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Preface

The Proportional–Integral–Derivative (PID) controller dominates the control
industry across the traditional fields of Aerospace, Electrical, Mechanical, and
Chemical Engineering as well as emerging fields such as driverless cars, autono-
mous robots, and unmanned aerial vehicles. Indeed, they account for 99% of all the
controllers in use in the world.

This universal presence of PID controllers in applications contrasts sharply with
the relative lack of interest in them from the control theory community which, until
recently, was mainly focused on designing high-order optimal controllers by
state-space methods. This situation began to change in 1997 when it was demon-
strated that high-order controllers rendered the closed-loop system dysfunctionally
fragile with respect to controller parameters even if they were robust with respect to
plant parameters. This helped to usher in a renewed interest in low-order
controllers.

The PID controllers are the simplest of low-order controller structures providing
servo and disturbance rejection capabilities provided closed-loop stability can be
achieved. In the last 20 years, significant progress has been made in computing the
complete set of stabilizing PID controllers for linear time-invariant continuous- and
discrete-time plants of arbitrary order. These were reported in the monographs
“Structure and Synthesis of PID Controllers” by A. Datta, Ming-Tzu Ho, and S.
P. Bhattacharyya and “PID Controllers for Time-Delay Systems” by Guillermo
Silva, A. Datta, and S. P. Bhattacharyya. The present monograph is the third in this
sequence.

The main results presented here demonstrate how multi-objective designs can be
carried out using PID controllers, by exploiting the availability of the stabilizing set.
By superimposing gain margin, phase margin, H1, and time domain specifications
calculated in terms of design parameters, on the stabilizing set, in a systematic and
constructive manner one can effectively execute hitherto impossible multi-objective
designs and determine the limits of achievable performance. The results are presented
here for continuous-time and discrete-time systems in a unified and self-contained
manner and are illustrated by examples. A recent extension of these results to mul-
tivariable systems is also given.
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We expect the concepts and design methods presented here to be useful in engi-
neering and other applications and to further drive research on PID controllers into
Adaptive Control, Machine Learning, Computer Science, Biological Systems, and
other areas.

The results given here would not have been possible without the support and
collaboration of numerous colleagues. Especially, we would like to express our
gratitude to L. H. Keel, A. Datta, Ming-Tzu Ho, Guillermo Silva, and Navid
Mohsenizadeh for their contributions.

Iván D. Díaz Rodríguez would like to thank his beloved parents for their love,
support, encouragement, and sacrifices. Sangjin Han would like to thank his parents
and brother.

College Station, TX, USA Iván D. Díaz-Rodríguez
February 2019 Sangjin Han

Shankar P. Bhattacharyya
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Chapter 1
Introduction to Control

Abstract In this chapter, we describe control systems informally, emphasizing the
key elements of tracking, disturbance rejection, stability, and robustness. Next, we
show why integral control driven by tracking error provides the correct feedback
architecture to try to achieve these goals. This leads naturally to the Proportional–
Integral–Derivative (PID) controller structure, where the proportional, integral, and
derivative gains kp, ki , and kd now become the design parameters which need to be
tuned to achieve robust stability and time domain response specifications. A brief
description is given of some classical and existing tuning approaches. We conclude
the chapter with an examination of why optimal control, and in particular quadratic
optimization, is absent from PID design theory and show that the reason lies in the
inherent fragility of the high-order controllers invariably produced by optimization.
The contents of this chapter should serve as background, perspective, and motivation
for the rest of the book.

1.1 Introduction

Control theory and control engineering deal with a variety of dynamic systems such
as aircraft, spacecraft, ships, trains, automobiles, and robots. They also deal with
industrial processes such as distillation columns and rolling mills, electrical systems
such as motors, generators, and power systems. Nowadays, they are ubiquitous in
biomedical applications, power electronics, driverless cars, and autonomous robots.

