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1Precision Medicine in the Intensive Care 
Unit: Identifying Opportunities 
and Overcoming Barriers

T. L. Palmieri and N. K. Tran

1.1  Introduction

Is precision medicine really precise? Precision in medicine can only be achieved 
with precision diagnostics. Unfortunately, barriers, such as access to clean elec-
tronic medical data, accurate and precise laboratory tests, and a propensity to over 
simplify complex pathophysiology, hinder this transformation to achieve the ‘four 
Ps’ of precision medicine: Personalized, Preventive, Predictive, and Participatory.

The rapid evolution of intensive care medicine has resulted in advancements for 
integration of technology with disease pathophysiology. The result: improved thera-
peutics and reduced patient mortality and morbidity. However, current medical 
practice is predicated on the Cnidarian School of Medicine, a three-tiered approach 
consisting of: (1) patient evaluation and disease diagnosis; (2) comparison and 
matching to a similar patient population via databases or data sets; and (3) initiation 
and monitoring of treatment [1]. As such, treatment is reactive and compartmental-
ized; intensivists initiate therapy for a specific organ system after disease identifica-
tion. The ultimate success of treatment, however, relies on the interaction between 
the individual, the disease and the treatment. For example, infection is diagnosed by 
obtaining a sample of the infectious source, identifying an inciting organism, and 
choosing an antibiotic based on culture results in a petri dish. The efficacy of that 
treatment is dependent on the patient, the organism, the therapy, and the interaction 
among the three. Current paradigms tend to underestimate the variability and com-
plexity of the system.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06067-1_1&domain=pdf
mailto:tlpalmieri@ucdavis.edu
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The four pillars of precision medicine allow healthcare to be proactive and pre-
dictive, enabling clinicians to address the patient-disease-therapy triad by develop-
ing targeted patient and disease-specific therapies [2]. Initial precision medicine 
endeavors focused on oncology, an arena in which genetic biomarkers transformed 
therapeutic interventions [3]. Molecular oncology has created a better understand-
ing of malignancies and identified exploitable targets, such as human epidermal 
growth factor receptor 2 (HER2), for therapy. However, application in intensive 
care, which represents a significant health burden, has been far slower. This is due 
to multiple factors, including the complex nature of critical illness in an intensive 
care unit (ICU), poor characterization of patient populations (generalized defini-
tions), lack of informatics that integrate physiologic data with laboratory and genetic 
data, timeliness of usable data analysis, and appropriate clinical trial platforms that 
can capture discreet patient populations [4]. However, the ICU, housing patients 
with the greatest severity of illness, also has the greatest opportunity for benefit for 
improving both patient survival and quality of life while also containing cost. The 
purpose of this chapter is to present a framework for application of precision medi-
cine in the ICU and introduce potential current challenges and future areas of con-
flict that may arise.

1.2  Definitions

Clarity in definitions is essential to any discussion of medical treatment para-
digms. Perhaps the greatest example is the definition of the ‘critically ill’ patient 
by the United States (US) Food and Drug Administration (FDA)—it does not 
exist! How can a disease be studied or targeted if it is not well defined? Further 
exacerbating the challenges faced by intensivists in defining the ‘critically ill’ 
population is the variation of the definition between institutions. In 2015, US 
hospitals were faced with a dilemma involving the intended use of point-of-care 
blood glucose monitoring systems. At the time, no blood glucose monitoring 
device was approved by the FDA for use in critically ill patients, and point-of-care  
glucose monitoring in these patients was considered off label use. Due to the lack 
of a definition of critical illness, hospitals were stymied in trying to conform to the 
regulations and risked citation by regulatory agencies including the Centers for 
Medicare and Medicaid Services (CMS).

Another definition challenge has been the transformation of the term individual-
ized medicine, to personalized medicine, to now, precision medicine. Although per-
sonalized medicine has many overlapping features with precision medicine, 
personalized medicine and precision medicine are distinct concepts. The concept of 
personalized medicine, introduced in the early 2000s, was partially developed in 
response to the completion of the human genome project. As such, personalized 
medicine emphasizes specific analyses for unique treatments for each individual 
patient [5]. Essentially, the personalized medicine model is an N-of-1: individuals 
receive customized treatment designed specifically for them. Precision medicine, on 
the other hand, is characterized by tailoring medical treatment to patient 

T. L. Palmieri and N. K. Tran
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characteristics, i.e., classifying individuals into subpopulations with different sus-
ceptibilities, disease biology and/or prognosis, or response to treatment. Hence, the 
model is 1-of-N [6]. Accurate identification of subgroups, likely by genomic, 
metabolomic, proteomic, and immunologic data, will be essential for the success of 
the precision medicine model.

