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Preface

Solving a mathematical model, by means of computational techniques in general or
more specifically by means of numerical analysis, is ultimately reduced to solving
problems in linear algebra. In fact, very often models are linear by their nature,
while sometimes they are nonlinear but their solution is achieved by means of
linearization. This to some extent explains why numerical linear algebra and matrix
analysis have undergone such extensive development in recent decades.

In this process, one typically encounters problems like solving linear systems, or
solving standard or generalized eigenvalue problems, as well as matrix polynomial
equations or polynomial eigenvalue problems where the size of the matrices
involved in the model is extremely large or in some cases even infinite. For such
problems standard (general-purpose) algorithms cannot work due to their extreme
complexity; therefore, one has to exploit the specific properties which originate from
the peculiar features of the model. In the language of linear algebra, these properties
are translated in terms of structures that the matrices involved in the model share;
often, structured matrices reveal themselves in a clear form and appear to show
all their properties immediately. Sometimes, however, structures are hidden and
difficult to discover, and their properties seem hardly exploitable. Their analysis
and exploitation is not just a challenge but also a mandatory step which is necessary
to design highly effective ad hoc algorithms for the solution of large-scale problems
from applications. In fact, general-purpose algorithms, say Gaussian elimination
for solving linear systems, cannot be used to solve problems of large size while a
smart exploitation of the available structures enables one to design effective solution
algorithms even for problems of a huge size.

The importance of matrix structures has grown over the years. Analyzing
structures from the theoretical point of view, turning them into effective solution
algorithms, constructing software which implements the algorithms, and verifying
its effectiveness by direct computation is one of the most exciting challenges that
covers abstract theory, design and analysis of algorithms, software implementation,
and applications.

This volume presents a selected number of peer-reviewed papers concerning
structured matrix analysis and its applications. The topics discussed concern theory,
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algorithms, and applications in which structured matrices are involved. The subjects
range from abstract topics such as the theory of generalized locally (block) Toeplitz
matrices and the analysis of matrix subspaces and quadratic kernels to more
numerical issues such as error analysis of algorithms for tensor manipulation and
analysis of the derivative of matrix geometric means. Moreover, other structured
oriented topics are developed, e.g., analysis of companion pencil and block Fiedler
companion matrices, together with analysis of the tridiagonal symmetric eigenvalue
problem, computation of bivariate matrix functions, and solution of the saddle
point problem. Among the applications are analysis of the stability of gyroscopic
systems, numerical solution of 2D hard scattering problems of damped waves,
fractional reaction-diffusion equations, and the problem of multi-frame super-
resolution reconstruction from video clips.

All the papers correspond to talks presented at the INdAAM meeting Structured
Matrices in Numerical Linear Algebra: Analysis, Algorithms and Applications held
in Cortona, Italy, on September 4-8, 2017.

This workshop aimed to continue in both form and spirit the series of conferences
on Structured Matrices and their applications held in Cortona, Italy, every 4 years
between 1996 and 2008 and continued in Leuven, Belgium, in September 2012 and
in Kalamata, Greece, in September 2014.

The book will be of interest to graduate students in mathematics and researchers
in numerical linear algebra and scientific computing, as well as engineers and
applied mathematicians.

Pisa, Italy Dario Andrea Bini
Genoa, Italy Fabio Di Benedetto
Moscow, Russia Eugene Tyrtyshnikov
Heverlee, Belgium Marc Van Barel

October 2018



Contents

Spectral MEASUIES ... . .......uuue e 1
Giovanni Barbarino

Block Locally Toeplitz Sequences: Construction and Properties ........... 25
Carlo Garoni, Stefano Serra-Capizzano, and Debora Sesana

Block Generalized Locally Toeplitz Sequences: Topological

Construction, Spectral Distribution Results,

and Star-Algebra Structure ... 59
Carlo Garoni, Stefano Serra-Capizzano, and Debora Sesana

On Matrix Subspaces with Trivial Quadratic Kernels....................... 81
Alexey Tretyakov, Eugene Tyrtyshnikov, and Alexey Ustimenko

Error Analysis of TT-Format Tensor Algorithms ............................ 91
Dario Fasino and Eugene E. Tyrtyshnikov

The Derivative of the Matrix Geometric Mean with an Application
to the Nonnegative Decomposition of Tensor Grids .......................... 107
Bruno Iannazzo, Ben Jeuris, and Filippo Pompili

Factoring Block Fiedler Companion Matrices................................ 129
Gianna M. Del Corso, Federico Poloni, Leonardo Robol,

and Raf Vandebril

A Class of Quasi-Sparse Companion Pencils ................................. 157

Fernando De Teran and Carla Hernando

On Computing Eigenvectors of Symmetric Tridiagonal Matrices.......... 181
Nicola Mastronardi, Harold Taeter, and Paul Van Dooren

A Krylov Subspace Method for the Approximation of Bivariate
Matrix Functions................... i 197
Daniel Kressner

vii



viii

Uzawa-Type and Augmented Lagrangian Methods for Double

Saddle Point Systems ..............ccooiiiiiiiiiiiiiiiii

Michele Benzi and Fatemeh Panjeh Ali Beik

Generalized Block Tuned Preconditioners for SPD Eigensolvers......

