Springer Handbookof Microscopy

Hawkes Spence Editors

Springer Handbook of Microscopy

Springer Handbooks provide a concise compilation of approved key information on methods of research, general principles, and functional relationships in physical and applied sciences. The world's leading experts in the fields of physics and engineering will be assigned by one or several renowned editors to write the chapters comprising each volume. The content is selected by these experts from Springer sources (books, journals, online content) and other systematic and approved recent publications of scientific and technical information.

The volumes are designed to be useful as readable desk book to give a fast and comprehensive overview and easy retrieval of essential reliable key information, including tables, graphs, and bibliographies. References to extensive sources are provided.

Handbook of Microscopy

Peter W. Hawkes, John C. H. Spence (Eds.)

With 1140 Figures and 37 Tables

Editors Peter W. Hawkes CEMES-CNRS Toulouse, France

John C. H. Spence Dept. of Physics Arizona State University Tempe, AZ, USA

ISBN 978-3-030-00068-4 e-ISBN 978-3-030-00069-1 https://doi.org/10.1007/978-3-030-00069-1

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG, part of Springer Nature.

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Since *Science of Microscopy*, the predecessor of this book, appeared in 2007, three Nobel prizes of direct relevance to the field have been awarded. The first of these was the award to Boyle and Smith in 2009 for the invention of the charge-coupled device, which was primarily responsible for making digital imaging possible. The second was the award to Betzig, Hell, and Moerner in 2014 for the development of superresolution fluorescence microscopy, and the third to Dubochet, Frank, and Henderson in 2017 was given for their work in developing the cryo-electron microscopy technique for biology. The fact that radiation damage effects may be *out-run* by using sufficiently brief femtosecond x-ray pulses from a hard x-ray laser was also demonstrated in this period. At the same time, there has been a great surge in the application of many tomographic imaging methods in medicine (such as the microCT method covered in this book); indeed, an imaging revolution is underway in that area. In many hospitals, some form of 3-D imaging is now the first diagnostic method applied to incoming trauma victims.

For this new edition, now published as the *Springer Handbook of Microscopy*, we have again asked many of the leaders in the field of modern microscopy to summarize the latest approaches to the imaging of atoms or molecular structures, and, more especially, the way in which this aids our understanding of atomic processes and interactions in the organic and inorganic worlds.

Man's curiosity and the desire to examine the nanoworld goes back at least as far as Ancient Greece. Aristophanes, in a fourth-century BC play, refers to a burning glass; the Roman rhetorician Seneca describes hollow spheres of glass filled with water being used as magnifiers, while Marco Polo in the thirteenth century remarks on the Chinese habit of wearing spectacles. Throughout this time it would have been common knowledge that a drop of water over a particle on glass will provide a magnified image, while a droplet within a small hole does even better as a biconvex lens. By the sixteenth century, magnifying glasses were common in Europe. Kepler appears to have been the first to draw the correct ray-diagram for image formation, with rays leaving an object point over a wide angular range and gathered to a focus by a lens. His book *Paralipomena* on optics, printed in 1604, shows the correct ray diagram for a spherical glass lens, while his *Dioptrice* (1611) gives an explanation of the functioning of the lenses in Galileo's telescope. Although Kepler did not derive the *lens laws* taught to undergraduate science students today, he does reveal an understanding of the formation of virtual images, which arise with mirrors. These books contain the earliest correct ray diagrams from which the whole subject of geometric optics was later developed.

It was Anthony van Leeuwenhoek (1632–1723) who first succeeded in grinding lenses accurately enough to produce a better image with his single-lens instrument than that produced with the primitive compound microscopes that were available then. His 112 papers, published in *Philosophical Transactions of the Royal Society*, brought the microworld to the general scientific community for the first time, covering everything from sperm to the internal structure of the flea. Robert Hooke (1635–1703) developed the compound microscope, publishing his results in careful drawings of what he saw in his *Micrographia* (1665). The copy of this book in the University of Bristol library shows remarkable sketches of faceted crystallites, below which he had drawn piles of cannon balls, whose faces make corresponding angles. This strongly suggests that Hooke believed that matter consists of the small spheres (atoms) which could produce these facet angles, and had made this discovery long before its official rediscovery by the first modern chemists, notably Dalton in 1803. Greeks such as Leucippus (450 BC) had long before convinced themselves that a stone, cut repeatedly, would eventually lead to *a smallest fragment* or fundamental particle; Democritus once said that "nothing exists except atoms and empty space. All else is opinion."

