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This book series is dedicated to my wife Phullara, and our
children Sourav, and Devleena
Chittaranjan Kole



This book is dedicated to the memory of Harold P. Olmo.
He was the leading figure in grape genetics and breeding for 40
years and had a remarkable influence on viticulture across the
globe. His extensive travels (by car, train, foot, and horse)
through Afghanistan and Iran collecting grapes, Prunus and
other horticultural crops while avoiding disasters, gunshots,
angry tribal disputes, earned him the moniker “The Indiana
Jones of Viticulture”. He released wine grapes, table grapes,
raisin grapes and rootstocks, and was an excellent
ampelographer. May his inspirational viticultural spirit live on.

Harold Olmo (left) and Al Koyama (center), his grape breeding assistant of many years,
and Andy Walker (right) under the Winkler Vine in the UC Davis vineyards in 2003
(Picture by Daniel Ng)



Preface to the Series

Genome sequencing has emerged as the leading discipline in the plant sci-
ences coinciding with the start of the new century. For much of the twentieth
century, plant geneticists were only successful in delineating putative chro-
mosomal location, function, and changes in genes indirectly through the use
of a number of “markers” physically linked to them. These included visible
or morphological, cytological, protein, and molecular or DNA markers.
Among them, the first DNA marker, the RFLPs, introduced a revolutionary
change in plant genetics and breeding in the mid-1980s, mainly because
of their infinite number and thus potential to cover maximum chromosomal
regions, phenotypic neutrality, absence of epistasis, and codominant nature.
An array of other hybridization-based markers, PCR-based markers, and
markers based on both facilitated construction of genetic linkage maps,
mapping of genes controlling simply inherited traits, and even gene clusters
(QTLs) controlling polygenic traits in a large number of model and crop
plants. During this period, a number of new mapping populations beyond F2
were utilized, and a number of computer programs were developed for map
construction, mapping of genes, and for mapping of polygenic clusters or
QTLs. Molecular markers were also used in the studies of evolution and
phylogenetic relationship, genetic diversity, DNA fingerprinting, and
map-based cloning. Markers tightly linked to the genes were used in crop
improvement employing the so-called marker-assisted selection. These
strategies of molecular genetic mapping and molecular breeding made a
spectacular impact during the last one and a half decades of the twentieth
century. But still, they remained “indirect” approaches for elucidation and
utilization of plant genomes since much of the chromosomes remained
unknown and the complete chemical depiction of them was yet to be
unraveled.

Physical mapping of genomes was the obvious consequence that facili-
tated the development of the “genomic resources” including BAC and YAC
libraries to develop physical maps in some plant genomes. Subsequently,
integrated genetic–physical maps were also developed in many plants. This
led to the concept of structural genomics. Later on, the emphasis was laid on
EST and transcriptome analysis to decipher the function of the active gene
sequences leading to another concept defined as functional genomics. The
advent of techniques of bacteriophage gene and DNA sequencing in the
1970s was extended to facilitate sequencing of these genomic resources in
the last decade of the twentieth century.
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As expected, the sequencing of chromosomal regions would have led to too
much data to store, characterize, and utilize with the-then available computer
software could handle. But the development of information technology made
the life of biologists easier by leading to a swift and sweet marriage of biology
and informatics, and a new subject was born—bioinformatics.

Thus, the evolution of the concepts, strategies, and tools of sequencing
and bioinformatics reinforced the subject of genomics—structural and
functional. Today, genome sequencing has traveled much beyond biology
and involves biophysics, biochemistry, and bioinformatics!

Thanks to the efforts of both public and private agencies, genome
sequencing strategies are evolving very fast, leading to cheaper, quicker, and
automated techniques right from clone-by-clone and whole-genome shotgun
approaches to a succession of second-generation sequencing methods. The
development of software of different generations facilitated this genome
sequencing. At the same time, newer concepts and strategies were emerging
to handle sequencing of the complex genomes, particularly the polyploids.

It became a reality to chemically—and so directly—define plant genomes,
popularly called whole-genome sequencing or simply genome sequencing.