Luca Bergamaschi and Angeles Martinez

Stability of Gyroscopic Systems with Respect to Perturbations .......

Nicola Guglielmi and Manuela Manetta

Energetic BEM for the Numerical Solution of 2D Hard Scattering

Problems of Damped Waves by Open Arcs ................ccoooeeanne..

Alessandra Aimi, Mauro Diligenti, and Chiara Guardasoni

Efficient Preconditioner Updates for Semilinear Space-Time

Fractional Reaction-Diffusion Equations ................................

Daniele Bertaccini and Fabio Durastante

A Nuclear-Norm Model for Multi-Frame Super-Resolution

Reconstruction from Video CHps...............cccooociiiiiiiiiiin.

Rui Zhao and Raymond HF Chan

Contents



About the Editors

Dario Andrea Bini, a Full Professor of Numerical Analysis since 1986, has held
a permanent position at the University of Pisa since 1989. His research mainly
focuses on numerical linear algebra problems, on structured matrix analysis and
on the design and analysis of algorithms for polynomial and matrix computations.
The author of three research books and more than 120 papers, he also serves on the
editorial boards of three international journals.

Fabio Di Benedetto is an Associate Professor of Numerical Analysis at the
Department of Mathematics of the University of Genoa, where he teaches courses
on Numerical Analysis for undergraduate and graduate students, since 2000. His
main research interests concern the solution of large-scale numerical linear algebra
problems, with special attention to structured matrices analysis with applications to
image processing. He is the author of more than 30 papers.

Eugene Tyrtyshnikov, Professor and Chairman at the Lomonosov Moscow State
University, is a Full Member of the Russian Academy of Sciences and Director
of the Institute of Numerical Mathematics of the Russian Academy of Sciences,
Moscow. He completed his Ph.D. in Numerical Mathematics at Moscow State Uni-
versity, and his postdoctoral studies at the Siberian Branch of the Russian Academy
of Sciences, Novosibirsk. His research interests concern numerical analysis, linear
and multilinear algebra, approximation theory and related applications. He is the
associate editor of many international journals and the author of more than 100
papers and 8 books.

Marc Van Barel received his Ph.D. in Computer Engineering (Numerical Analysis
and Applied Mathematics) from the KU Leuven, where he is currently a Full
Professor at the Department of Computer Science. His work mainly focuses on
numerical (multi-)linear algebra, approximation theory, orthogonal functions and
their applications in systems theory, signal processing, machine learning, etc. He is
the author or co-author of more than 140 papers and 4 books. Currently, he serves
on the editorial boards of three international journals.

ix



Spectral Measures )
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Giovanni Barbarino

Abstract The theory of spectral symbols links sequences of matrices with mea-
surable functions expressing their asymptotic eigenvalue distributions. Usually, a
sequence admits several spectral symbols, and it is not clear if a canonical one
exists. Here we present a way to connect the sequences with the space of probability
measure, so that each sequence admits a uniquely determined measure. The methods
used are similar to those employed in the theory of generalized locally Toeplitz
(GLT) sequences: a goal of this present contribution is in fact that of explaining
how the two concepts are connected.

Keywords Probability measures - Generalized locally Toeplitz sequences -
Complete pseudo-metrics - Ergodic formula

1 Introduction

A matrix sequence is an ordered collection of complex valued matrices with
increasing size, and is usually denoted as {A,},, where A, € C"*". We will refer
to the space of matrix sequences with the notation

& ={{Ap), : A, € TP

It is often observed in practice that matrix sequences, {A,},, generated by
discretization methods applied to linear differential equations possess a spectral
symbol, that is a measurable function describing the asymptotic distribution of the

G. Barbarino (<)
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eigenvalues of A,. We recall that a spectral symbol associated with a sequence
{A,}, is a measurable function k : D C R" — C satisfying

R 1
lim n;F(Ai(An))z I(D)/DF(k(x))dx

n—0oQo

for every continuous function F : C — C with compact support, where D is
a measurable set with finite Lebesgue measure /(D) > 0 and X;(A,) are the
eigenvalues of A,. In this case we write

{Antn ~ k(x).

We can also consider the singular values of the matrices instead of the eigenvalues.
In the same setting, if

R 1
nlggon ;F(Ui(An)) = 1D /DF(Ik(x)I)dx

for every continuous function F : R — C with compact support, where o;(A,) are
the singular values of A,, then {A,}, possesses a singular value symbol, and we
write

{Autn ~o k(x).