This atomic hypothesis has a fascinating history, and is intimately connected with the history of microscopy. It was Brown's observation in 1827 of the motion of pollen in water by optical microscopy that laid the basis for the modern theory of matter based on atoms. As late as 1900 many chemists and physicists did not believe in atoms, despite the many independent estimates that could be made of their size. Avogadro's idea, around 1811 that equal volumes of gas contained the same number of molecules (regardless of their size) had a powerful influence. This number was first estimated by Johann Loschmidt in 1865. Faraday's experiments on electrolysis related mass to an electron current and the charge it carried. The electron and its charge-to-mass ratio were discovered by

J.J. Thomson in 1897. The evidence for the existence of atoms was summarized by Kelvin and Tait in an appendix to their *Treatise on Natural Philosophy*, together with an erroneous and rather superficial estimate of the young age of the Earth, to be used against Darwin. This text was the standard English-language physics text of the late nineteenth century, despite its failure to cover much of Maxwell's work. Einstein's 1905 theory of Brownian motion, and Perrin's (1909) more accurate repetition of Brown's experiment, using microscope observations to estimate Avogadro's number, finally settled the matter regarding the existence of atoms. Einstein does not reference Brown's paper but indicates that he had been told about it. As Professor Archie Howie from Cambridge, UK, commented, it is interesting to speculate how different the history of science would be if Maxwell had read Brown's paper and applied his early statistical mechanics to it. By the time of Perrin's paper, Bohr, Thomson, Rutherford, and others were firmly committed to atomic and even subatomic physics.

In biology, the optical microscope remained an indispensable tool from van Leeuwenhoek's time with many incremental improvements. It was able to identify bacteria and their role in disease, but not viruses, which were too small. These were first seen with the transmission electron microscope (TEM) in 1938 by Ernst Ruska's brother Helmut. With Zernike's phase contrast theory in the 1930s, a major step forward was taken, but the really dramatic and spectacular modern advances had to await the widespread use of the modern TEM with new sample preparation methods and the development of the cryo-EM method. The invention of the laser and superresolution optical modes, the charge-coupled device (CCD) and more recent direct-electron detectors, the introduction of scanning modes and probes, computer control, and data acquisition, powerful new algorithms for data analysis and the production of fluorescent proteins led to further major advances.

The importance of this early history should not be underestimated - in the words of Richard P. Feynman

If in some cataclysm, all scientific knowledge were to be destroyed and only one sentence passed on to the next generation of creatures, what statement would contain the most information in the fewest words? I believe it is the atomic hypothesis – that all things are made of atoms.

Images of individual atoms were first provided by Erwin Müller's field-ion microscope in the early 1950s, soon to be followed by Albert Crewe's scanning transmission electron microscope (STEM) images of heavy atoms on thin-film surfaces in 1970. With its sub-ångström resolution, the modern transmission electron microscopes can now routinely image atomic columns in thin crystals in projection, individual atoms in 2-D materials, and even foreign atoms within a thin crystal using beam-electrons that have excited inner-shell atomic processes. For favorable surface structures, the scanning tunneling microscope has provided us with images of individual surface atoms since its invention in 1982 and resulted in a rich spin-off of related techniques, such as the scanning tunneling spectroscopy method, the near-field probes, and the atomic force microscope.

