter than the Standard itself.

This book covers all important aspects of the C++17 and C18 Standard Libraries,

some in more detail than others, and is always driven by their practical usefulness. You
will not find page-long, repetitive examples; obscure, rarely used features; or bloated,
lengthy explanations that could be summarized in just a few bullets. Instead, this book
strives to be exactly that: a summary. Everything you need to know and watch out for in
practice is outlined in a compact, to-the-point style, interspersed with practical tips and
short, well-chosen, clarifying examples.

Who Should Read This Book?

The book is targeted at all C++ programmers, regardless of their proficiency with the
language or the Standard Library. If you are new to C++, its tutorial aspects will quickly
bring you up to speed with the C++ Standard Library. Even the most experienced C++
programmer, however, will learn a thing or two from the book and find it an indispensable
reference and memory aid. The book does not explain the C++ language or syntax itself,
but is accessible to anyone with basic C++ knowledge or programming experience.

What You Will Learn

XX

How to use the powerful random number generation facilities
How to work with dates and times

What smart pointers are and how to use them to prevent memory
leaks

How to use containers to efficiently store and retrieve your data
How to use algorithms to inspect and manipulate your data
How lambda expressions allow for elegant use of algorithms
What functionality the library provides for stream-based I/0

How to inspect and manipulate files and directories on your file
system

How to work with characters and strings in C++

How to write localized applications
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e  How to write safe and efficient multithreaded code using the C++11
concurrency library

e How to correctly handle error conditions and exceptions

e  And more!

General Remarks

o Alltypes, classes, functions, and constants of the C++ Standard Library
are defined in the std namespace (short for standard).

e All C++ Standard Library headers must be included using
#include <header> (note: no . h suffix!).

e All headers of the C Standard Library are available to C++
programmers in a slightly modified form by including <cheader>
(note the c prefix).! The most notable difference between the C++
headers and their original C counterparts is that all functionality
is defined in the std namespace. Whether it is also provided in the
global namespace is up to the implementation: portable code should
therefore use the std namespace at all times.

o  This book generally only covers headers of the C Standard Library
if the C++ Standard Library does not offer more modern alternatives.

e More advanced, rarely used topics such as custom memory allocators
are not covered.

Code Examples

To compile and execute the code examples given throughout the book, all you need is
a sufficiently recent C++ compiler. We leave the choice of compiler entirely up to you,
and we further assume you can compile and execute basic C++ programs. All examples
contain standard, portable C++ code only and should compile with any C++ compiler
that is compliant with the C++17 version of the Standard. We occasionally indicate known
limitations of major compilers, but this is not a real goal of this book. In case of problems,
please consult your implementation’s documentation.

Nearly all code examples can be copied as is and put inside the main() function
of a basic command-line application. Generally, only two headers have to be included
to make a code snippet compile: the one being discussed in the context where the

'The original C headers may still be included with <header.h>, but their use is deprecated.
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example is given and <iostream> for the command-line output statements (explained
shortly). If any other header is required, we try to indicate so in the text. Should
we forget, the Appendix provides a brief overview of all headers of the Standard
Library and their contents. Additionally, you can download compilable source code
files for all code snippets from this book from the Apress web site (www.apress.
com/9781484218754).

Following is the obligatory first example (for once, we show the full program):

#include <iostream>

int main() {
std::cout << "Hello world!" << std::endl;
}

Many code samples, including those in earlier chapters, write to the standard
output console using std: :cout and the << stream insertion operator, even though these
facilities of the C++ 1/0 library are only discussed in detail in Chapter5. The stream
insertion operator can be used to output virtually all fundamental C++ types, and
multiple values can be written on a single line. The so-called 1/O manipulator std: :endl
outputs the newline character (\n) and flushes the output for std: : cout to the standard
console. Straightforward usage of the std: : string class defined in <string> may occur
in earlier examples as well. For instance:

std::string piString = "PI";
double piValue = 3.14159;

std::cout << piString << " =" << piValue << std::endl;

More details regarding streams and strings are found in Chapters5 and 6,
respectively, but this should suffice to get you through the examples in earlier chapters.
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Common Class

The following Person class is used in code examples throughout the book to illustrate the
use of user-defined classes together with the Standard Library:

#include <string>
#include <ostream>

class Person {

public:
Person() = default;
explicit Person(std::string first, std::string last = "",

bool isVIP = false)
: m_first(move(first)), m last(move(last)), m isVIP(isVIP) {}

const std::stringd CGetFirstName() const { return m first; }
void SetFirstName(std::string first) { m first = move(first); }

const std::string& GetLastName() const { return m_last; }
void SetlLastName(std::string last) { m last = move(last); }

bool IsVIP() const { return m_isVIP; }

private:
std::string m_first, m last;
bool m_isVIP = false;