In each case, the setting of the control problem is represented by the following
elements:

Sections1.1, 1.2, 1.4 and 1.5.4 are reproduced from S. P. Bhattacharyya, A. Datta, L. H. Keel,
Linear System Theory: Structure, Robustness, and Optimization. Taylor & Francis LLC Books,
with permission © 2008 Taylor & Francis LLC Books.
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2 1 Introduction to Control

1. There are dependent variables, called outputs, to be controlled, which must be
made to behave in a prescribed way. For instance, it may be necessary to assign
the temperature and pressure at various points in a process, or the position and
velocity of a vehicle, or the voltage and frequency in a power system, to given
desired fixed values, despite uncontrolled and unknown variations at other points
in the system.

2. Specific independent variables, called inputs, such as a voltage applied to the
motor terminals, or valve position, are available to regulate and to control the
behavior of the system. Other dependent variables, such as position, velocity, or
temperature, are accessible as dynamic measurements on the system.

3. There are unknown and unpredictable disturbances impacting the system. These
disturbances could be, for example, the fluctuations of a load in a power system,
disturbances such as wind gusts acting on a vehicle, external weather conditions
acting on an air conditioning plant, or the fluctuating load torque on an elevator
motor, as passengers enter and exit.

4. The equations describing the plant dynamics, and the parameters contained in
these equations, are not known at all or are known imprecisely. This uncertainty
can arise even when the physical laws and equations governing a process are
known well, for instance, because these equations were obtained by linearizing a
nonlinear system about an operating point. As the operating point changes so do
the system parameters.

The previous considerations suggest the following general representation of the
plant or system to be controlled. In Fig. 1.1, the inputs or outputs shown could be
representing a vector of signals. In such cases, the plant is said to be a multivariable
plant as opposed to the case where the signals are scalar, in which case the plant is
said to be a scalar or monovariable plant.

Control is exercised by feedback, which means that a device, driven by the avail-
able measurements, generates the corrective control input to the plant. Thus, the
feedback or closed-loop system in Fig. 1.2 represents the controlled system.

The control design problem is the problem of determining the characteristics of
the controller so that the controlled outputs can be

Dynamic System or Plant
Control inputs Outputs to be controlled

Disturbances

Measurements

Fig. 1.1 A general plant. © Taylor & Francis LLC Books. Reproduced from [8] with permission



1.1 Introduction 3

Plant

Controller

Controlled outputs

Disturbances

Reference inputs

Fig. 1.2 A feedback control system. © Taylor & Francis LLC Books. Reproduced from [8] with
permission

1. Set to prescribed values called references;
2. Maintained at the reference values despite the unknown disturbances;
3. Conditions (1) and (2) are met despite the inherent uncertainties and changes in

the plant dynamic characteristics.

The first requirement above is called tracking. The second is called disturbance
rejection. The third condition is called the robustness of the system. The simultaneous
satisfaction of (1), (2), and (3) is called robust tracking and disturbance rejection,
and the control systems designed to achieve this are called servomechanisms.

In the next section, we discuss how integral control is useful in the design of
servomechanisms.

1.2 The Magic of Integral Control

Integral control is used almost universally in the control industry to design robust
servomechanisms. Computer control most easily implements integral action. It turns
out that hydraulic, pneumatic, electronic, and mechanical integrators are also com-
monly used elements in control systems. In this section, we explain how integral
control works in general to achieve robust tracking and disturbance rejection.

Let us first consider an integrator as shown in Fig. 1.3.

Fig. 1.3 An integrator.
© Taylor & Francis LLC
Books. Reproduced from [8]
with permission

Integrator y(t)u(t)



4 1 Introduction to Control

The input–output relationship is

y(t) = K
∫ t

0
u(τ )dτ + y(0) (1.1)

or, in differential form,
dy(t)

dt
= Ku(t), (1.2)

where K is a nonzero real number called the integrator gain.
Now suppose that the output y(t) is a constant for a segment of time [t1, t2]. It

follows from (1.2) that

dy(t)

dt
= 0 = Ku(t) for t ∈ [t1, t2]. (1.3)

Equation (1.3) proves the following essential facts about the operation of an
integrator:

Fact 1 If the output of an integrator is constant over a segment of time, then the
input must be identically zero over that same segment.