Due to the complexity of critical care and the multifaceted nature of the ICU 
environment, it is important to distinguish populations based on prognosis versus 
prediction. Prognostic patient selection involves the selection of patients with a 
greater chance of a disease-related event, such as mortality, whereas predictive 
selection involves selection of patients more likely to respond to an intervention 
based on biological mechanisms associated with a disease [7]. Prognostic precision 
medicine examples predominate in sepsis [8]. Predictive precision medicine is 
advancing rapidly with the advent of pharmacogenomics, allowing for the more 
targeted use of antibiotics in sepsis [9]. Both forms will be needed in the ICU set-
ting. The most logical approach is to first define patient subpopulations followed by 
the use of targeted therapies designed for that population.

1.3  Diagnosis

One of the more exciting aspects of precision medicine in the ICU is its potential to 
identify subgroups with similar disease states or outcomes based on biomarkers. A 
range of critical illnesses are defined by syndromes or clinical signs which may or 
may not be caused by a single underlying disease, including acute respiratory syn-
drome (ARDS), sepsis, acute kidney injury (AKI) and delirium [10]. Sepsis trials, 
in particular, have suffered from this syndromic issue. Unfortunately, although bio-
markers have been proposed to define a host of clinical conditions ranging from 
sepsis [11] to AKI [12], all have lacked the specificity necessary to define study 
populations.

Additional challenges with diagnosis include significant variation within labora-
tory testing methodology. Modern medicine has often taken for granted what is 
being tested. For example, a serum lactate cut-off of 2 or 4 mmol/L has often been 
used as part of sepsis protocols. However, the lack of standardization of lactate as a 
test is an underappreciated limitation. Ridenour et  al. reported that many lactate 
tests differ significantly as values approach 4 mmol/L [13].

Even cardiac troponin (cTn), a very common biomarker of myocardial injury, is 
not standardized. Differences between cTnI and cTnT are well known, but, the ref-
erence materials (National Institute of Standards and Technology Standard 
Reference Material 2921) for manufacturers are native cTn-ICT ternary complexes 
[14]. However, biologically, cTn could exist as dimers, trimers, and monomers—
each with a different epitope targeted by various assays. Thus, cTnI between differ-
ent manufacturers are different as illustrated by their 99th percentile cut offs. In 
summary, to achieve precision medicine, we must also achieve precision laboratory 
testing. Table 1.1 shows the intrinsic differences between different common critical 
care tests based on the assay used to perform the test.

1 Precision Medicine in the Intensive Care Unit: Identifying Opportunities…
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1.4  Treatment

Several studies have used biomarker data to identify predictive cohorts that would 
respond to a therapeutic intervention. For example, several groups have analyzed 
biomarkers in ARDS to predict responsiveness to positive end-expiratory pressure 
(PEEP) and fluid management [22, 23]. However, the more precise identification of 
subtypes may make prospective trial conduct problematic, as the number of patients 
eligible for a study will diminish. Trials will require a greater number of participat-
ing centers, more advanced screening methods, longer conduct times, and different 
trial methodologies to achieve statistical significance.

1.5  Potential Conflicts/Weaknesses

Why has the adoption of precision medicine in the ICU been slower than in oncol-
ogy? Perhaps the most intuitive argument is the lack of a clear well-defined target 
(disease process and subpopulation). Oncologists can target a cancer molecular sig-
nature in a specific organ or system. Patients in an ICU are admitted for diverse 
problems ranging from sepsis to cardiac failure, traumatic or burn injury to postop-
erative cardiac care. As such, ICU patients often have multiple potential targets. For 
example, a patient admitted with a closed head injury has frequently sustained other 
injuries (such as hemorrhagic trauma or burns) and/or has multiple organ system 
dysfunction, which could lead to conflicts in treatment. Should a patient with a 
closed head injury and major burn be treated with massive fluid resuscitation to 
address the burn injury or with fluid restriction to minimize intracranial edema? 
Precise treatment of one disease may have no effect or may even adversely impact 
morbidity and mortality from another medical issue. Precision medicine may assist 
in formulating an answer to such questions, but the answers will be late in coming, 
as the precise treatment of the index injuries or diseases must occur prior to deter-
mining the best treatment for combined problems. Although clinicians have made 
tremendous progress in the identification of pathophysiology of illness, the under-
standing of the complex interplay among multiple medical issues remains elusive in 
many medical conditions commonly encountered in the ICU.