The particles used to probe condensed and biological matter must possess a long lifetime if they are to be used as free-particle beams. For the most part, this has limited investigators to the use of light, x-rays, neutrons, and electrons. The major techniques can then be classified as imaging, diffraction, and spectroscopy. These may be used in both the transmission and reflection geometries, giving bulk and surface information, respectively. Under these general headings, in Chap. 9 we review both the low-energy electron microscope (LEEM) and spin-polarized LEEM methods which, using reflected electrons, have revolutionized surface science and thin-film magnetism. Here, the high cross-section allows movies to made of surface processes at submicrometer resolution, while Auger electron spectroscopy is conveniently incorporated. Chapter 11 describes the spectacular progress that has been made with spectroscopic LEEM since the previous edition of this book. Here, the electron prism in the instrument provides dispersion for spectroscopy of the electrons reflected from a clean surface. A remarkable resolution of 1.5 nm has now been obtained by such a LEEM at 3.5 eV, and an energy resolution of about 100 meV, both being invaluable for studies aimed at imaging crystal growth, the study of catalysis, and work-function imaging. Chapter 10 deals with the closely related photoelectron microscopy, where a LEEM instrument is used to image the photoelectrons excited by a synchrotron beam. Here, the superb energy selectivity of optical excitation can be used to great advantage. With the importance of 2-D materials, including graphene and all its descendants that are now recognized, PEEM studies of the growth of new 2-D materials have taken on a new lease of life. In angle-resolved mode, maps of Fermi surfaces can now be made routinely at synchrotrons, as described also in Chap. 11. Chapter 5, based on the earlier chapter by the late Rudi Reichelt, describes advances in scanning electron microscope (SEM) research, where the lower-energy secondary electrons provide images with a large depth of focus in the most versatile of all electron-optical instruments. Chapter 6 reviews the functioning of this instrument at higher pressures than in the conventional SEM and its use for environmental electron microscopy. The numerous modes of operation include x-ray analysis, cathodoluminescence, low-voltage modes for insulators, and the controlled-atmosphere environmental SEM (ESEM). A similar instrument can be devised using a gas fieldion source instead of an electron source. This scanning ion microscope uses the methods of field-ion microscopy to obtain an atomically sharp source of ions (such as 30 kV helium ions), which are focused and scanned across the sample. Chapter 14 gives us a full account of this exciting new microscopy, which has emerged since the first edition. It includes a full account of ion–sample interactions, the resulting signals that can be detected, contrast mechanisms for transmitted and reflected modes, the analytical capabilities of the instrument, and its applications. The atom probe itself is described in Chap. 15, including a full history of the field-ion microscope, the methods of the analytical atom probe (which identifies the atoms in the image) including laser pulsing of the tip, and the use of a smaller counter electrode at lower voltage placed close to the needle-shaped sample, and giving a higher electric field and better mass resolution. As the summary of applications shows, the resulting instruments have also emerged as a successful new form of microscopy since the first edition of this book.

Turning now to the transmission geometry, we review the latest work in atomic-resolution transmission electron microscopy (TEM) in Chap. 1, the technique that has transformed our understanding of defect processes in crystalline solids and nanostructures. In that connection, Chap. 12 provides a review of the role of modeling in TEM to obtain higher resolution and decide among the alternative likely structures seen in the images. Chapter 26 describes the extension of the high-resolution TEM approach to 3-D image reconstruction, using multiple projections. Given the need to obtain many different projections all at atomic resolution without significant radiation damage, this has proven to be an enormously difficult problem, for which there has been dramatic progress since the previous edition. Chapter 29 reviews the application of this high-resolution TEM approach, combined with other diffraction methods, to the important class of mesoporous materials (zeolites and the newly discovered class of metal-organic framework structures). These highly radiation-sensitive materials are finding many new applications for gas storage and petrochemical catalysis and provide one of the most challenging samples for TEM work. Spectacular results have been obtained (resulting in high honors for the scientists), and there appears to be no other way to determine the structure of this critical new class of nanostructured material. The scanning transmission mode is treated in Chap. 2. The scanning transmission electron microscope (STEM) provides additional powerful analytical capability, which, like STM, can provide spectroscopy with atomic-scale spatial resolution and many other signals, such as cathodoluminescence, energy-loss spectroscopy and characteristic inner-shell x-ray detection. Recently, atomic-resolution images have been produced using this x-ray fluorescence signal. The closely-related electron microdiffraction method, which uses the subnanometer probe of the STEM in the transmission geometry, is described in Chap. 18. The analysis of the resulting nanodiffraction patterns has proven particularly powerful for the study of the nanoparticles used in catalysis and their associated strain fields. An entire chapter (Chap. 7) is then devoted to analytical TEM (AEM), with a detailed analysis of the physics and performance of its two main detectors, for characteristic x-ray emission and energy-loss spectroscopy. The remarkable recent achievements of in-situ TEM are surveyed in Chap. 3, including transmission imaging of liquid cell electrolysis, observations of the earliest stages of crystal and nanotube growth, phase transitions and catalysts, superconductors, magnetic and ferroelectric domains and plastic deformation in thin films, all at nanometer resolution or better. Again, the large scattering cross-section of electron probes provides plenty of signal even from individual atoms, so that movies can be made. Chapter 8 summarizes the dramatic recent revival of time-resolved electron microscope imaging, which uses laser-pulses to excite processes in a sample prior to imaging them. The excited state may be imaged by passing the delayed optical pulse to the photocathode of the TEM in the pumpprobe mode. Single-shot transmission electron diffraction patterns have now been obtained using electron pulses as short as a picosecond.