The history of plant genome sequencing will always cite the sequencing
of the genome of the model plant Arabidopsis thaliana in 2000 that was
followed by sequencing the genome of the crop and model plant rice in 2002.
Since then, the number of sequenced genomes of higher plants has been
increasing exponentially, mainly due to the development of cheaper and
quicker genomic techniques and, most importantly, the development of
collaborative platforms such as national and international consortia involving
partners from public and/or private agencies.

As I write this preface for the first volume of the new series “Compendium
of Plant Genomes,” a net search tells me that complete or nearly complete
whole-genome sequencing of 45 crop plants, eight crop and model plants,
eight model plants, 15 crop progenitors and relatives, and three basal plants is
accomplished, the majority of which are in the public domain. This means
that we nowadays know many of our model and crop plants chemically, i.e.,
directly, and we may depict them and utilize them precisely better than ever.
Genome sequencing has covered all groups of crop plants. Hence, infor-
mation on the precise depiction of plant genomes and the scope of their
utilization are growing rapidly every day. However, the information is
scattered in research articles and review papers in journals and dedicated
Web pages of the consortia and databases. There is no compilation of plant
genomes and the opportunity of using the information in sequence-assisted
breeding or further genomic studies. This is the underlying rationale for
starting this book series, with each volume dedicated to a particular plant.

Plant genome science has emerged as an important subject in academia,
and the present compendium of plant genomes will be highly useful both to
students and teaching faculties. Most importantly, research scientists
involved in genomics research will have access to systematic deliberations on
the plant genomes of their interest. Elucidation of plant genomes is of interest
not only for the geneticists and breeders, but also for practitioners of an array
of plant science disciplines, such as taxonomy, evolution, cytology,
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physiology, pathology, entomology, nematology, crop production, bio-
chemistry, and obviously bioinformatics. It must be mentioned that infor-
mation regarding each plant genome is ever-growing. The contents of the
volumes of this compendium are, therefore, focusing on the basic aspects
of the genomes and their utility. They include information on the academic
and/or economic importance of the plants, description of their genomes from
a molecular genetic and cytogenetic point of view, and the genomic resources
developed. Detailed deliberations focus on the background history of the
national and international genome initiatives, public and private partners
involved, strategies and genomic resources and tools utilized, enumeration on
the sequences and their assembly, repetitive sequences, gene annotation, and
genome duplication. In addition, synteny with other sequences, comparison
of gene families, and, most importantly, the potential of the genome sequence
information for gene pool characterization through genotyping by sequencing
(GBS) and genetic improvement of crop plants have been described. As
expected, there is a lot of variation of these topics in the volumes based on
the information available on the crop, model, or reference plants.

I must confess that as the series editor, it has been a daunting task for me to
work on such a huge and broad knowledge base that spans so many diverse
plant species. However, pioneering scientists with a lifetime experience and
expertise on the particular crops did excellent jobs editing the respective
volumes. I myself have been a small science worker on plant genomes since
the mid-1980s and that provided me the opportunity to personally know
several stalwarts of plant genomics from all over the globe. Most, if not all,
of the volume editors are my longtime friends and colleagues. It has been
highly comfortable and enriching for me to work with them on this book
series. To be honest, while working on this series I have been and will remain
a student first, a science worker second, and a series editor last. And I must
express my gratitude to the volume editors and the chapter authors for pro-
viding me the opportunity to work with them on this compendium.

I also wish to mention here my thanks and gratitude to Springer staff
particularly, Dr. Christina Eckey and Dr. Jutta Lindenborn, for the earlier set
of volumes and presently Ing. Zuzana Bernhart for all their timely help and
support.

I always had to set aside additional hours to edit books beside my pro-
fessional and personal commitments—hours I could and should have given to
my wife, Phullara, and our kids, Sourav, and Devleena. I must mention that
they not only allowed me the freedom to take away those hours from them but
also offered their support in the editing job itself. I am really not sure whether
my dedication of this compendium to them will suffice to do justice to their
sacrifices for the interest of science and the science community.