In addition, one therapy may alter the efficacy of another. Perhaps the best exam-
ple of this occurred at the end of the twentieth century. Two landmark studies, the 
TRICC (Transfusion Requirements in Critical Care), which reported that stable ICU 
patients could be maintained at a hemoglobin of 7 g/dL as opposed to the traditional 
10 g/dL [24], and Van den Berghe’s intensive insulin therapy study [25], which sug-
gested that tight glycemic control improved outcomes in critically ill patients, were 
published. As a result, many critically ill patients were treated with both a restrictive 
transfusion policy and tight glycemic control. However, clinical practice combining 
the two strategies had a different outcome. Tight glycemic control did not yield the 
benefits that were reported in the randomized trial. The subsequent NICE SUGAR 
study suggested harm using tight glycemic control [26]. Why? First, there was a dis-
tinct difference in the types of patients enrolled. The Van den Berghe study enrolled 
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a very specific subpopulation, whereas the NICE-SUGAR trial had much broader 
enrollment criteria. Second, and equally important, the methodology for glycemic 
control (i.e., point-of-care glucose testing) used by most clinicians for glucose moni-
toring in NICE-SUGAR differed from that used in the Van den Berghe trial (serum 
glucose). Unbeknownst to the NICE-SUGAR investigators at that time, point-of-
care glucose monitoring overestimated serum glucose levels by as much as 20% in 
anemic patients, likely creating unrecognized hypoglycemia in the cohort [27]. The 
application of the TRICC trial restrictive transfusion policy, in which ICU patients 
have sustained anemia, may have influenced the outcomes for patients also treated 
with tight glycemic control. Independently both strategies worked. Together they did 
not. Is tight glycemic control beneficial? The answer will require an in- depth under-
standing of the metabolomics of various forms of critical illness and subsequent 
application of targeted strategies to address the clinical variations. The application of 
precision medicine to the ICU will need to carefully consider the potential conflicts 
inherent in treating multiple different medical issues simultaneously.

The intersection of the TRICC trial and the glycemic trial also illustrate another 
important concept: precision medicine in the ICU will require standardization of 
sample collection, storage, testing and reporting; assurance of quality and reproduc-
ibility of test results; timely reporting of clinically applicable results; and clear 
delineation of test results in a format that clinicians can understand and apply. 
Recent reports from the precision method Surgical Critical Care Initiative (SC2i) 
have attributed data quality as the largest hurdle to the development of a comprehen-
sive precision medicine program [28]. Even today, clinicians are bombarded with 
test results that need to be integrated to treat patients. Yet key elements remain 
unstandardized. Lactate is but one example. Lactate is currently measured using 
different platforms. However, no reference method or traceable material exists for 
lactate, resulting in non-standardized testing [13]. This is compounded by the influ-
ence of pre-analytic factors, such as testing delays and interfering substances, which 
can falsely elevate lactate levels. As a result, lactate measurements may vary by as 
much as 1.5 mmol/L for values >2 mmol/L [29]. The use of lactate in clinical trials 
should carefully evaluate the platforms used as well as the timing of sample analysis 
to assure comparable results between centers and platforms. Knowledge of how 
samples are analyzed and what they mean will be essential if precision medicine is 
to be ‘precise’. Standard operating procedures, use of certified clinical laboratories, 
specimen storage protocols and quality assurance for every step of the laboratory 
analytic process will need to be employed not just for clinical samples, but for 
metabolomics, genomics, biomarkers, and other testing methodologies.