Fact 2 The output of an integrator changes as long as the input is nonzero.

The simple facts stated above suggest how an integrator can be used to solve the
servomechanism problem. If a plant output y(t) is to track a constant reference value
r , despite the presence of unknown constant disturbances, it is enough to

A. attach an integrator to the plant and make the error

e(t) = r − y(t) (1.4)

the input to the integrator;
B. ensure that the closed-loop system is asymptotically stable so that under constant

reference and disturbance inputs, all signals, including the integrator output,
reach constant steady-state values.

This structure is depicted in the block diagram shown in Fig. 1.4.
If the feedback system, shown in Fig. 1.4, is asymptotically stable, and the inputs

r and d (disturbances) are constant, it follows that all signals in the closed loop
will converge to constant values. In particular, the integrator output v(t) tends to a
constant value. Therefore, by the fundamental fact about the operation of an integrator
established in Fact 1 above, it follows that the integrator input tends to zero. Since
we have arranged that this input is the tracking error, it follows that e(t) = r − y(t)
goes to zero and hence y(t) tracks r as t → ∞.
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We emphasize that the steady-state tracking property established above is very
robust. It holds as long as the closed loop is asymptotically stable and is (1) inde-
pendent of the particular values of the constant disturbances or references, (2) inde-
pendent of the initial conditions of the plant and controller, and (3) independent of
whether the plant and controller are linear or nonlinear. Thus, the tracking problem is
reduced to guaranteeing that stability is assured. In many practical systems, stability
of the closed-loop system can even be ensured without detailed and exact knowledge
of the plant characteristics and parameters; this is known as robust stability.

We next discuss how several plant’s outputs y1, y2, . . . , ym can track prescribed
but arbitrary constant reference values r1, r2, . . . , rm in the presence of unknown but
constant disturbances d1, d2, . . . , dq . The previous argument can be extended to this
multivariable case by attachingm integrators to the plant and driving each integrator
with its corresponding error input ei = ri − yi , i = 1, . . . ,m. This is shown in the
configuration in Fig. 1.5. This requires the existence of u1, u2, . . . , ur that makes
yi = ri , i = 1, . . . ,m for arbitrary ri , i = 1, . . . ,m. Therefore, the plant’s equations
relating yi , i = 1, . . . ,m to u j , j = 1, . . . , r must be invertible for constant inputs. In
the case of Linear Time-Invariant (LTI) systems, this is equivalent to the requirement
that the corresponding transfer matrix be right invertible or equivalently possess
rank equal to m at s = 0. Sometimes, this is restated as two conditions: (1) r ≥ m
or at least as many control inputs as outputs to be controlled and (2) G(s) has no
transmission zero at s = 0. The architecture of the block diagram of Fig. 1.5 is easily
modified to handle servomechanism problems for more general classes of reference
and disturbance signals such as ramps or sinusoids of a specified frequency. The
only modification required is to replace the integrators by the corresponding signal
generators of these external signals.

In general, the addition of an integrator to the plant tends to make the system less
stable. This is because the integrator is inherently an unstable device; for instance, its
response to a step input, a bounded signal, is a ramp, an unbounded signal. Therefore,
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Fig. 1.5 Multivariable servomechanism. © Taylor & Francis LLC Books. Reproduced from [8]
with permission

the problem of stabilizing the closed loop becomes a critical issue even when the
stand-alone plant is stable.

Since the integral action and thus the attainment of zero steady-state error is
independent of the particular value of the integrator gain K , we can see that this
gain can be adjusted to try to stabilize the system. This single degree of freedom is
sometimes insufficient for attaining stability and acceptable transient response, and
additional gains are introduced as explained in later sections. The addition of gains
naturally leads to the PID controller structure commonly used in industry.