Most of these techniques are undergoing a quiet revolution as aberration corrector devices are being fitted to electron microscopes. The dramatic revelation that, after 60 years of effort, aberration correction is now a reality, was made about 20 years ago, and we review the relevant electron-optical theoretical background in Chap. 13. The same chapter includes an account of monochromators, which help to combat the effects of chromatic aberration, and energy analyzers. Also in the transmission geometry, there have been rapid advances in high-energy pulsed electron diffraction, with pulses as brief as 10 fs at MeV energies having been generated recently. Pump-probe methods can now be used by this technique to detect time-resolved diffuse scattering between Bragg reflections from phonons in a thin crystal. This field is reviewed in Chap. 19. Finally, in biology, perhaps the largest scientific payoff of all has occurred in the field of cryo-electron microscopy, which now seriously challenges all protein

crystallography performed at synchrotrons. This is largely the result of the recent *resolution revolution* fueled by the development of new TEM detectors, which can record the arrival of every beam electron under the low-dose conditions used. There are three kinds of cryo-electron microscopy—single-particles, tomography, and 2-D crystals. Images of many projections of similar particles are merged in the single particle mode, whereas many projections of the same particle are merged in tomography. The increased radiation damage in the tomography mode leads to lower resolution. The grand challenge of locating every protein and molecular machine in a single cell remains outstanding, but many molecular mechanisms and drug binding processes have now been elucidated at a resolution of a few ångströms. We summarize this exciting field in Chap. 4.

Electrons, with the largest cross-section, a coherent source brighter than current generation synchrotrons, and now single-electron detectors, provide the strongest signal and, hence, the best resolution. They do this in a manner that can conveniently be combined with spectroscopy, and we now have aberration corrected lenses for them. However, multiple scattering and inelastic background scattering often complicate interpretation. Electrons in a beam continue on to the detector after losing energy while traversing a sample, making an unwanted background, unlike x-rays, which are annihilated after creating a photoelectron, which is not usually detected. X-ray imaging of nanostructures, even at synchrotrons, involves much longer data acquisition times, but the absence of background and multiple scattering effects greatly improves quantification of data, and thicker samples can be examined. It can be shown that the small magnitude of the fine-structure constant will almost certainly never permit imaging of individual atoms using x-rays, unless data from identical particles is merged. We should recall that in protein crystallography, about 98% of the x-ray beam hits the beam-stop after traversing the sample and does not interact with the sample at all. Of the remaining 2%, 84% is annihilated in production of photoelectrons, and 8% in Compton scattering, while only the remainder produces Bragg diffraction. By comparison, electron scattering depends sensitively on sample thickness, and the direct beam is rapidly both diffracted and inelastically scattered away by multiple scattering to negligible intensity with increasing thickness. This thickness sensitivity means that, apart from work on monolayers, electron diffraction intensities are far less reproducible than x-ray scattered intensities, making quantification more difficult. Generally speaking, it is not difficult to record the same Bragg intensity ratios from two crystals of the same structure but different size, using x-ray diffraction; this is impossible using electron diffraction, unless they both have dimensions of tens of nanometers or less. For light elements the inelastic cross-section for kilovolt electrons is about three times that of the elastic cross-section, unlike hard x-rays, where the photoelectric effect is far stronger than elastic scattering. Success with x-rays has come mainly through the use of crystallographic redundancy to reduce radiation damage in protein crystallography. Nevertheless, soft xray imaging using zone-plate lenses now provides about 20 nm resolution in the water window, with the advantages of thicker samples and imaging in an aqueous environment. Applications of *full-field* zone-plate microscopy have also been found in environmental science, materials science, and magnetic materials. In addition, the equivalent of the STEM has been developed for soft x-rays: the scanning transmission x-ray microscope (STXM), which uses a zone-plate to focus x-rays onto a sample that can be raster scanned by piezo-electric motors. This arrangement can then provide spatially-resolved x-ray absorption spectroscopy. That work is reviewed in Chap. 23. Chapter 24 reviews the highly successful microcomputed tomography method, in which the absorption of an x-ray beam passing through a sample is recorded from many different directions, allowing a 3-D image to be reconstructed.