1.6  Pharmacokinetics

One of the core principles of precision medicine is delivery of the right treatment at 
the right dose at the right time. Understanding pharmacokinetics, pharmacogenom-
ics, and pharmacokinetic variability among critically ill patients will help guide 
appropriate medication administration in the critical care setting. Changes in 
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pharmacokinetics are both drug-specific and time sensitive and are often influenced 
by other treatment modalities. For example, hypothermia reduces phase I cytochrome 
P450 metabolism, thus increasing concentration of drugs (such as fentanyl, mid-
azolam) that are metabolized using this system [30]. In contrast, the metabolic rate 
of severe burn patients is more than doubled, resulting in augmented renal clearance 
of many agents [31]. Effective dosing of antimicrobial agents as well as narcotics 
requires drug doses far exceeding the ‘normal’ standards. Drug interactions may also 
influence pharmacokinetics of a given agent. Concomitant administration of medica-
tions may increase, decrease or offset the effect of any given agent. This can be par-
ticularly problematic in the ICU, as patients receive multiple different agents. 
Critically ill burn patients, for example, receive, on average, more than 40 agents, 
many of which interact with each other [32]. Pharmacogenomics, which evaluates 
the influence of patient genomic makeup on pharmacokinetics and pharmacodynam-
ics, will likely play a major role in future ICU precision medicine practice.

1.7  Data Collection and Analysis

Regardless of the type of patient being studied, the data acquired in precision medi-
cine efforts will include not just patient physiologic and ‘routine’ laboratory analyses 
(such as electrolytes, blood counts) but also genomic, proteomic, metabolomic and 
transcriptome data; biomarkers; and data from other sources. Current electronic 
health records are fraught with inconsistent and inaccurate data due to both machine 
and human limitations. Data recording, integration, and interpretation will require 
quality assurance prior, during, and after data integration into a centralized data 
repository. New data management and analytic techniques (including machine learn-
ing) will be required to integrate the data sources and develop valid, clinically mean-
ingful, and actionable data with which to treat patients. One of the keys to successful 
implementation of precision medicine in ICU patients is consistency in data acquisi-
tion, storage and reporting. This will require a level of collaboration far beyond what 
has occurred in medicine to date. In addition, how data are analyzed will need to be 
standardized. Study results can also vary depending upon how informatics is used.

Precision medicine will require fundamental changes in the conduct of clinical 
trials. Specific requirements will include development of trial methodologies that 
streamline collaboration to generate sufficient data for studies of smaller, better 
defined patient cohorts; additional time allotted to complete patient enrollment, and 
different trial platforms employing computer-based learning to maximize output 
from any given trial. One promising methodology, the registry-based randomized 
controlled trial (RRCT) uses data collected for other reasons, such as registry data, 
to identify appropriate targets for trial enrollment [33]. The RRCT can be used to 
identify patients who already meet pre-specified enrollment criteria (with their asso-
ciated built-in screening, data capture and outcomes measurements), thus identify-
ing new subjects for consent. This type of methodology is designed to optimize 
patient enrollment and increase collaborations among centers. In essence, the RRCT 
can use prognostic precision medicine to assign patients to different predictive 
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therapeutic options. Another potential new trial design is the platform trial, which 
uses response-adaptive randomization to test multiple treatments in a pre-specified 
patient group. The system uses Bayesian analysis to identify effective treatments for 
specific patient subgroups [34]. Ineffective treatments are eventually discarded, as 
are patient groups that do not benefit from a given treatment. Essentially, the plat-
form trial system is an example of computer learning applied to clinical trials.

1.8  The Future

The key to successful implementation of precision medicine in the ICU is collabora-
tion. Different disease processes are in different stages of precision medicine devel-
opment, particularly with respect to subgroup identification and delineation. For 
example, oncology has identified subgroups based on genomic markers; sepsis uses 
broad-based physiologic definitions; trauma and burn patients are categorized on 
the basis of injury characteristics. Each has unique cohort identification require-
ments and will require a different strategy to develop meaningful subgroup analysis. 
Informed groups consisting of clinicians, biostatisticians, basic scientists, epidemi-
ologists and pharmacologists need to gather for the major disease processes to 
delineate the current state of the disease process, identify the key steps needed to 
identify subpopulations for prognostic marker testing, and map out the initial course 
to define prognostic markers. Concurrently, biomarker development at both the 
bench and clinical level should continue to validate subgroup selection and study 
conduct for the given subgroup, as biomarker development requires time for devel-
opment, testing and implementation.

Just as disease states need to be defined, so do data capture and processing. 
Consistent and coherent data analysis will rely heavily on the development of a uni-
versal critical care ontology that can accommodate specialty-specific topics so that 
data gathered are all based on the same foundation [35]. Currently different hospitals 
use different electronic health records, each with a unique structure. Harnessing the 
power of the electronic health record to gather physiologic data requires either all 
programs to use the same data capture system (unlikely) or the development of algo-
rithm-based programs that can extract common data elements from multiple differ-
ent data sources and collate data into a consistent, analyzable database. These data 
will then need to be combined with biomarker data, including genomic, metabolomic 
and proteomic data. Database development teams consisting of informaticists, bio-
statisticians, scientists and clinicians will need to unite to complete this challenging 
process, which will be essential to the development of precision medicine.