1.3 Overview of PID Controller Design Approaches

PID controllers are the most widely used controllers in the control industry in motion
control, process control, power electronics, hydraulics, pneumatics, and manufactur-
ing. In fact, in process control, more than 95% of the control loops are of PID type
with most loops using PI control. Their popularity is due to their simple structure,
easy implementation, and straightforward maintenance. Also, they provide satisfac-
tory performance with a cost/benefits ratio that is hard for other types of controllers
to match. For this same reason, they are also popular in modern applications such as
driverless cars, unmanned aerial vehicles, and autonomous robots.
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1.3.1 PID Controller Structure

The PID controller is the name given to a controller which consists of the addition
of three control actions (see Fig. 1.6). These actions are an action proportional to the
error, an action proportional to the integral of the error, and an action proportional
to the first derivative of the error in (1.4).

• Proportional (P) controller. The proportional action deals with the present values
of the error signal; it is proportional to the size of the process error signal increasing
the magnitude of the control variable when the error signal increases. When using
only a P controller, we notice that increasing the proportional gain kp may in
general speed up the time response. However, it is possible that a steady-state
error will occur. In general, under proportional control the steady-state error is
zero if and only if kp is very large.

• Integral (I) controller. The integral action is used to reduce the steady-state error
to zero. When using an integral gain, increasing the value of ki can give a broad
range of response types in addition to the elimination of the offset error. The control
signal is

u(t) = ki

∫
e(t)dt. (1.5)

The integral of the error e(t) is proportional to the area under the error curve. The
control signal u will continuously change depending on whether the error signal
is positive or negative. If the control signal u(t) is constant, then the error signal
must be identically zero, as expressed in Fact 1 in Sect. 1.2.

• Derivative (D) controller. The derivative action is often used to improve damping
and closed-loop stability. It deals with the possible future values of the error signal
based on its current rate of change, anticipating the trend of the error. The control
signal here is

kp

ki

kd
d
dt

e(t) u(t)

Fig. 1.6 PID controller block diagram
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u(t) = kd
de(t)

dt
. (1.6)

The derivative part is proportional to the predicted error.

1.3.2 PID Controller Representations

Commonly used PID controller structures are of parallel and series types.

• Parallel type. This controller type has the following control law:

u(t) = Kc

(
e(t) + 1

Ti

∫
e(t)dt + Td

de(t)

dt

)
(1.7)

where kp = Kc is the proportional gain, Ti is the integral time of the controller
with ki = Kc

Ti
, and Td is the derivative time of the controller with kd = KcTd . This

representation is known as ideal.
• Series type. This controller type has the following control law:

e1(t) = e(t) + Td
de(t)

dt
,

u(t) = Kc

(
e1(t) + 1

Ti

∫
e(t)dt

)
. (1.8)

In this case, all three portions of this PID structure are affected by the gain Kc.
However, the proportional term is also affected by the values of the integral and
derivative tuning parameters Td and Ti . Therefore, adjusting Ti affects both the
I and P actions, adjusting Td affects both the D and P actions, and adjusting Kc

affects all three actions.

1.3.3 Classical PID Controller Tuning

Due to the popularity of PID controllers in industry and their widespread use, there
exist many approaches for their design and implementation developed over the years.
The classical methods found in the literature can be classified as follows.

• Trial and Error Method. This method is applied when there is no systematic
approach to follow when designing the controller. The method is based on expe-
rience about the effects of adjusting the individual kp, ki , kd gains trying to get a
better time response regarding speed and closed-loop stability. The typical effects
of increasing each gain are represented in a table as in Table1.1.
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Table 1.1 Effects of adjusting individual PID gains on the system

Parameter Steady-state error Speed Stability

kp Reduces Increases Decreases

ki Eliminates Reduces Increases

kd No effect Increases Increases

Time

A
m

pl
itu

de

    (seconds)

0

L

A

Point of the maximum slope

Fig. 1.7 Ziegler–Nichols step response method

The advantage of the trial and error method is that it does not require any mathe-
maticalmodel ormathematical derivation. However, it requires some experience to
adequately adjust the controller gains to satisfy the desired performance regarding
the speed of response and stability margins.