};

bool operator<(const Persond lhs, const Person& rhs) {
if (lhs.IsVIP() != rhs.IsVIP()) return rhs.IsVIP();
if (lhs.GetLastName() != rhs.GetlLastName())
return lhs.GetLastName() < rhs.GetlLastName();
return lhs.GetFirstName() < rhs.GetFirstName();

}

bool operator==(const Persond lhs, const Person& rhs) {
return lhs.IsVIP() == rhs.IsVIP()
&& lhs.GetFirstName() == rhs.GetFirstName()
& 1lhs.GetlLastName() == rhs.GetLastName();

std::ostreamd operator<<(std::ostreamd os, const Person& person) {
return os << person.GetFirstName() << ' ' << person.GetLastName();
}
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CHAPTER 1

Numerics and Math

Common Mathematical Functions <cmath

The <cmath> header defines an extensive collection of common math functions in the
std namespace. Unless otherwise specified, all functions are overloaded to accept all
standard numerical types, with the following rules for determining the return type:

o Ifall arguments are float, the return type is float as well.
Analogous for double and long double inputs.

o Ifmixed types or integers are passed, these numbers are
converted to double, and a double is returned as well. If one of the
inputs is a long double, long double is used instead.

Basic Functions

Function Description

abs(x) Returns the absolute value of x. abs () and fabs () accept all numeric

fabs(x) types; fabsf() and fabs1() only float and long double. Starting with

fabsf(x) C++17, abs () no longer converts integers into doubles (as is

fabs1(x) conventional for <cmathy: see earlier). Instead, it behaves as abs() in
<cstdliby for integral x’s (explained next).

abs(x) Defined by <cstdlib>. Returns absolute value for an integral x. abs ()

labs(x) accepts int, long, or long long (smaller integral types are promoted

1labs(x) to int); labs() and 11abs() only long and long long. The result has

the same (possibly promoted) type as the input.
fmod(x, y) Returns the remainder of %/ . For fmod (), the result always has the
remainder(x, y) same sign as x; for remainder () that is not necessarily true. For example:
mod(1,4)=rem(1,4) =1, butmod(3,4) =3 and rem(3,4) = -1.
remquo(X, y, *q) Returns the same value as remainder(). qis a pointer to an int and
receives a value with the sign of %/ and at least the last three bits of

the integral quotient itself (rounded to nearest).

(continued)
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Function Description

div(x,y) Defined by <cstdlib>. Returns a struct with two members, quot
1div(x,y) and rem, containing respectively x / y and x % y (though often
11div(x, y) computed with one instruction). div() accepts a pair of ints, longs,

fma(x,y, z)

fmin(x, y)
fmax(x, y)

fdim(x,y)

nan(string)
nanf(string)
nanl(string)

or long longs; 1div() two longs, and 11div() two long longs. The
results have the same (possibly promoted) type as the inputs.

Computes (x * y) + z in an accurate (better precision and rounding
properties than a naive implementation) and efficient (uses a single
hardware instruction if possible) manner.

Returns the minimum or maximum of x and y. std: :min() and
max () defined in <algorithm> are often more convenient, as they
do not convert integers into double. These are explained later in this
chapter.

x=yif x>y

Returns the positive difference, i.e., .
+0if x<y

Returns a quiet (nonsignaling) NaN (Not-a-Number) of type double,
float, long double, respectively, if available (0 otherwise). The
string parameter is an implementation-dependent tag that can

be used to differentiate between different NaN values. Both "" and
nullptr are valid and result in a generic quiet NaN.

Exponential and Logarithmic Functions

Function Formula Function Formula Function Formula
exp(x) e exp2(x) 2% expm1(x) e -1
log(x) Inx =log x log10(x) log, x log2(x) log,x
logip(x) In(1 +x)

Power Functions

Function Formula Function Formula
pow (X, y) XV sqrt(x) Jx
hypot(x, y) Jx*+y? cbrt(x) Yx
hyPOt(XJ Y z) \/xz +y2 +z°




CHAPTER 1 © NUMERICS AND MATH

Trigonometric and Hyperbolic Functions

<cmath> provides all basic trigonometric (sin(), cos(), tan(), asin(), acos(), atan())
and hyperbolic functions (sinh(), cosh(), tanh(), asinh(), acosh(), atanh()). All angles
are expressed in radians.

The lesser-known trigonometric function atan2() is available as well. You use it to
compute the angle between a vector (, y) and the positive X axis. atan2(y, x) is similar
to atan(y / x) except that its result correctly reflects the quadrant the vector is in (and
that it also works if x is zero). Essentially, by dividing y by x in atan(y / x), one loses
information regarding the sign of x and y.