The space of matrix sequences is a complete pseudometric space when endowed
with a pseudometric inducing the approximating classes of sequences (acs) con-
vergence, that we will redefine in the next section. One fundamental property of
this metric is that it identifies sequences that differ by a sequence admitting zero as
singular value symbol (called zero-distributed sequences). In particular, it has been
shown that such sequences share the same singular value symbol, but the distance
between two sequences with the same singular value symbol is not usually zero.

The main observation of this note is that for any measurable function k(x), the
operator

P(F) = / F(k(x))dx ¢:C(C)—C
D

is linear and continuous and can be represented by a unique probability measure p.
We call u a spectral measure, and we associate it with any sequence {A,}, that has
k(x) as spectral symbol. It turns out that if a sequence admits a spectral measure,
then it is uniquely determined, differently from the spectral symbols. The space of
probability spectral measures is moreover a complete metric space with the Lévy—
Prokhorov distance 7, and it corresponds to a pseudometric d’ on matrices called
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modified optimal matching distance. The main result is that d’ identifies sequences
admitting the same spectral symbol, differently from the acs distance.

Theorem 1 If {A,}n ~» f(x), then
{Bu}n ~i f(x) <= d'({An}n, {Bu}n) = 0.

A different approach to the uniqueness problem for the spectral symbol is embod-
ied in the theory of GLT sequences. For specific sequences, called generalized
locally Toeplitz (GLT) sequences, we can choose one of their symbols, and denote
it as GLT symbol of the sequence

{An}n ~cLT k(x,0).

In the case of diagonal matrix sequences, the choice of one symbol can be seen
as a particular sorting of their eigenvalues, as expressed in the following theorem,
proved in the last section, and which represents a generalization of the results in [3].

Theorem 2 Given a diagonal sequence {D,},, and one of its spectral symbols k :
[0,1] — C, then

{PaDy P} ~Gr1 k(x) ® 1

for some P, permutation matrices.

The paper is organized in the following way: In Sect. 2 we recall basic definitions
such as the acs convergence, the optimal matching distance d, and the theory of
GLT sequences. Moreover, we define the modified optimal matching distance d’
since it is a slight variation of d, and we discuss how it is connected to dg¢s. In
Sect. 3 we introduce the spectral measures and we study their relationships with the
spectral symbols. In particular, we notice how the vague convergence and the Lévy—
Prokhorov distance  on the probability measures lead to a reformulation of the
definition of spectral symbol/measure. In Sect. 4, we prove that the pseudometrics
7 and d’ are actually equivalent, and we explain how this fact leads to the proofs of
the above reported theorems.

2 Prerequisites

2.1 Complete Pseudometrics

The space of matrix sequences that admit a spectral symbol on a fixed domain D
has been shown to be closed with respect to a notion of convergence called the
approximating classes of sequences (acs) convergence. This notion and this result
are due to Serra-Capizzano [11], but were actually inspired by Tilli’s pioneering
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paper on LT sequences [12]. Given a sequence of matrix sequences { By i }n.m, it is
said to be acs convergent to {A,}, if there exists a sequence {N, n}n,m of “small
norm” matrices and a sequence {Rj j}n,m of “small rank” matrices such that for
every m there exists n,, with

Ay = Bn,m + Nn,m + Rn,ms ”Nn,m” < w(m), rk(Rn,m) < nc(m)
for every n > n,,, and

w(m) indaN 0, c(m) 270,

In this case, we will use the notation { By, i }n.m a9 {An}n.

This notion of convergence has been shown to be metrizable on the whole space
&. Given a matrix A € C"*" we can define the function

p(A) = min {i_l+ai(A)},
i= +1 n

,,,,,

where 01(A) > 02(A) > --- > o0,(A) are the singular values of A, and by
convention 0;,41(A) = 0. The function p(A) is subadditive, so we can introduce
the pseudometric d,.s; on the space of matrix sequences

dacs ({An}ns {Bn}n) = lim sup p(An - Bn)-

n—oo

It has been proved [6, 8] that this distance induces the acs convergence already
introduced. In other words,

acs

dacs ({Ankns (Bumdnm) 2o 0 <= {Bumbnm —> {An)n-

One fundamental property of this metric is that it identifies sequences whose
difference admits zero as singular value symbol (called zero-distributed sequence).
In particular, it has been shown that such sequences share the same singular value
symbol, in case one of them admits singular value symbol.

Lemma 1 Let {A,},, {Buln € &. We have
{Ay — Buln ~0 0 <= ducs {An}n, {Butn) = 0.