• The Ziegler–Nichols step response method. This PID tuning method was devel-
oped between 1941 and 1942 at the Taylor Instrument Company, USA. Since that
time, this method has been extensively used in its original form and with some
variations. The method is based on the measured step response of the open-loop
stable system. For instance, see Fig. 1.7. The procedure is the following:

1. Calculate or determine experimentally the step response of the open-loop sys-
tem.

2. Draw a tangent line with the maximum slope possible from the step response,
see Fig. 1.7.

3. Calculate L , which is the distance from the intersection of the slope and vertical
axis to the starting point of the step response.

4. Calculate A, which is the distance from the intersection of the slope and the
vertical axis to the horizontal axis.
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5. Compute the PID gains from the following formulas:

kp = 1.2

A
,

ki = 0.6

AL
,

kd = 0.6L

A
. (1.9)

• The Ziegler–Nichols frequency response method. This PID tuning method con-
siders a proportional controller attached to the system in a closed-loop config-
uration. The objective is to find the ultimate frequency where the phase of the
process is −180◦. That is the ultimate gain, where the system reaches the stability
boundary. The tuning procedure is the following.

1. Connect a proportional controller to the system in a closed-loop configuration.
2. Slowly increase the proportional gain until the output starts oscillating. This

gain is called ultimate gain Ku .
3. Measure the period of the oscillation in the output. This period is called the

ultimate period Tu .
4. Compute the PID gains from the following formulas:

kp = 0.6Ku .

ki = 1.2Ku

Tu
.

kd = 0.075KuTu . (1.10)

This tuning method is capable of finding the PID controller gains for the system.
However, it requires some experience and skill because the system is taken to
its limits of instability and it may become very close to getting damaged. It is
emphasized that the Ziegler–Nichols design procedure assumes that the plant is
of first-order cascaded with a delay.

• Relay Tuning Method. This PID tuning method was developed by K. Åström
and T. Hägglund as an alternative to the Ziegler–Nichols frequency response PID
tuning method. This method is very similar to the Ziegler–Nichols method, but
instead of increasing a proportional gain until the system’s output oscillates, a relay
is used to generate an oscillation in the output, see Figs. 1.8 and 1.9. The relay
connected to the system generates a square wave signal with specific amplitude
and frequency. Then, a signal in the output approximated to a sinusoid is generated.
The tuning procedure is the following:

1. The system should be working at the operating point.
2. Set the amplitude of the square signal in the relay.
3. Calculate the ultimate period Tu , see Fig. 1.9.
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C(s)

Relay

P (s)
r(t) + y(t)

−

Fig. 1.8 Unity feedback block diagram with a relay

4. Calculate the controller parameters kp , ki , and kd using theZiegler–Nichols table
using Ku = Ke, where Ke = Au/Ae. Where Au = 4A/π and Ae = E with E
being the amplitude of the oscillations in the control error signal.

The advantage of thismethod is that it does not require one to force the system to be
close to instability. Therefore, it keeps the system safer and reduces the possibility
of damage. Also, this relay method can be automated since the output oscillation
amplitude is proportional to the amplitude of the relay signal.