Integral Rounding of Floating-Point Numbers

Function Description

ceil(x) Rounds up/down to an integer. That is, returns the nearest integer that
floor(x) is not less/not greater than x.

trunc(x) Returns the nearest integer not greater in absolute value than x.
round(x) Returns the integral value nearest to x, rounding halfway cases away
lround(x) from zero. The return type of round() is based as usual on the type of X,

11lround(x)  while lround() returns long, and 11round() returns long long.

nearbyint(x) Returns the integral value nearest to x as a floating-point type. The
current rounding mode is used: see round_style in the section on
arithmetic type properties later in this chapter.

rint(x) Returns the integral value nearest to X, using the current rounding
lrint(x) mode. The return type of rint () is based as usual on the type of x, while
11lrint(x) 1rint() returns long, and 11rint() returns long long.

Floating-Point Manipulation Functions

Function Description

modf (x, *p) Breaks the value of x into an integral and fractional part. The latter
is returned, the former is stored in p, both with the same sign as x.
The return type is based on that of x as usual, and p must point to a
value of the same type as this return type.

frexp(x, *exp) Breaks the value of x into a normalized fraction with an absolute
value in the range [0.5, 1) or equal to zero (the return value), and an
integral power of 2 (stored in exp), with x = fraction * 2%,

logb(x) Returns the floating-point exponent of x, i.e., log,_, |x|, with radix
the base used to represent floating-point values (2 for all standard
numerical types, hence the name ‘binary logarithm’).

ilogb(x) Same as logb(x) but the result is truncated to a signed int.

(continued)
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Function Description

ldexp(x, n) Returns x * 2" (with n an int).

scalbn(x, n) Returns x * radix" (with n an int for scalbn() and a long for
scalbln(x, n) scalbln()). Radix is the base used to represent floating-point

values (2 for all standard C++ numerical types).

nextafter(x,y) Returns the nextrepresentable value after x in the direction of y.
nexttoward(x,y) Returnsy ifx equalsy. For nexttoward(), the type of y is always
long double.

copysign(x,y) Returns a value with the absolute value of x and the sign of y.

Classification and Comparison Functions

Function Description

fpclassify(x) Classifies the floating-point value x: returns an int equal to
FP_INFINITE, FP_NAN, FP_NORMAL, FP_SUBNORMAL, FP_ZERO, or
an implementation-specific category.

isfinite(x) Returns true if x is finite, i.e., normal, subnormal
(denormalized), or zero, but not infinite or not-a-number.

isinf(x) Returns true if x is positive or negative infinity.

isnan(x) Returns true if x is not-a-number.

isnormal(x) Returns true if x is normal, i.e., neither zero, subnormal
(denormalized), infinite, nor not-a-number.

signbit(x) Returns a nonzero value if X is negative.

isgreater(x,y) Compares x and y. The names are self-explanatory, except

isgreaterequal(x,y) islessgreater() whichreturnstrueifx<y | x> y. Note that

isless(x,y) this is not the same as !=, as, e.g., nan("") '=nan("") is true,

islessequal(x,y) butnot islessgreater(nan(""), nan("")).

islessgreater(x, y)

isunordered(x, y) Returns whether x and y are unordered, i.e., whether one or
both are not-a-number.

gcd/lem <numericy

The functions gcd() and 1em() compute the greatest common divisor and least common
multiple, respectively. They are defined as follows:

template<typename M, typename N>
constexpr std::common_type t<M, N> gcd(M, N);
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template<typename M, typename N>
constexpr std::common type t<M, N> lcm(M, N);

Both Mand N must be integer types. As explained in Chapter 2, std: : common_type_
t<M, N> is aso-called type trait, which in this case results in a type that both Mand N can
implicitly be converted to. Concretely, the common type of two integer types M and N is
determined by the following rules (applied in order):

e IfNandMare equal, their common type is that same type as well.
e IfNandMare both smaller than int, their common type is int.
o Ifthe size of N and M differs, their common type is the largest type.

e  Otherwise, the common type is the one that is unsigned.

Error Handling

The mathematical functions from <cmath> can report errors in two ways depending on
the value of math_errhandling (defined in <cmath>, although not in the std namespace).
It has an integral type and can have one of the following values or their bitwise OR
combination:

e MATH_ERRNO: Use the global errno variable (see Chapter 8).

. MATH_ERREXCEPT: Use the floating-point environment, <cfenv>,
not further discussed in this book.