In this case, if k : D C R" — C where D is a measurable set with finite Lebesgue
measure [(D) > 0, then

{Antn ~o k(x) <= {Bu}n ~o k(x).
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In [2], it has been first proved that the pseudometric d,.s on the space of matrix
sequences is complete. In Theorem 2.2 of [4], we find sufficient conditions for a
pseudometric on & to be complete. Here we need a different result, but the proof is
almost identical.

Lemma 2 Let dy, be pseudometrics on the space of matrices C**"* bounded by the
same constant L > 0 for every n. Then the function

d({An}n, {Bn}n) := limsupd, (A,, By)

n—oo

is a complete pseudometric on the space of matrix sequences.

2.2 Optimal Matching Distance

Let v, w € C" be vectors with components
UZ[U15U27-'-5U71]7 wz[wlaw27-'-awn]-
We recall the pseudometric on C" called optimal matching distance defined in

Bhatia’s book [5].

Definition 1 Given v, w € C”, the pseudometric of the optimal matching distance
is defined as

d(v, w) := min max |v; — we()l,
oeS,i=l1,...n

where S, is the symmetric group of permutation of n objects.

Given A € C"" let A(A) € C" be the vector of the eigenvalues. We can extend
the distance d to matrices in the following way.

Definition 2 Given A, B € C"*", we define
d(A, B) :=d(A(A), A(B)).

Notice that the order of the eigenvalues in A(A) and A(B) does not affect the
quantity d(A, B). It is easy to see that d is still a pseudometric on C"*". This is
still not enough for our purposes, since we want a distance that sees two matrices
differing for few eigenvalues as very similar. For this reason, we modify the previous
metric, and we introduce a new function d’ called modified optimal matching
distance.
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Definition 3 Given v, w € C", the modified optimal matching distance is
defined as

. . i—1
d'(v,w) := min min { +v— wall.i} ,
oeS,i=1,...,n+1 n

where
v — we| = [lv1 —we)ls lv2 = we@)l, - -+, [V — Wo@m)l]

and [v — wg|l.l is the i-th greatest element in |[v — wy|, with the convention

v — w0|i+1 = 0.
Given A, B € C"*", we define

d'(A, B) :=d'(A(A), A(B))
and if {A,}n, {Bn}n € &, we can also define

d'({An}n, {Bn}n) = limsupd'(Ay, By).

n—oo

Notice that d'(v, w) < 1 for every v, w € C", so d’'(A, B) < 1 for every pair
of matrices of the same size, and d'({A, }, {Bu}n) < 1 for every pair of sequences
{An}n, {Bn}n € &. We referred to d’ as a distance, but we need to prove it.

Lemma 3 The function d’ is a complete pseudometric on &.

Proof Let us prove that d’ is a pseudometric on C". First, it is easy to see that
d’(v, w) is always a finite nonnegative real number, and it is symmetric since

| — 1
d'(v,w) =min  min 1{ln +|v—wa|,-l}

oeS,i=l,..., n+

. . i—1
=min min +w— vy |l-i =d(w,v).
oeS, i=l1,...,.n+1 n

Moreover, given any T € S, we have

, . : i—1 1
d'(v,w) =min min + v — wel;
n

oeS,i=l1,...,n+1

 — 1
=min min {l +|vr—wm|i¢}:d/(vr,w),
n

oeS,i=l,..., n+l1
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so we can permute the elements of the vectors as we like. Let v, w, z € C" and let
us sort their elements in such a way that

i=1,...,n

i1
d'(v,w) = minﬂ{l ] +|v,-—w,-|},

. i—1
dw,z2) = mmﬂ{ . +Iw—z|,~i},

i=1,...,n

meaning that the permutation realizing the minimum in both cases is the identity,
and that |v; — w;| > |v; — w;| wheneveri < j. Moreover, let s, r, g be the greatest
indices that satisfy

, s—1 , r—1

d,w) = , + vy — wsl, d(w,z) = " +lwg — 24l
Let I, J be two sets of indices defined as

I={12,....,s =1}, J={j:lw;—zj| > |wg — z4l}.

Notice that #/ = s — 1 and #J = r — 1. Let us consider two cases.

e Suppose I UJ = {1,...,n}. We obtain that
#l +#J =r+s—-2>n

and hence

, K r—1 , ,
d(,z) <1< + <d@,w)+dw,z).
n n

e Suppose I UJ # {1,...,n}. Let k be the index not belonging to / U J that
maximizes |v; — z;|. If we consider the identity permutation, we deduce that

, , i—1 !
d(,z2) < min 4, +lv—zl/ .
i ]

but the number of indices such that |v; — z;| is greater than |v;y — zx| is at most
#I1 U J <r + s — 2, and consequently

r+s—-2
d'(v,z) < o el

The index k does not belong to / or to J, so

[ve — wi| < |vs — wsl, lwr — zk| < |lwg — z4l.
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From the latter we infer that

r4+s-—2
d'(v,2) < + vk — 2kl
s—1 r—
< + vk — wi| + " + lwi — zxl
s—1 r—1
< + vy — wg| + " +lwg — z4]

=d' (v, w)+dw,2).