Both x-ray and electron-beam imaging methods are limited in biology by the radiation damage they create, unlike microscopy with visible light, which also allows observations in the natural state. Optical microscopy has now undergone a revolution, with the development of superresolution, two-photon, fluorescent labeling, and scanning confocal methods. These methods are reviewed in Chaps. 21 and 22. Chapter 21 is divided into two parts, one closely based on Science of Microscopy, the other chronicling later developments. The authors discuss two-photon confocal microscopy, in which the spot-scanning mode is adopted, and a symmetrical lens beyond the sample collects light predominantly from the excitation region, thereby eliminating most of the out-of-focus background produced in the normal full-field *optical sectioning* mode. 3-D image reconstruction is then possible. Two-photon microscopy combines this with a fluorescence process in which two low-energy incident photons are required to excite a detectable photon emitted at the sum of their energies. This has several advantages, by reducing radiation damage and background, and allowing observation of thicker samples. The method can also be used to initiate photochemical reactions for study. Chapter 22 describes the latest superresolution schemes for optical microscopy, which have now brought the lateral resolution down to almost the nanometer size of a molecule. The many methods are known by acronyms such as STED, RESOLFT, PALM, STORM, and PAINT. By the symmetrical lens arrangement, they have increased resolution measured along the optic axis by a large factor. The lateral resolution can be improved by modulating the illumination field or by using the stimulated emission depletion microscopy mode (STED), in which saturated excitation of a fluorophore produces nonlinear effects allowing the diffraction barrier to resolution to be broken.

For the scanning near-field probes new possibilities arise. Although restricted to the surface (the site of most chemical activity) and, in some cases, requiring complex image interpretation, damage is reduced, while the sub-ångström resolution normal to the surface is unparalleled. The method is also conveniently combined with spectroscopy. Early work was challenged by problems of reproducibility and tip artifacts, but several chapters in this book show the truly remarkable recent progress in surface science, materials science, and biology. Chapter 25 describes the various modes of atomic force microscopy which can be used to extract atomic-scale information from the surfaces of modern materials, including oxides and semiconductors. Work functions can be mapped out (by means of a Kelvin probe with good spatial resolution) and a variety of useful signals obtained by modulation spectroscopy methods. This way maps of magnetic force, local dopant density, resistivity, contact potential and topography may be obtained. Chapter 27 (unchanged from Science of Microscopy) describes applications of the scanning tunneling microscope (STM) in materials science, including inelastic tunneling, surface structure analysis in surface science, the information on electronic structure which may be extracted, atomic manipulation, quantum size and subsurface effects, and high temperature imaging. Chapter 28 provides a review of low-temperature STM methods applied to quantum materials and superconductors, allowing impurity atoms to be imaged, energy gaps to be mapped out, and new phases to be identified. Finally, Chap. 31 reviews the special problems that arise when the atomic force microscope (AFM) is applied to the imaging of biomolecules; much practical information on instrumentation and sample preparation is provided, and many striking examples of cell and macromolecule images are shown.