• The Cohen-Coon Method. This is an open-loop PID tuning method, which fol-
lows the same procedure as the Ziegler–Nichols step responsemethod. In Fig. 1.10,
we show the step response of the open-loop system for which the parameters kp,
L , and T can be determined. The gain kp is determined by taking the ratio between
the amplitude increment of the output and the increase in the control signal. That
is

kp = �y

�u
. (1.11)

The variables L and T can be found from Fig. 1.10, which represents the step
response. Then, considering the PID controller of parallel type as in (1.7), the
Cohen-Coon method recommends the following formulas to calculate the PID
gains:

Kc = 1

kp

(
0.25 + 1.35T

L

)
,

Ti = 2.5 + 0.46L
T

1 + 0.61L
T

L ,

Td = 0.37

1 + 0.19L
T

L . (1.12)
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Fig. 1.10 Cohen-Coon method

1.3.4 PID Controller Tuning Methods

After the appearance of the classical PID controller tuning techniques, the complexity
of the systems and performance demands from the control designer made necessary
the development of new tuning design techniques. Over the years,many useful results
were developed toward PID tuning methods for more performance- specific require-
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Fig. 1.11 Closed-loop system block diagram with internal model controller

ments and to deal with more complex systems. Some of these approaches are the
following:

• Internal Model Control design
This controller approach considers stable systems. Consider the closed-loop sys-
tem block diagram presented in Fig. 1.11. Where Ĝ(s) is an approximation of the
system G(s), GF (s) is a low pass filter, and Ĝ+(s) is the inverse of Ĝ(s). Then,
the controller design objective is to cancel the poles and zeros of the original sys-
tem G(s) by connecting it in parallel with Ĝ(s). This approach is called internal
model control because the controller contains a model of the system internally.
The purpose of GF (s) is to make the system less sensitive to modeling errors. The
controller C(s) is given by

C(s) = GF (s)Ĝ+(s)

1 − GF (s)Ĝ+(s)Ĝ(s)
. (1.13)

Consider the case when this approach is applied to PI and PID controllers. For the
case of plants which are first-order plus time-delay systems, we have that

P(s) = K

1 + sT
e−sL . (1.14)

Ĝ+(s) = 1 + sT

K
. (1.15)

GF (s) = 1

1 + sT f
. (1.16)

Then, by a first-order Padé approximation for the time delay

e−sL ≈ 1 − sL/2

1 + sL/2
, (1.17)
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we have the controller of the PID form

C(s) = (1 + sL/2)(1 + sT )

Ks(L + T f + sT f L/2)
≈ (1 + sL/2)(1 + sT )

Ks(L + T f )
= kds2 + kps + ki

s
,

(1.18)

where

kd = LT

2K (L + T f )
, (1.19)

kp = (L + 2T )

2K (L + T f )
, (1.20)

ki = 1

K (L + T f )
. (1.21)

• Pole Placement Design
Pole placement is a controller design method based on the knowledge of the
system’s transfer function, where the objective is to determine the closed-loop
pole locations on the complex plane by setting the controller gains. It is known
that the system’s closed-loop pole locations influence the behavior of the system.
Therefore, the designer can apply this method to place the locations of the poles
for a desirable behavior of the closed-loop system.
PI and PID controllers can be used with a pole placement design as long as the
plant transfer function system is of the first or second order. For higher order
systems, one way to use a PI or PID controller is to approximate the system’s
transfer function by a first- or second- order transfer function.
For the first-order case, the system can be described by

P(s) = K

1 + T s
, (1.22)

where K is the system’s gain and T is the time constant. Using a PI controller, we
have

C(s) = Kc

(
1 + 1

Ti s

)
, (1.23)

where Kc is the controller gain and Ti the integral time. The closed-loop transfer
function is

G(s) = C(s)P(s)

1 + C(s)P(s)
. (1.24)
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The characteristic equation becomes of second order

δ(s) = s2 +
(
1 + KKc

T

)
s +

(
KKc

T Ti

)
. (1.25)

A second-order characteristic equation can be represented in terms of the relative
damping ζ and the natural frequency ωn as

δ(s) = s2 + 2ζωns + ω2
n, (1.26)

where the parameters ζ and ωn determine the time response of the second-order
system.
Comparing (1.25) and (1.26) we must have

Kc = 2ζωnT − 1

K
. (1.27)

Ti = 2ζωnT − 1

ω2
nT

. (1.28)

For a second-order plant without zeros, the plant can be described by

P(s) = K

(1 + T1s)(1 + T2s)
. (1.29)