New Delhi, India Chittaranjan Kole
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Preface

Grapevines (Vitis vinifera) have been a source of food and wine since their
domestication nearly 8000 years ago. Grape is one of the most important
horticultural crops in the world, with over 7 million hectares planted
worldwide. In addition to its economic value, grapevine is a model organism
for the study of perennial fruit crops and non-climacteric fruit ripening. Its
economic and scientific importance made V. vinifera an obvious early can-
didate for genomic sequencing. The two draft genome references released in
2007 were the second publicly available genomes of a woody species and the
fourth of a flowering plant. The genome assembly of the experimental inbred
line released by “The French–Italian Public Consortium for Grapevine
Genome Characterization,” PN40024, has served as reference for thousands
of genetic and transcriptomic studies. Now over a decade since its release, the
PN40024 genome is still a valuable resource to the grapevine community
thanks to the continuous effort of the Consortium to improve its structure and
annotation.

However, it was understood that a single reference genome was inade-
quate for studying the function of non-reference cultivar genomes. Seminal
work in Tannat and other wine grape cultivars showed substantial unshared
gene content between grape cultivars. Recent advancements in sequencing
technologies and bioinformatics have made it feasible to generate genome
references for other cultivars of equivalent or greater quality than that of
PN40024. The genome assemblies of Cabernet Sauvignon, Chardonnay,
Carménère, and Zinfandel were released in the last two years. A V. riparia
genome assembly was released when this book was in the final stages of
production; we expect many more genome references for Vitis species to be
publicly available in the next few years, including those of North American
and Asian accessions that are being produced in our laboratories as part of
National Science Foundation (1741627) and USDA National Institute of
Food and Agriculture (2017-51181-26829) projects. Our research groups
have been contributing to the recent advancements in V. vinifera genomics.
This has been possible because of support from E. & J. Gallo Winery, J. Lohr
Vineyards and Wines, Dolce Winery, the Louis P. Martini Endowment in
Viticulture, Viña San Pedro, Concha y Toro, UC Davis Chile Life Sciences
Innovation Center, and the Chilean Economic Development Agency, and the
collaboration between our groups and the scientists at Pacific Biosciences,
specifically Paul Peluso, Jason Chin, David Rank, Kristin Mars, and Emily
Hatas.
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Today, grape cultivation, sustainability, and security rely heavily on North
American Vitis species as sources of resistance to abiotic and biotic stresses.
This reliance originated in the 1860s when the European wine industry was
saved by the use of North American species as rootstocks. Currently, more
than a dozen North American and Central Asian varieties are used in
breeding programs as sources of resistance to abiotic and biotic stresses,
either for rootstocks or hybridized with V. vinifera for the scion. We expect
that genetic diversity, breeding, and biotechnology will play a critical role for
sustaining viticulture when faced with a changing climate and other chal-
lenges as they arise.

The sixteen chapters of this volume provide a comprehensive review of
early and ongoing efforts to discern the genetics, genomics, and breeding
of the grapevine. We are grateful to all the authors for their contributions. We
would like to thank Prof. Chittaranajan Kole, Editor-in-Chief of the Genome
Compendium Series, for inviting us to contribute this volume as well as
Naresh Kumar Mani, Manopriya Saravana, and the staff at Springer for their
help. We would also like to thank Jadran Francisco Garcia Navarrete,
Mélanie Massonnet, Rosa Figueroa-Balderas, Amanda Vondras, and Sum-
maira Riaz for helping review and edit the chapters. Dario would also like to
thank his wife, Annegret, and daughters, Amanda and Adele, for their infinite
patience and support during the two-year journey that turned an idea into a
table of contents and finally into a book.