We include three chapters on unconventional lensless imaging methods. Chapter 16 deals with electron holography and Chap. 20 with diffractive imaging. Gabor's original 1948 proposal for holography was intended to improve the resolution of electron microscopes. Only recently have his plans been realized, though it has proved easier to use an aberration-corrected microscope than to employ his two-stage procedure. Meanwhile, electron holography using Möllenstedt's biprism and the Lorentz mode has proved an extremely powerful method of imaging the magnetic and electrostatic fields within matter. Dramatic examples have included TEM movies of superconducting vortices as temperature and applied fields are varied, and ferroelectric and magnetic domain images, all within thin self-supporting films. Chapter 20 describes the recent development of new iterative solutions to the noncrystallographic phase problem, which now allows diffraction-limited images to be reconstructed from the far-field scattered intensity distribution. This has produced lensless atomic-resolution images of carbon nanotubes (reconstructed from electron microdiffraction patterns) and phase contrast images from both neutron and soft x-ray Fraunhofer diffraction patterns of isolated, nonperiodic objects. In this work, lenses are replaced by computers, so that images may now be formed with any radiation for which no lens exists, free of aberrations. As discussed, these methods have been extensively applied to the data collected at x-ray lasers, using femtosecond x-ray pulses in the diffract-and-destroy mode. Here, the elastic scattering is collected (and the incident pulse terminates) before the onset of the photoelectron cascade starts to create radiation damage and, subsequently, destroys the sample. The companion Chap. 17 reviews another lensless imaging method, ptychography, and its many applications. This method, which is now rapidly gaining in popularity since the development of ptychography algorithms for nonperiodic samples, does not require a rough estimate of the boundary of an isolated sample, unlike most diffractive imaging methods. Chapter 30 describes recent advances in phase-contrast lensless x-ray imaging, where the use of x-ray phase shifts rather than absorption effects provides images of tissue rather than bone. A pure phase shift, without absorption, would deposit no damaging energy into a patient, while providing potentially high interferometric contrast. Propagation (defocus), Talbot (self-imaging) grating methods, and split-beam interferometers are all described for this growing field. Chapter 32 on the uses of microscopy in forensic sciences concludes the book.

Coverage has been limited to high-resolution methods, with the result that some important microscopies have been omitted (such as magnetic resonance imaging (MRI) and acoustic imaging).

The ingenuity and creativity of the microscopy community as recorded in these pages are remarkable, as is the spectacular nature of the images presented. Neither shows any signs of abating. As in the past, we fully expect major advances in science to continue to result from breakthroughs in the development of new microscopies.

> Peter W. Hawkes John C.H. Spence

About the Editors

Peter Hawkes looks back at a long career in microscopy. After graduation in 1959, Peter Hawkes joined Ellis Cosslett's Electron Microscopy Section in the Cavendish Laboratory, Cambridge and completed his PhD on electron lens aberrations in 1963. Two books on quadrupole optics resulted from this as well as an introductory text on *Electron Optics and Electron Microscopy*. He remained in Cosslett's group, publishing extensively on electron lens properties and later on digital processing of electron microscope images. He was a Research Fellow of Peterhouse and Churchill College. In 1975, he moved to the CNRS Laboratory of Electron Optics in Toulouse, of which he later became the Director. In 1980, he joined Hermann Wollnik (University of Gießen) and Karl Brown (SLAC) in organising the first of the series of conferences on Charged-Particle Optics; this was an instant success and the series continues today. He is author with Erwin Kasper of a three-volume treatise on the Principles of Electron Optics.

Peter was the Founder-President of the European Microscopy Society and is an Honorary Member of the French Microscopy Society, of which he had been President. He was elected Fellow of the Optical and Microscopy Societies of America and was awarded the CNRS Silver Medal. He has been an active member of the editorial boards of *Ultramicroscopy* and the *Journal of Microscopy* and editor-in-chief of the longrunning *Advances in Imaging and Electron Physics*. In recent years, he has had more time to spend on a very different interest, the artists and craftsmen of the nineteenth century, with the result that the *William Morris Society Newsletter* and the *Journal of Pre-Raphaelite Studies* now appear in his list of publications.

Since 2013, John Spence FRS has been the Director of Science of *BioXFEL*, a sevencampus consortium in the USA devoted to the application of the recently invented free-electron X-ray laser to the study of structure and dynamics in biology.