Using the PID controller

C(s) = Kc
(
1 + Ti s + TiTds2

)
Ti s

, (1.30)

the characteristic equation becomes of third order

δ(s) = s3 +
(
1

Ti
+ 1

T2
+ KKcTd

T1T2

)
s2 +

(
1

T1T2
+ KKc

T1T2

)
s + KKc

T1T2Ti
. (1.31)

A third-order characteristic equation can also be represented in terms of the relative
damping ζ and the natural frequency ωn as

δ(s) = (s + αωn)(s
2 + 2ζωns + ω2

n). (1.32)

Combining (1.31) and (1.32) we have
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Table 1.2 Cohen-Coon formulae for dominant pole placement controller design

Controller Kc Ti Td

PI 0.9
a

(
1 + 0.92τ

1−τ

)
3.3−3.0τ
1+1.2τ L

PID 1.35
a

(
1 + 0.18τ

1−τ

)
2.5−2.0τ
1−0.39τ L 0.37−0.37τ

1−0.81τ L

Kc = T1T2ω2
n(1 + 2αζ) − 1

K
. (1.33)

Ti = T1T2ω2
n(1 + 2αζ) − 1

T1T2αω3
n

. (1.34)

Td = T1T2ωn(α + 2ζ) − T1 − T2
T1T2ω2

n(1 + 2αζ) − 1
. (1.35)

• Dominant Pole Placement Design
This controller design approach follows the same idea of the previous pole place-
ment design. However, this method is focused on higher order systems. The
objective is to select a pair of dominant poles, which have more influence on
the behavior of the system time response than the rest of the closed-loop poles.
For PI and PID controllers design using a dominant pole placement method, there
is an approach developed by Cohen-Coon for first-order plus time-delay systems
such as the one shown in (1.14). The central design criterion is the rejection of load
disturbances by placing the dominant poles that give a quarter amplitude decay
ratio in the time response. For PID controllers, two complex dominant poles and
one real pole are placed to satisfy the quarter amplitude decay ratio in the time
response. The following table presents some formulae to calculate the PI and PID
controller gains (Table1.2),
where

a = K L

T
. (1.36)

τ = L

(L + T )
. (1.37)

• Time Domain Optimization Methods
In time domain optimization methods, the controller gains are calculated based on
numerical optimization methods where an objective function is specified. For PID
controllers, an objective function is defined by one of the forms

J (θ) =
∫ ∞

0
t |e(θ, t)|dt, (1.38)

J (θ) =
∫ ∞

0
|e(θ, t)|dt, (1.39)
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J (θ) =
∫ ∞

0
e(θ, t)2dt, (1.40)

where θ represents a vector with the PID gains and e(θ, t) is the error signal of the
control system. The objective function in (1.38) is called integral time-weighted
absolute error (ITAE); this function integrates the absolute errormultiplied by time
as a weight. The objective function (1.39) is called integral absolute error (IAE).
This function integrates the absolute error without weights. The objective function
(1.40) is called integral square error (ISE), which only integrates the square of the
error.
The parameters of the controller are obtained after minimizing a selected objective
function to obtain a better performance of the closed-loop system .

• Gain and Phase Margin Based Design
Gain and phase margins can indicate how stable the system is. These margins are
calculated from the open-loop system to determine how robust the closed-loop
system is. The gain margin is the amount of gain necessary to make the system
unstable and the phase margin is the amount of phase reduction necessary to make
the system unstable. These margins are considered in classical control designs
associated with the frequency response of the system. The gain and phase margins
can be obtained from the Nyquist plot of P( jω)C( jω)ω ∈ [0,∞) as in Fig. 1.12.
In Fig. 1.12, GM represents the gain margin, PM is the phase margin, ωp is the
phase crossover frequency, and ωg the gain crossover frequency. Over time, there
has been a research interest in developing new controller design approaches to
achieve specific gain and phase margins for the closed-loop system. There is a sig-
nificant number of research papers with different approaches for PI and PID con-
trollers to achieve specific gain and phase margins. These different approaches for
PI/PID controller design generally consider first-order or second-order plants cas-
caded with a time delay. In this monograph, we have presented a general approach
for simultaneously achieving prescribed gain and phase margins for an arbitrary
order plant.