This shows that d’ is a pseudometric on C" and consequently it is a pseudometric
even on C"*", Thanks to Lemma 2, we can conclude that d’ is a complete
pseudometric on &. ]

In the general case, the two pseudometrics have no common features, but, when
dealing with diagonal matrices, we can prove the following lemma.

Lemma 4 Given {Dy},, {D)}, € & sequences of diagonal matrices, there exists a
sequence { Py}, of permutation matrices such that

d'({D}}n. {Du}n) = dacs (D)}, {PaDu P, ).

Proof Let v and v be the vectors of the ordered diagonal entries of D, and D),
so that

vl = [Dylii, v =D, ;.

1

Let 7, € S, be the permutations satisfying

oSy i=1l,..n+1 i

1
d'(D,, D,) = min  min {’n +|v’"—vg|¢}

. i—1
= min + " =l |l.i .
i=1,...,n+1 n "

Let also P, be the permutation matrices associated with t,,. We know that

’ T . i—1 / T
p(D, — P,D,PT)= min +0;(D, — P,D, PI')
i=1,...,n+1 n

. i—1
= min + " =l |l.l
i=l,...,n+1 n n
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As a consequence

dacs({D}}n, {Py Dy PL'},) = limsup p(D}, — P, Dy P)

n—o0

= limsupd'(D),, Dy) = d'({D},}n, {Dn}n)-

n—oo

2.3 GLT Matrix Sequences

A matrix sequence {A,}, may have several different singular value symbols, even on
the same domain. For specific sequences, called generalized locally Toeplitz (GLT)
sequences, we can choose one of their symbols, and denote it as GLT symbol of the
sequence

{Antn ~6LT k(x,0).
where the chosen symbols have all the same domain D = [0, 1] x [—m, 7]. If we

denote with .#p the set of measurable functions on D, and with ¢ the set of GLT
sequences, then the choice of the symbol can be seen as a map

Sig—>.///[).

Both & and .#p are C algebras and pseudometric spaces with the distances ds
and d,,, inducing respectively the acs convergence and the convergence in measure.
In [9] and in [2] several properties of the map S are proved.

Theorem 3

1. S is a homomorphism of C algebras. Given {Ap}y, {Bn}n € ¥, and ¢ € C, we
have that

S({An + Bnln) = S{An}n) + S{Buln),
S{AnBn}n) = S{Antn) - SUBn}n),
S{cAntn) = cSUAR).

2. The kernel of S are exactly the zero-distributed sequences.
3. S preserves the distances. Given {Ap}n, {Bu}n € 4 we have

dacs ({Antns {Bn}n) = dn(S({An}n), S{Bn}n)).

4. § is onto. All measurable functions are GLT symbols.



10 G. Barbarino

5. GLT symbols are singular value symbols:
{Ankn € 9 = {An}n ~o SU{An}n)

6. The graph of S is closed in ¢ x Mp. If {Bum}nm are sequences in & that
converge acs to {Ay},, and their symbols converge in measure to k(x, 9), then
S{Antn) = k(x,0).

The diagonal sampling sequences are denoted as { D, (a)},, wherea : [0, 1] — C
is a measurable function, and

a(l)

It is easy to verify that when @ : [0,1] — C is an almost everywhere (a.e.)
continuous function, we have {D,(a)}, ~s, a(x). Furthermore, if a(x) is
continuous, we know that these sequences have as GLT symbol

{Dyp(a)}n ~cLr a(x) ® 1,

wherea ® 1 : [0, 1] x [—m, ] — C is a function constant in the second variable.
This is not true for every a(x) measurable, so we resort to the following result.

Lemma 5 Given any a : [0,1] — C measurable function, and a,, € C([0, 1])
continuous functions that converge in measure to a(x), there exists an increasing
and unbounded map m(n) such that

{Dn(am(n))}n ~gLr a(x) ® 1 {Dn(am(n))}n ~; a(x)

Proof Easy corollary of Lemma 3.4 and Theorem 3.1 in [3]. O

3 Spectral Measures

3.1 Radon Measures

Let {A,}, € & be a sequence with a spectral symbol k(x) with domain D. By
definition, we have

- 1
nlggon ;G(A;(An))= (D) /DG(k(x))dx.
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Let ¢ : C.(C) — C be the functional defined as

1
¢ (G) = ) /DG(k(x))dx.

The latter is a continuous and linear map, and if we restrict it to real valued
compacted supported functions, it is also a positive operator, since

G(x)>0 VxeC = ¢(G) = 1(;3) / G(k(x))dx > 0.
D

Let us now recall Riesz theorem [1].