Special Mathematical Functions <cmath>

C++17 adds a collection of specialized mathematical functions. All of these are available in
multiple overloads. In the following table, the functions without an asterisk always return a
double. For the functions marked with an asterisk, the return type is always double, unless
one of its arguments is a long double, then the return type is long double as well.
Additionally, there are two extra versions of each function with a postfix f or 1.
These additional functions accept floats and return a float (f postfix), or accept
long doubles and return a long double (1 postfix). For example, assoc_laguerre(),
assoc_laguerref(), and assoc_laguerrel().
Explaining all the details of these mathematical functions falls outside the scope of
this book. The following table just shows the mathematical formula for each function.
Please consult a mathematical reference for more details.

Note At the time of writing, libc++, the implementation that ships with the Clang
compiler, has not implemented these special mathematical functions yet.
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Bessel Functions

Function

Description

cyl bessel j(v, x)*

cyl neumann(v, x)*

cyl bessel i(v, x)*

cyl bessel k(v, x)*

sph_bessel(n, x)

sph_neumann(n, x)

Computesv thev cylindrical Bessel function of the first kind:

/V(X)=i(_l) (x/2

S kT (v+k+1)

)v+2k
for|x|>0

Computes the cylindrical Neumann function, also known as
the cylindrical Bessel function of the second kind:

J,(x)cosvr—J_,(x)
sinvr

N,(x)= []u(x)COS,U”_]u(x)

, for x >0and non-integral v

lim

=V

- ], for x > 0 and integral v
sin ur

Computes the regular modified cylindrical Bessel function:

> x/2
1,(x)=2"], (i) kZ:(:‘k C(v+k+1)

)u+2k
for|x|>0

Computes the irregular modified cylindrical Bessel function:

K, (x)=(m /2)i" (J, (ix)+iN, (ix))
 L,(x)-1,(x)

————+—"—, for x>0and non-integral v
2 sinvr

gy Lttt

- , for x>0and integral v
2 v sin uw

Computes the spherical Bessel function of the first kind:

1/2
; n
Ja () :(ﬂj i (x), forx>0

Computes the spherical Neumann function, also known as
the spherical Bessel function of the second kind:

1/2
n.(x)= [%J N,..(x), forx>0
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Function

Description

legendre(1, x)

assoc_legendre(1, m, x)

sph_legendre(1, m, 6)

laguerre(n, x)

assoc_laguerre(n, m, x)

Computes the Legendre polynomial of the first kind:

1 d
=g

Computes the associated Legendre function:

B () =(1-x ) "2

——P(x), for|x|<1

dx™ l( ) | |

Computes the spherical associated Legendre function
Y (0,0),where:

(x2 —l)l , for|x|<1

v (0,6)=(-1)" (M(l_m)!jm Bf" (cos0)e™,

4w (I+m)!

for [m| <1

Computes the Laguerre polynomial of order » at point x:

e* d"
L,(x)="—=

Computes the associated Laguerre polynomial:

(x"e"‘), forx>0

() =(-1)" 4= 1 (x), forx=0

dxm n+m
hermite(n, x) Computes the Hermite polynomial of order » at point x:
n 2 d" —x?
H, (x)=(-1) e* e’
()= e L
Elliptic Integrals
Function Description
ellint _1(k, ¢)* Computes the incomplete elliptic integral of the first kind:
¢
do
F(k,§)=|—————, for|k|<1
(:9) '([\/l—kzsinze i
comp_ellint_1(k) Computes the complete elliptic integral of the first kind:
F(kﬁ), for |k| <1
2
ellint 2(k, ¢)* Computes the incomplete elliptic integral of the second kind:

[
E(k,¢) = [V1-k’ sin’ 00, for |k|<1
0

(continued)

7



CHAPTER 1 © NUMERICS AND MATH

Function Description

comp_ellint 2(k) Computes the complete elliptic integral of the second kind:
E(k%j for k| <1

ellint 3(k, v, ¢p)* Computes the incomplete elliptic integral of the third kind:
N(v.kd) —f a6
o o(l—vsin219)\/1—k2 sin®6

comp_ellint 3(k, v)* Computes the complete elliptic integral of the third kind:

, for|k|<1

I‘I[k,v,%), for|k|<1

Exponential Integrals

Function Description

© _t
expint(x) Computes the exponential integral: Ei(x)= —'f ert

-X

Error Functions

Function Description

erf(x)  Computes the error function of a given value: erf (x)= 2 e dt

Vg

erfc(x) Computes the complement of the error function of a given value:

erfe(x)=1-erf (x) =%Te"zdt

Gamma Functions

Function Description

tgamma(x) Computes the “true gamma” of a given value:
I(x)= J.t"’le”dt
0

lgamma(x) Computes: In(|7'(x)|)