• Adaptive Control Design
In the adaptive controller design, the controller gains are to be readjusted in
response to the changes in the system or due to the presence of perturbations.
There are two types of adaptive control called direct and indirect methods. In the
direct approach, the adaptive controller design approach known asmodel reference
adaptive control is considered. In this a reference model, representing desired per-
formance, is specified in terms of the characteristics of a dynamic system. Then,
the difference between the output of the plant and the reference model, is used by
an adaptation algorithm to directly adjust the parameters of the controller in real
time to force the plant model error to zero. In the indirect approach, a model of the
plant is estimated from the available input–output measurements. Then, the adap-
tive control scheme is called indirect because the readjustment of the controller
parameters is made by first performing the estimation of the plant and then the
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Fig. 1.12 Gain and phase
margins from a typical
Nyquist plot
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computation of the controller parameters is based on the current estimated plant
model. Recursive parameter estimation is used to update the process model. These
types of adaptive controller techniques are widely used for PID controllers.

1.4 Integrator Windup

An essential element of the controller is the actuator, which applies the control signal
u to the plant. However, all actuators have limitations that make them nonlinear
elements. For instance, a valve cannot be more than fully opened or less than fully
closed. During the regular operation of a control system, it can very well happen
that the control variable reaches the actuator limits. When this situation arises, the
feedback loop is broken, and the system runs as an open loop because the actuator
will remain at its limit independently of the process output. If the controller is of the
PID type, the error will continue to be integrated. This condition, in turn, means that
the integral term may become very large, which is commonly referred to as windup.
The error signal needs to have an opposite sign for an extended period to return to a
normal state. As a consequence of all this, a system with a PID controller may give
large transients when the actuator saturates.

The phenomenon of windup has been known for a long time. It may occur in con-
nection with large setpoint changes or large disturbances or equipment malfunction
may cause it. Several techniques are available to avoid windup when the integrator
is in the controller. We describe some of these techniques in this section.
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1.4.1 Setpoint Limitation

The easiest way to avoid integrator windup is to introduce limiters on the setpoint
variations so that the controller output will never reach the actuator bounds. However,
this approach has several disadvantages: (a) it leads to conservative bounds; (b) it
imposes limitations on the controller performance; (c) it does not prevent windup
caused by disturbances.

1.4.2 Back-Calculation and Tracking

This technique is illustrated in Fig. 1.13. We notice that the controller has an extra
feedback path. This path is generated bymeasuring the actual actuator output u(t) and
forming the error signal es(t) as the difference between the output of the controller
v(t) and the signal u(t). This signal es(t) is fed to the input of the integrator through
a gain 1/Tt .

When the actuator is within its operating range, the signal es(t) is zero. Thus, it
will not have any effect on the normal operation of the controller. When the actuator
saturates, the signal es(t) is different from zero. The regular feedback path around the
process is broken because the process input remains constant. However, there is a new
feedback path around the integrator due to es(t) �= 0, and this prevents the integrator
from winding up. The feedback gain 1/Tt governs the rate at which the controller
output is reset. The parameter Tt can thus be interpreted as the time constant that
determines how quickly the integral action is reset. In general, the smaller the value
of Tt , the faster the integrator is reset. However, if the parameter Tt is chosen too
small, spurious errors can cause saturation of the output, which accidentally resets
the integrator.

Differentiator kd

kp

ki

e(t)

Integrator

1
Tt

v(t)
Actuator

u(t)

es(t)

+

+

+−

Fig. 1.13 Controller with antiwindup. © Taylor & Francis LLC Books. Reproduced from [8] with
permission