Davis, USA Dario Cantu
M. Andrew Walker
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1Grapes in the World Economy

Julian M. Alston and Olena Sambucci

Abstract
With a farm gate value in 2016 of US$68
billion, grapes are the world’s third most
valuable horticultural crop (after potatoes and
tomatoes). Cultivation of grapes for fruit and
wine began at least 7000 years ago in the Near
East, and over the millennia, thousands of
cultivars have been developed and selected for
particular purposes. Nowadays, grapes are
grown all around the world, but mainly in
places having a temperate, Mediterranean-
style climate, and they are used to produce
diverse consumer products including wine,
table grapes, raisins, grape juice concentrate
and distillate for various industrial uses as
well as making fortified wine and brandy. The
cultivars of grapes used to make these diverse
products are likewise diverse, but a relatively
small number account for the vast majority of
production in each major category. Predomi-
nantly, European V. vinifera scions are grown

on rootstock from phylloxera-resistant Native
American species. Particular cultivars are
valuable to farmers in particular applications
for their agronomic traits and fruit-quality
traits, which together determine the value of
the crop and the cost of producing it. These
values can be conditioned by consumer pref-
erences for attributes of the production pro-
cess and by government policies including
trade taxes, alcohol excise taxes, and regula-
tions over production practices or limiting
yields. Evolving demands for traits create
demands for work by viticulturists and other
scientists to understand the grape genome and
work with it.

1.1 Grapes in the World Economy

Archeological evidence suggests stone-age peo-
ple were making wine from grapes in Georgia
and Armenia 8000 years ago, and grapes have
been cultivated for winemaking for at least
7000 years (McGovern 2003)—well before the
time of the “Epic of Gilgamesh,” set in Meso-
potamia around 2100 BCE, which is the first
written account of grapes and wine. Over the
millennia, and especially during the past
500 years, Vitis vinifera grapevines originating
from the Near East have spread to all four cor-
ners of the world. Thousands of cultivars have
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been generated and selected for particular pur-
poses; and thousands more are known, including
many wild varieties.1

Grapes are grown for diverse end uses,
beyond wine production. V. vinifera grapes,
along with non-vinifera varieties or hybrids, are
eaten as fresh table grapes, dried to make rai-
sins, or crushed either to produce grape juice
concentrate, or to be fermented and distilled for
industrial use as well as for use in making
alcoholic beverages; and they are used as
ornamental plants. These diverse end uses call
for different varietal traits, and thus many
diverse varieties, but a relatively small number
account for the vast majority of production in
each major category. Predominantly, European
V. vinifera scions are grown on rootstock from
phylloxera-resistant American species such as
Vitis aestivalis, rupestris, and riparia. Although
the genus includes a total of 79 “accepted”
species (The Plant List: Vitis 2018), predomi-
nantly from North America and the Near East,
the vast majority of today’s cultivated grapes
are varieties of V. vinifera, and only a few
varieties from other species and some hybrids
are of commercial significance.

Grapes are significant in the global economy.
In 2016, the world produced 77.4 million tonnes
(MT) of grapes (worth some $68.3 billion at the
farm) from 7.1 million hectares (MH) of vine-
yard—a 50 percent increase over the 52.0 MT
produced from 9.5 MH in 1966. These grapes
are used to produce food and wine at retail
worth several times the farm value of the grapes
themselves. Over the 50 years, 1966–2016,
global average yields almost doubled, from 5.5
to 10.9 tonnes per hectare (T/Ha), and the farm
value of grape production grew from $29.6
billion to $44.3 billion in real (2004–2006
international dollar) terms, even though the total
vineyard area shrank by one-quarter.2 Changes

in grape cultivars contributed directly to the
growth in yield, production, and economic
value, and while many other aspects of grape
production also changed—including where in
the world grapes are grown, how, and for which
end uses—these aspects are all chosen jointly
with varieties.

Looking to the future, the demand for
genetic innovation in grape production will
depend in part on the patterns of growth in
demand for grape products. Growth in popula-
tion and per capita incomes would be expected
to cause an increase in demand for all grape
products, with a relative increase in the demand
for more income-elastic fresh versus dried
grapes and premium versus more basic wine.
Where that growth is to take place around the
world will matter, too. In the context of a
market driven by broad shifts in final consumer
demand, growers will continue to demand cul-
tivars of scions (and rootstocks) that produce
fruit with desired quality attributes and have
desired agronomic attributes: higher yielding,
resistant to pests and diseases, and tolerant of
environmental stresses.