1.9  Conclusion

The vision for precision medicine in the ICU has been articulated. The goal is visi-
ble on the horizon. However, the road leading to the vision is unpaved, the ground 
is rocky, the path crooked and the construction team has not yet been assembled. 
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Success will depend on collaboration, strategic resource utilization, funding avail-
ability, flexibility and patience. New technologies and trial designs will need to be 
created. Collaborations will need to be extended. The traditional medical paradigm 
will need to change. The ICU team has the dedication and capability necessary to 
complete the journey. We just need to take the first step.
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2.1  Introduction

Recent developments in healthcare data availability, advanced analytic algorithms, 
and high-performance computing have produced incredible enthusiasm about a new 
age of data-driven healthcare [1–8]. When it comes to clinical care specifically, 
‘precision delivery’ is an emerging term to describe the “routine use of patients’ 
electronic health record (EHR) data to predict risk and personalize care to substan-
tially improve value” (Table 2.1) [7, 9, 10]. While clinical risk prediction tools have 
a long history in critical care, novel machine learning applications can offer 
improved predictive performance by maximally leveraging large-scale, complex 
EHR and other data [5]. Perhaps, even more importantly, these approaches may help 
overcome the problem of heterogeneity, which is routinely noted to be a hallmark of 
critical illness as well as a major barrier to improved treatment [11–13]. In this 
chapter, we discuss the overarching concept of ‘precision delivery’, the important 
balance between clinical risk prediction and personalization, and the future chal-
lenges and applications of data-driven critical care delivery.
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2.2  A Changing Landscape: The Fourth Industrial 
Revolution

In God we trust; all others must bring data. (frequently attributed to W. Edwards Deming)

Klaus Schwab, the founder of the World Economic Forum, notes that we are in 
the midst of a rapid societal upheaval driven by technological advances that are 
evolving at an exponential, rather than linear, scale [14, 15]. Prior industrial revolu-
tions were marked by incredible achievements yielding the steam engine, the light 
bulb, the telephone, the internal combustion engine, the personal computer, and the 
internet. Today, the Fourth Industrial Revolution is heralded by advances in data 
availability, mobile computing, machine learning and artificial intelligence, robotics 
and autonomous vehicles, energy innovation, and nano- and bio-technology. Given 
the pace and complexity of change driven by these technological advances, it 
remains unclear how this revolution will impact societies and individuals. However, 
we are already bearing witness to rapid disruptions of existing industries and norms 
driven by expanded uses of data to risk stratify individuals and tailor actions to suit 
their needs.

Familiar examples of these disruptions outside of healthcare include the Amazon 
recommender system which uses item-based collaborative filtering algorithms 
when a customer is preparing to purchase a specific item to identify other ‘related’ 
items that are likely to be of interest [16]. This and other innovations have already 
altered the landscape of consumer purchases. Similar systems are also in place at 
Netflix, whose suite of algorithms seek to deliver the ‘Netflix experience’ by com-
bining prediction and recommender systems that leverage personal interests, prior 
viewed content, and temporal trends in activity [17]. This approach has allowed 
Netflix to target content development to highly-specific subgroups and vastly 
increase the viewable or ‘effective’ size of their library even within narrow genres. 
Similar algorithmic approaches are used in applications like advertisement targeting 
software to surface the most relevant marketing content based on prediction algo-
rithms using background browsing data.

Table 2.1 Key domains and concepts underlying the potential of precision delivery in critical 
care

Key domains Concepts
Electronic health 
record (EHR) data

Granular EHR data are becoming increasingly ubiquitous in healthcare 
and these data can now be used routinely to inform data-driven 
approaches to clinical care delivery

Risk prediction Machine learning algorithms can facilitate the use of complex, 
multi-faceted EHR data to improve the performance and capability of 
risk prediction models across many adverse outcomes of interest

Personalization Machine learning can also be used to identify underlying subgroups 
within a heterogeneous cohort of at-risk patients allowing for treatments 
to be maximally targeted towards responsive subgroups

Improved value When embedded within well-defined clinical pathways and delivered at 
the right moment, targeted care can improve outcomes while also 
reducing unnecessary resource utilization across large populations of 
patients
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2.3  Precision Delivery in Healthcare