Theorem 4 (Riesz) Let ¢ : C.(X) — R be a positive linear and continuous
Sfunction, where X is a Hausdorff and locally compact space. There exists a uniquely
determined Radon positive measure |1 such that

¢>(F)=/ Fdu  YF e C.(X).
X

If G € C.(C) is a complex valued map, we can always decompose it into G =
G1 +iG2 where G| and G, are real valued and supported on a compact. Since ¢ is
linear, we get

¢(G)=¢(G1)+i¢(G2)=[CG1dM+i/CG2dH:/CGdH

so ¢ induces a unique measure . We can thus define a spectral measure.

Definition 4 Given {A,}, € &, we say that it has a spectral measure p if

1 n
lim ZG(Ai(An))z / Gdu
n—oon P C

forevery G € C.(C).

Let G, € C.(C) be a sequence of nonnegative real valued maps such that
[Gmlloo < 1and

Gpx)=1 Vx| <m.

We find that

N
/ Gpdp = lim ZGm()»i(An)) <1
C n—oon —
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and hence

w(@©) = lim pu(x:|x| <m}) < limsup/ Gndu < 1.
m—0o0 (C

m— 00

This proves that all the measures we consider are finite. Since all the finite measures
over the Borelian set are Radon, we will now simply say “measure” instead
of “Radon measure.” We showed that any measurable function induces a finite
measure, but we can actually prove that it induces a probability measure, and also
that any probability measure is induced by a function.

Lemma 6 Let D C R” be a measurable set with finite nonzero measure. Then, for
any k € M p there exists a probability measure p such that

1
(D) /DG(k(X))dXZ/(CGd'LL VG e C.(C).

Let J be the real interval [0, 1]. Then for every probability measure [ there exists a
measurable function k € A such that

1
/ G(k(x))dx = / Gdu VG e C.(C).
0 C

Proof Given k € .#p, we already showed that Riesz theorem identifies a unique
finite measure w such that

1
G(k(x))dx = / Gd VG e C.(C).
I(D) /D e ‘
Let us consider M > 0 and denote

1L x[ =M,

K () = :O x| > M.

Moreover, let us fix ¢ > 0, so that for every M > 0 we can find Gy € C.(C) such
that

xmMx) < Gpy(x) < xpm+e(x) Vx e C.

We infer

1 1
[CXM—adMS/(CGM—EdMZ I(D)/DGM—E(/C(X))dXS l(D)/DXM(k(x))dx’

1 1
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so that

1
/(CXM—sdﬂf l(D)/DXM(k(X))dXS[CXMﬂdM-

When we let ¢ go to zero, we obtain that the integrals coincide on the indicator
functions of closed intervals

1
/CXMd/L= l(D)/DXM(k(x))dx-

The symbol k(x) is a measurable function, so it is sparsely unbounded, meaning
that

Jim I k()] > M) = Jim /D Xixlomr k() dx = 0.

With the latter, we can conclude that p is a probability measure

n(C) = hm /X|x|<MdM lim l(D)/ Xix1<m (k(x))dx = 1.

Given any probability measure u, we know that the space (C, u) is a standard
probability space, meaning that it is isomorphic to a space X = I Ul E, where [ is
areal finite interval with the Lebesgue measure, and E = { x1, x2, ...} is a discrete
numerable set with an atomic measure v. In particular, the isomorphism ¢ : C — X
satisfies

nwW) =1®v(p)) YU e #(C).
and if the atomic measure is v = Y ;°F ¢;3y,, then
—+00
l=p@=l®vX) =1+ c.
i=1

If wecall § = v(X) = 1 ci,then we cantake I =[S, 1]. Let g : [0, 1] — X
be a map defined as

k—1 k
X i <x<)Y . ¢,
g(x) = : k Zl_l = Zl—l i

x x>8.



14 G. Barbarino

This has the same distribution as / @ v, since for every measurable map G : X — C
we obtain

+oo

1 1
f Gd(ldv) = ZciG(x,') +/ G(x)dx = / G(g(x))dx.
X S 0

i=1

Letnow k := ¢~ ' o0 g : [0, 1] — C be a measurable function, and G € C.(C). We
conclude that

1 1
/ Gdu = / Gogp ldl@v) = f G~ (gx))dx = f G (k(x))dx.
C X 0 0

O

A corollary of the latter result is that any sequence with a spectral symbol admits
a probability spectral measure, and also the opposite holds. Moreover, if we call P
the set of probability measures on C, then we can also prove that any measure . € P
is a spectral measure.

Corollary 1 All measures in P are spectral measures.

Proof Let J be the real interval [0, 1]. Given any k € ., then there exists a
sequence of continuous functions k,, € .#; converging to k in measure. Using
Lemma 5, we find that & is a spectral symbol, so every function in ./ is a spectral
symbol.