This chapter provides an introductory over-
view of the economic geography (and, where
relevant, economic history) of the cultivation of
grapes around the world with an eye to how
these aspects relate to the grape genome, which
is the broader subject of the volume. We discuss
the patterns of production of grapes for each of
the main end uses, and how they have been
changing, and the roles of genetic traits of
cultivars as contributors to those patterns. We
consider the value of particular traits to pro-
ducers in specific settings and how these values
are influenced by evolving market demand for
product and process attributes of food and
beverage products, government policy as a
conditioning factor, and the changing natural
environment, including the ever-present and
evolving pests and diseases and, more recently,
climate. The chapter begins with an overview of
grape production around the world in terms of
where grapes are grown, and recent trends in
production and utilization.

1In the preface to their book describing 1368 varieties of
wine grapes, Robinson, Harding, and Vouillamoz (2012,
p. viii) suggest the “total number of different vine varieties
is about 10,000.”
2Statistics reported in this section are based primarily on
FAOSTAT (2018); Table 1.1 includes more detailed data
for 2016.
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1.1.1 Grape Production
and Utilization

Table 1.1 and Fig. 1.1 provide statistics on the
production of grapes around the world in terms
of area of vineyard, average yield, production,
total value of production, and average unit value,
drawing on data from FAOSTAT (2018).3

In 2016, the world had a total of 7.1 MH planted
to grapes. Five countries (Spain, China, France,
Italy, and Turkey) accounted for 3.6 MH, just
over half the total area, and just 15 countries
accounted for 5.5 MH, more than three-quarters.

Table 1.1 Area, volume, yield, and value of grape production in 2016, by regions and countries

Region and country Total area
(K Ha)

Volume
(KT)

Yield
(T/Ha)

Value
($ M)

Average unit
value ($/T)

Africa 349.6 4882.5 14.0 3463.7 709

Egypt 74.9 1716.8 22.9 567.9 331

South Africa 120.5 2008.8 16.7 1780.1 886

Americas 1001.4 13,659.4 13.6 12,747.5 933

Argentina 223.9 1758.4 7.9 358.7 204

Brazil 77.0 984.5 12.8 596.6 606

Chile 203.1 2473.6 12.2 4455.0 1801

Peru 27.9 690.0 24.7 490.9 711

North America 421.9 7188.6 17.0 5236.8 728

USA 409.9 7097.7 17.3 5130.3 723

Asia 2122.6 28,918.4 13.6 22,249.9 769

Uzbekistan 135.1 1642.3 12.2 489.4 298

China and HK 843.4 14,842.7 17.6 14,007.2 944

Afghanistan 82.5 874.5 10.6 392.7 449

India 122.0 2590.0 21.2 1837.1 709

Iran 207.3 2450.0 11.8 801.8 327

Turkey 435.2 4000.0 9.2 1967.3 492

Europe 3446.9 27,797.1 8.1 28,325.3 1019

Romania 175.1 736.9 4.2 523.9 711

Greece 112.3 990.3 8.8 771.3 779

Italy 668.1 8201.9 12.3 3311.9 404

Portugal 175.0 773.9 4.4 1463.6 1891

Spain 920.1 5934.2 6.4 4487.9 756

France 757.2 6247.0 8.2 14,496.1 2320

Germany 100.0 1225.6 12.3 1298.3 1059

Oceania 176.4 2181.4 12.4 1506.4 691

Australia 136.3 1772.9 13.0 991.1 559

World total 7096.7 77,438.9 10.9 68,292.9 882

Notes Value and average unit value for Afghanistan (in italics) calculated as weighted averages for the region
Sources Created by the authors using data from FAOSTAT (2018) and USDA/FAS (2018a)

3We draw on various sources for data, including the
International Organization of Vine and Wine (OIV), the