In healthcare today, precision delivery describes a similar process for leveraging data-
driven predictive approaches to improve the value of clinical care [9]. Rapid expan-
sions in the availability of health data driven primarily through the increasing ubiquity 
of EHRs and other key emerging data sources (e.g., sensors, -omics), along with 
advances in machine learning algorithms have improved the performance and capabil-
ity of contemporary risk stratification models. Machine learning algorithms can rapidly 
sift through voluminous and complex data to find clinically-relevant risk strata by 
applying computationally-intensive statistical modeling at scale [18, 19]. These risk 
models can then be used to improve the personalization of patient care by identifying 
patient subgroups in whom specific interventions can have the maximum impact, or 
those in whom specific interventions are unlikely to offer any benefit. Precision deliv-
ery is based on using this prediction-personalization approach, deployed at precisely 
the right moment in clinical treatment, to drive improved clinical outcomes [10]. At the 
same time, given the rapid rise in healthcare expenditures in the United States and in 
many other nations, the hope is that the precision delivery model can control or even 
reduce healthcare costs through improved patient targeting.

2.4  Critical Care: A Risk-Based Specialty

It is important to note that risk prognostication is not a new concept in medicine and 
has long been used to identify patient groups who might benefit from specific, tar-
geted interventions [20]. Indeed, one could argue that the field of critical care arose 
as a byproduct of risk prognostication: a system in which patients with key observ-
able criteria portending a high risk of imminent death (e.g., vital signs, traumatic 
injury, organ failure) were identified and triaged to a setting of increased monitoring 
and clinician staffing [21].

Given this history, it comes as no surprise then that the field of critical care has 
also been a leader in the development of clinical risk stratification models [22–24]. 
Highly robust mortality models developed decades ago, prior to the routine use of 
personal computers, continue to be widely used today. For example, the Acute 
Physiology and Chronic Health Evaluation II (APACHE II) scoring system, pub-
lished in 1985 and based on 12 routine physiologic measurements [25], remains a 
common risk stratification system used even for contemporary, high-profile ran-
domized controlled trials. Similarly, the Sepsis-related/Sequential Organ Failure 
Assessment (SOFA) score from 1996 [26, 27], continues to play a key role in sever-
ity of illness assessment as well as in the definition of sepsis [28].

2.5  Novel Capabilities with Improved Data 
and Computation

Critical care already has a robust history of risk prognostication, but recent innova-
tions in data and computation provide several new opportunities (Table 2.2). First, 
the breadth of data available for incorporation into prediction algorithms has 
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expanded tremendously, owing to the transition from pen and paper recording of 
data into automated EHR-based data collection. Thus, while simpler hand- calculated 
models continue to be calculated and used even in modern EHR systems (e.g., the 
Model for End-Stage Liver Disease [MELD] score), most newer prediction models 
now incorporate a considerably larger set of variables or ‘features’. In general, these 
models show improved predictive capability, at least when measured by standard 
quantitative performance metrics like test error rates, area under the receiver operat-
ing characteristic (AUC) curves, or positive predictive values [1, 2, 5].

However, the expansion of variables available for model inclusion, or the ‘feature 
space’, brings with it new challenges related to finding robust data signals within the 
noise. This is an area in which machine learning excels, because algorithms can be 
used to empirically identify the most relevant subset of variables in a model (i.e., 
dimensionality reduction) as well as to apply non-parametric modeling approaches to 
complex data that account for non-linear relationships between variables [18, 19]. For 
example, gradient boosted trees, which iteratively combine many individual weaker 
decision trees based on random subsets of data to improve classification, have shown 
robust performance across many different types of clinical risk prediction challenges.

This use of machine learning algorithms does not come without cost. 
Computationally-intensive platforms are often needed to implement advanced model-
ing strategies, particularly in large databases. However, the cost of these platforms has 
decreased tremendously while their availability has also increased rapidly, largely 

Table 2.2 Potential capabilities available through improved platforms for data collection, analy-
sis, and computation

Domain Improvements
Electronic health 
record (EHR) data

Increasing routine collection of health data within the EHR fosters a 
vastly increased breadth of data available for incorporation into clinical 
risk prediction models. In general, models developed with expanded 
data have shown improved predictive performance