Given now a measure . € [P, Lemma 6 shows that it is induced by a measurable
function in .#}, so p is also a spectral symbol. This implies that every measure in
P is a spectral measure. O

3.2 Vague Convergence

We notice that every matrix A, can be associated with an atomic probability
measure (4, With support on its eigenvalues

1 n
= S .
MAIZ n iz_; )“I(AVL)

Let us return again to the definition of spectral measure and notice that it can be
rewritten as

n—oo

lim Gdpua, =/ Gdu VG € C.(C).
C C

This is actually the definition of vague convergence for measures.
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The space PP endowed with the vague convergence is a complete metric space,
using the Lévy—Prokhorov metric [10]

w(u,v) =1inf{e > 0] u(A) < v(A®) +¢, v(A) < w(A®) +¢ VA € B(C))
where
A :={xeC|dist(x,A) <e}={x+y|lxeA, |yl <e}.
Since every matrix is associated with an atomic probability measure, we can extend

the definition of 7 to matrices and sequences.

Definition 5 Let A, B € C"*" and let 4, ;tp be the probability atomic measures
associated with their spectra, defined as

l l
= 8. s = 8. .
ma-= ; 1i(A) mp = ; 2 (B)

The Lévy—Prokhorov metric on C"*" is defined as

7(A, B) :=m(ia, 4B)-

The Lévy—Prokhorov metric on & is defined as

T({Antns {Bu}n) :=limsupm(pa,, 1s,)-

n—o0

Again, we need to prove that the latter is actually a pseudometric.

Lemma 7 The Lévy—Prokhorov metric is a pseudometric on C"™*" and a complete
pseudometric on &.

Proof The Lévy—Prokhorov metric is an actual metric on the space of probability
measures, so all the properties can be transferred to the space of matrices C"*",
except for the identity of matrices with zero distance, since two different matrices
may have the same eigenvalues. Thus it is a pseudometric on C"*", and by
Lemma 2, it is a complete pseudometric on &. O

Since every matrix is associated with an atomic probability measure, we can also
use the same notation for mixed elements, like

(A, v) :=m(ua,v).
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The considered notation is useful since the definition of spectral measure is given
by

lim 1ZG()\,-(A,,)) =/ Gdiu VG € C.(C)
i=1 C

n—>00 pn 4

and, when p € P, it can be rewritten as

n——+00

{Antn ~a = 7w (Ay, 1) 0.

The distance m on & is consistent with the distance between their spectral
probability measures, as shown in the following result.
Lemma 8 If {A,}, ~» wand {By}, ~» v, with {Ay}n, {Bu}n € & and u,v € P,
then

7 ({Anha. (Buda) = (e v) = lim (A, By).
Proof Using the triangular property, we infer

7(,v) < m(w, An) + 7 (Ap, By) + 7(Bn, v),

T[(I’Lﬂ U) Z —T[(,LL, An) + 7T(Ana Bn) - T[(Bna ])).

Thus we obtain

w(u,v) < liminfw(u, Ap) + 7w (Ay, By) + 7 (By, v) = liminfr (A,, By),
n—00 n—00

w(w,v) > limsup —m(u, Ay) + 7 (A, By) — (B, v) = limsupm(A,, By).

n—o00 n—o00

By exploiting the latter relationships we conclude that
T ({An}n, {Bn}n) =lim sup(Ay, By)
n—o0
=n(u,v) <

liminfr(A,, By) < t({Au}n, {Baln).

n— 00
O

It is noteworthy to stress the importance of the probability condition on the
measures. In fact, it is possible to find a sequence that admits a spectral measure
but does not admit a spectral symbol, when the spectral measure is not a probability
measure. Moreover, the Lévy—Prokhorov metric is defined only on probability
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measures and if i, € P vaguely converge to a measure not in [P, then the sequence
Wy is not even a Cauchy sequence for 7.

4 Main Results

4.1 Connection Between Measures

First of all, we prove that 7 and d’ are equivalent pseudometrics on &

Lemma9 If{A,},, {By}n € &, then
({Ankns {Bndn) < d'({Ankn, {Bu}n) < 20 ({An}n, {Baln)-
Proof Let us first prove that for any A, B € C**", we have
(A, B) <d'(A, B) <2n(A, B).
Let A(A) and A(B) be ordered so that
i <j = |%i(A) —1i(B)] = |2;(A) —4;(B)|

and

= =" ) - )l
In particular, we deduce that
1Ai(A) —2i(B) =s  Vizk
and consequently, for any subset U € C, we obtain the inequality
#Hri(A) e U, i >k} <#{x1;(B) e U’, i > k).
Denote with ;14 and up the atomic probability measures associated with A, B. Let
U € #(C) be any Borelian set and denote the cardinality of the intersection with a

n-uple v as

Quw) :=#{i :v; e U}.
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Formally, Qy (v) is the number of elements of v inside v, counted with multiplicity.
We know that

A(A
ua@) = Q04D
_ Quthi() i = k) | Quliai(A) :i < k)
_ ; ;
Quiki(B) i 2 k) | k1
< ’ )
J Qo ABY

n

We symmetrically obtain also the following relation:

pne(U) < pa(U*) +s.
As a consequence
(A, B) =inf{e > 0| pa(U) < up(U*) +e&, up(U) < pa(U*) +& VU € #(C)}
= 7(A, B) <s =d'(A, B).