Food and Agricultural Organization of the United Nations
(FAO), the United States Department of Agriculture
Foreign Agriculture Service (USDA/FAS), Anderson and
Aryal (2013), and Anderson and Pinilla (2018). The
Appendix provides more detailed data tables and some
discussion of the different data sources.
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Total production, also, is concentrated among a
few countries, but the ranking is slightly different
reflecting differences in end uses and average
yields. The top five countries in terms of quantity
produced (now China, Italy, the USA, Spain, and
France) accounted for 42.2 MT, more than half
of the total of 77.4 MT, and just 15 countries
accounted for 63.8 MT, more than four-fifths of
the total. Country rankings change again when
we look at value of production, reflecting dif-
ferences in average unit values among countries,

especially for wine grapes. In terms of value of
production, the top five countries are France,
China, the USA, Spain, and Chile.

These country rankings reflect both the his-
torical origins of grape production in the Old
World and the development of grape production
in the New World, especially in recent decades.
Whether in the New World or the Old
World, grapes are grown in mid-latitude regions
where temperatures during the growing season
average 13–21 °C (Jones 2006), predominantly

Fig. 1.1 Global distribution of grape area in 2000 and 2016, and area, production volume and value in 2016—top 20
countries by area in 2016. Source Created by the authors using data from FAOSTAT (2018). a National shares of
global grape area, 2000 and 2016, %. b National shares of global grape area, production volume, and value, 2016, %
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in river valleys near the coast, often with a
Mediterranean-type climate. Since growing sea-
son duration and temperatures have a major
influence on grape ripening and fruit quality,
within this broad landscape particular cultivars
have been developed to be grown for particular
end uses and in specific regions and sub-regions
(see, e.g., Jones 2018).

The economic geography of grape production
has been shifting over time, reflecting changes in
both supply and demand for grape products
among diverse countries. On the supply side,

along with changes in technology of production
and in the availability of labor and other inputs,
changes in climate have begun to influence
where particular cultivars can profitably be
grown for particular end uses. On the demand
side, along with changes in other sociodemo-
graphic factors, changes in income have impli-
cations for the mixture of grape products
demanded given relatively high income elastici-
ties of demand for premium wine versus basic
wine, and for fresh versus dried grapes (see, e.g.,
Fuller and Alston 2012).

Table 1.2 Production from top 20 grape-producing countries and world, 2000 and 2016

Country 2000 2016 Growth in
production
2000–2016

Production Share of
world total

Production Share of
world total

Cumulative
share

KT % KT % % %

China 3281.7 5.2 14,763.0 19.1 19.1 349.9

Italy 8869.5 14.0 8201.9 10.6 29.7 −7.5

USA 6973.8 11.0 7097.7 9.2 38.8 1.8

France 7762.6 12.2 6247.0 8.1 46.9 −19.5

Spain 6539.8 10.3 5934.2 7.7 54.6 −9.3

Turkey 3600.0 5.7 4000.0 5.2 59.7 11.1

India 1130.0 1.8 2590.0 3.3 63.1 129.2

Chile 1899.9 3.0 2473.6 3.2 66.3 30.2

Iran 2097.2 3.3 2450.0 3.2 69.4 16.8

South Africa 1454.7 2.3 2008.8 2.6 72.0 38.1

Australia 1311.4 2.1 1772.9 2.3 74.3 35.2

Argentina 2459.9 3.9 1758.4 2.3 76.6 −28.5

Egypt 1075.1 1.7 1716.8 2.2 78.8 59.7

Uzbekistan 624.2 1.0 1642.3 2.1 80.9 163.1

Germany 1361.0 2.1 1225.6 1.6 82.5 −10.0

Greece 667.6 1.1 990.3 1.3 83.8 48.3

Brazil 1024.5 1.6 984.5 1.3 85.0 −3.9

Afghanistan 330.0 0.5 874.5 1.1 86.2 165.0

Portugal 913.6 1.4 773.9 1.0 87.2 −15.3

Romania 1295.3 2.0 736.9 1.0 88.1 −43.1

Other 8881.0 14.0 9196.4 11.9 100.0 3.6

World 63,552.7 100.0 77,438.9 100.0 21.8

Source Created by the authors using data from FAOSTAT (2018)
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