Variable subset 
selection or 
dimensionality 
reduction

With a vastly increased set of variables, or ‘feature space’, the risk of 
identifying random associations increases. Machine learning algorithms 
can be used to statistically identify the most relevant variables to a 
specific problem of interest

Non-parametric 
modeling

Traditional risk prediction algorithms largely depended on linear 
modeling, which places potential limitations on interactions between 
complex data elements. Improved computation platforms allow for more 
flexible modeling approaches to maximally leverage EHR data. 
However, they may also decrease the interpretability of prediction 
models

Real-time predictive 
modeling

As greater numbers of risk prediction models are incorporated within 
EHR systems, the incremental costs of additional calculations are small 
(when compared with the costs of manual calculation). This allows for 
multiple models to be calculated for each patient, as well as multiple 
time points for model updating (e.g., every minute, hour, or day).

User-friendly 
systems

Alarm fatigue and distractions already plague clinicians working in 
high-acuity settings. By tuning model parameters at the development 
and deployment stages, models can be embedded within clinical 
workflows to enhance, rather than distract, clinical care
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offsetting these concerns in all but the most complex scenarios. There is also an impor-
tant trade-off between the ease of model development or scoring and the ability to 
interpret and apply the risk predictions themselves [19]. While some methods, like 
decision tree-based models, offer moderate degrees of intelligibility (i.e., the ability to 
understand which variables are driving predictions), others, like the deep learning neu-
ral networks recently used by Google [29], are considerably more challenging to inter-
pret. Traditional linear models, including logistic regression, have generally shown 
weaker predictive performance in recent comparisons but offer the advantage of allow-
ing for high degrees of intelligibility and potentially easier technical implementation. 
In some cases, extensions of linear models, like penalized logistic regression models—
designed to identify the subset of variables which maximally contribute to prediction—
have shown similar performance to other non-parametric approaches [18].

In addition to the advantages afforded by an expanded universe of potential vari-
ables and more flexible modeling approaches, the widespread uptake of EHRs and 
mobile computing has facilitated the deployment of real-time risk scoring and dis-
play without requiring significant additional manual effort. Thus, the incremental 
operating costs associated with using an EHR-based system to simultaneously cal-
culate and display 100 risk models compared with only a single model may be rela-
tively modest. This would certainly not be the case for individuals who might have 
to manually calculate and record 100 risk scores for each patient every hour.

This flexibility offers further opportunities to deploy risk models that are more 
user-centric and aligned with the so-called “5 rights of clinical decision support” [30]: 
providing the right information, to the right people, in the right format, through the 
right channels, and at the right time. Given that all clinicians, and in particular those 
operating in high-acuity environments like the intensive care unit (ICU), are already 
vulnerable to alarm fatigue and distractions, few would be excited about using an 
EHR system that simultaneously displayed 100 risk scores for each patient [31]. 
Instead, a more sustainable approach would be to allow risk prediction scoring to 
occur silently in the background, with specific alerts only surfacing when a key alert 
threshold has been crossed or users actively seek out the information. A car dashboard 
offers a familiar example outside of healthcare of a data display that has remained 
remarkably focused over many decades, despite the tremendous increase in the num-
ber of onboard computers constantly surveilling specific automotive functions.

2.6  Current Risk Prediction Applications in Critical Care

As described above, critical care already has numerous models designed to predict 
hospital mortality [22, 23]. Recent machine learning-based models incorporate a 
variety of newer elements including variable transformations, time-series data, and 
unstructured data from clinical documentation (Table 2.3). While these have con-
tributed to some improvement in predictive performance, in many cases, the incre-
mental gains have been modest and of uncertain benefit for clinical practice [32–34]. 
The capabilities available through natural language processing (NLP), a field that 
leverages computational approaches for understanding text-based, unstructured 
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documents like clinical notes or pathology reports, are now in wide use outside 
healthcare. However, the advantages of NLP in predictive models for patients who 
already have ‘high-density’ structured data available during hospitalization (i.e., 
frequent physiologic, laboratory, and treatment data) remain unclear [35].