Denote now r = (A, B) and let T be any sub-uple of A(A). If we see T as a
set, then it is a finite subset of C, so it is a Borelian set. Given any ¢ > 0 we know
that

01(A(A)) < Qrr+ (A(B)) Ly
n n

na(T) = wp(T™ ) +r+e= +e

so we deduce that

0r(A(A) _ Q1 (A(B))

" " +r = 0r1(A(A)) < Or(A(B)) +rn.

By using the fact that the map Q is integer valued, we conclude that

Q01(A(A)) < Q7 (A(B)) + Lrn].

The quantity Q7 (A(A)) is actually the cardinality of 7" seen as a sub-uple of A(A),
so for every subset T' of k eigenvalues in A, even repeated, there are at least k — [rn |
eigenvalues of B that have distance less than r from one of the elements of 7'.

Let us now build a bipartite graph, where the left set of nodes L contains the
elements of A(A), the right set of nodes R contains the elements of A(B), and |rn|
additional nodes. Every additional node is connected to all the elements of L, and
an element of A(A) is connected to an element of A(B) if and only if their distance
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is less than r. If we denote E the set of edges of the graph and N the set of its nodes,
then we can define the neighborhood of a subset of nodes P € N as

N(P)=#HueN:Jve P, (v,u) € E}.
By using the previous derivations, we know that forany 7 € L = A(A) it holds
N(T) = #T — |rn] + |rn] = #T.
Thanks to Hall’s marriage theorem that can be found, for example, in [7], there
exists a matching for L, meaning that there exists an injective map « : L — R such
that
(u,a(u)) e E YuelL.
Now let us consider the set

P:={uel:a()e A(B)}.

we know that #P > n — |rn], and we can enumerate the eigenvalues in A(A) = L
and A(B) so that

Ai(A) e P, Ai(B) =a(ri(A)) Vi <n-—|rn].

Since u and «(u) are connected for all u € L, we deduce that A; (A) and A; (B) are
connected for at least n — |rn | indices. By construction,

|Ai(B) = Ai(A)] <r  Vi<n-—|rn]

SO

d'(A,B) = min min {i;1—|—|A(A)—A(B)a|,-l}

oeS,i=l,...,n+1

IA
2.
=]
T
e e,

+1A(A) = A(B)|;

Lrn]
<

n

+r <2r =2n(A, B).

This proves that for any A, B € fC"*" we have

7(A, B) <d'(A, B) <2m(A, B).
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Given now {Ap},, {By}n € &, we conclude

7w ({An}n, {Bn}n) = limsup(A,, By) < limsup d/(Anv B,) = d/({An}nv {Bu}n),

n—o0 n— oo

d/({An}nv {Bu}n) = lim Supd/(Anv By,) < limsup2m(A,, By) = 27 ({An}n, {Buln).

n—00 n—00
O

The two distances d’ and 7 are equivalent, so they induce the same topology on
the space & and they respect a property of closeness given by the following lemma.

Lemma 10 Let {A, m}n ~1 m, where {Apm}n €
& and puy, € P for every m. If we consider the

statements below {Apm) d A
nmin ~ """ 7 nin
Lot (im, 1) 22550, |
2' {An}n N)\ /1/7 )\' :)\'
m—0o0
3. d'{Anmtn, (Antn) —— 0, |
Vv
where {A,}, € & and u € P, then any two of them Mm --- T > W

are true if and only if all of them are true.

Proof 1.3. = 2.) We know that
7 (An, ) < w(Ay, An,m)+7T(An,ms M) + 7 (s (1) VYn,m.
Given ¢ > 0, we can find M such that

(s 1) 22250 = (s ) <€ Vm > M,

d'{Anmdn AA) 2250 = d'(Apmdns {Andn) <& VYm > M.
Using Lemma 9, we obtain

lim Supn(An,mv Ap) = n({An,m}nv {Anln) < d/({An,m}ns {Anln).

n—oo

We can then fix m > M and find N > 0 such that
N(An,ms Ay) <2, N(An,ms Hm) < € Vn> N.
‘We obtain that

w(Ap, ) <2e+4+e+¢e=4¢ Vn >N,