Another active area of risk prediction relevant to critical care includes risk mod-
els designed to identify ward patients with a high likelihood of imminent deteriora-
tion [36, 37]. Again, many simpler scores (e.g., the Modified Early Warning Score 
[MEWS]; National Early Warning Score [NEWS]) have already seen widespread 
use within routine clinical workflows. Broadly speaking, more advanced scores 
(e.g., Advance Alert Monitor [AAM]; electronic Cardiac Arrest Risk Triage 
[eCART]; Rothman Index) demonstrate modest to moderate levels of improvement 
compared to existing models [38–42]. Where they are likely to excel is in their abil-
ity to reduce the number of false positives that trigger the need for clinical workup 
when compared to simpler models. Given the clinical burden imposed by the need 
to workup false positive alerts to find a single ‘true positive’ case, favorable reduc-
tions in the ‘workup-to-detection ratio’ or the ‘number needed to screen’ could have 
considerable downstream benefits on clinician sustainability and uptake.

Other areas of active focus include risk prediction models designed to accelerate 
the identification, triage or treatment of sepsis patients [43–50]. Although several 
reports suggest that use of risk prediction models has contributed to large reductions 
in sepsis-related mortality, it is unclear whether the described benefits actually 
accrue from the quantitative risk stratification (i.e., the relative improvement in the 
discrimination and performance of the model itself versus other screening criteria) 
or from the increased attention to sepsis and the clinical workflow alignment that 
becomes essential when an alerting system is turned on (i.e., the creation of a team- 
based standardized process for screening, identification, treatment, escalation and 
hand-off). Even prior to the advent of real-time predictive models, similar reduc-
tions in sepsis adverse outcomes were previously reported as part of system-wide 
quality improvement efforts.

Table 2.3 Balancing prediction and personalization in precision delivery by leveraging super-
vised and unsupervised machine learning approaches

Prediction Personalization
Goal Precisely quantify the risk of 

experiencing an adverse outcome, while 
minimizing the false-positive rate 
associated with a given risk alert 
threshold

Identify subgroups of patients from a 
diverse at-risk group who would 
respond to specific targeted 
treatments

Machine 
learning 
approach

Supervised learning approaches fit a set 
of model variables to a pre-defined 
outcome of interest

Unsupervised learning approaches 
surface latent subgroups based on 
identifying underlying patterns and 
associations

Examples ICU mortality
Early warning scores
Sepsis ‘sniffers’

Subgroups responsive to statin 
therapy in acute respiratory distress 
syndrome; steroids in pediatric 
septic shock
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In addition to these focus areas, a growing number of models are targeted towards 
increasingly prominent problems facing patients with acute and critical illness 
including the development of brain dysfunction or delirium [51–54], acute kidney 
injury (AKI) or organ failure [55–63], respiratory failure or acute respiratory dis-
tress syndrome (ARDS) [60–63], extended length of stay and post-ICU sequelae of 
severe illness [33, 64–66], and specific infectious types or complications (e.g., 
Clostridium difficile) [66–69]. Over the coming years, we will almost certainly see 
extensive growth in the development, reporting and testing of numerous predictive 
models incorporating EHR data with machine learning techniques to predict non- 
mortality outcomes.

2.7  Heterogeneity: The Hallmark of Severe and Critical 
Illness

Given the fundamental role that risk stratification has played in the birth and growth 
of the critical care specialty, the field is naturally suited to develop and deploy 
diverse risk models. However, while implementing broad risk prognostication tools 
to trigger protocolized care approaches has improved outcomes, our ability to fur-
ther improve outcomes is pushing up against substantial limitations [11, 13]. In 
particular, the failures of numerous randomized controlled trials intended to identify 
novel pharmaceutical treatments for key ICU conditions like sepsis and ARDS has 
been particularly vexing.

There has been growing recognition that underlying heterogeneity in critical care 
patients represents a major barrier to the identification of specific treatments that 
can be targeted to responsive subgroups. Thus, while intense focus is currently 
placed on developing risk prediction models (i.e., a scale that quantifies each 
patient’s risk for some adverse outcome like mortality, readmission, unexpected 
ICU transfer or chronic critical illness), the emerging frontier must focus on risk 
personalization models (i.e., models which predict the likelihood that a patient sub-
group will respond to a specific therapy). To contextualize this concept within the 
framework of precision delivery, much more attention now needs to be shifted to the 
latter half of the prediction-personalization paradigm.

2.8  Unsupervised Machine Learning Approaches 
and Personalization

Fortunately, this is another area in which machine learning has shown excellent 
promise [18]. The development of standard risk prediction models focuses on using 
supervised learning methods in which model input variables are fit to a known out-
come variable in a training dataset and then subsequently to a test dataset. However, 
to uncover potentially actionable subgroups within a high-risk cohort, unsupervised 
learning approaches—in which input variables are known but there is no 
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