John completed his PhD in Physics at Melbourne University in Australia, followed by postdoctoral research at the Materials Department in Oxford, UK. He then moved to the Physics Department at Arizona State University in 1976, joining John Cowley's rapidly growing center for electron microscopy. John's laboratory has since focused on the development of new forms of atomic-resolution microscopy, from time-of-flight analysis in scanning tunneling microscopy to the direct imaging of moving dislocation kinks, new electron microscope detectors, and lensless imaging, to name only a few. He has authored or coauthored over 500 papers and holds several patents and is the author of the leading text (4th edition) on atomic-resolution electron microscopy, and a new text with J.M. Zuo on Advanced Transmission Electron Microscopy. He is also the author of "Lightspeed", a history of measurements of the speed of light and the search for an absolute frame of reference in the universe, which led to Einstein's relativity.

John held a joint appointment with Lawrence Berkeley Laboratory and has spent sabbaticals in Cambridge, UK, the Max Planck Institute at Stuttgart, Oxford, UK, and Trondheim, Norway. He is an overseas Fellow of Churchill College Cambridge, a foreign member of the Royal Society and the Australian Academy of Science, and recipient of several professional society awards. He enjoys flying large gliders among the strong thermals over the Arizona desert mountains and sailing. He is a keen musician devoted to classical piano music, also playing flute and guitar with his jazz quartet *Who Knew*.

About the Authors

Matthias W. Amrein

Dept. of Cell Biology & Anatomy University of Calgary Calgary, Canada mamrein@ucalgary.ca

Ernst Bauer

Dept. of Physics Arizona State University Tempe, AZ, USA ernst.bauer@asu.edu

Wolfgang P. Baumeister

Dept. of Molecular Structural Biology Max Planck Institute of Biochemistry Martinsried, Germany baumeist@biochem.mpg.de

David C. Bell

Center for Nanoscale Systems Harvard University Cambridge, MA, USA *dcb@seas.harvard.edu*

Paolo Bianchini

Dept. of Nanoscopy Italian Institute of Technology Genoa, Italy paolo.bianchini@iit.it

Dawn A. Bonnell

Dept. of Materials Science & Engineering University of Pennsylvania Philadelphia, PA, USA bonnell@upenn.edu

Gianluigi Botton

Dept. of Materials Science & Engineering McMaster University Hamilton, Canada gbotton@mcmaster.ca

Isotta Cainero

Dept. of Physics University of Genoa Genoa, Italy isotta.cainero@iit.it

Geoffrey H. Campbell

Materials Science Division Lawrence Livermore National Laboratory Livermore, CA, USA ghcampbell@llnl.gov

Francesca Cella Zanacchi

Dept. of Nanophysics Italian Institute of Technology Genoa, Italy francesca.cella@iit.it

Shery L.-Y. Chang

Eyring Materials Center Arizona State University Tempe, AZ, USA shery.chang@asu.edu

Shunai Che

School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai, China chesa@sjtu.edu.cn

J.C. Séamus Davis

Clarendon Laboratory University of Oxford Oxford, UK and Dept. of Physics University College Cork Cork, Ireland jcseamusdavis@gmail.com

Alberto Diaspro

Dept. of Nanophysics Italian Institute of Technology Genoa, Italy *alberto.diaspro@iit.it*

Isabel Díaz

Institute of Catalysis and Petroleum Chemistry Spanish National Research Council (CSIC) Madrid, Spain *idiaz@icp.csic.es*

Rafal E. Dunin-Borkowski

Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute Forschungszentrum Jülich GmbH Jülich, Germany *r.dunin-borkowski@fz-juelich.de*

Stephen D. Edkins

Dept. of Applied Physics Stanford University Stanford, CA, USA edkins@stanford.edu

Natasha Erdman

JEOL USA Inc. Peabody, MA, USA erdman@jeol.com

Jun Feng

Advanced Light Source Lawrence Berkeley National Laboratory Berkeley, CA, USA fjun@lbl.gov

Kazuhiro Fujita

Condensed Matter Physics & Materials Science Dept. Brookhaven National Laboratory Upton, NY, USA kfujita@bnl.gov

Robert E. Guldberg

Phil and Penny Knight Campus for Accelerating Scientific Impact University of Oregon Eugene, OR, USA guldberg@uoregon.edu

Mohammad H. Hamidian

Dept. of Physics Harvard University Cambridge, MA, USA *m.hamidian@gmail.com*

Lu Han

Dept. of Mathematics Tongji University Shanghai, China Iuhan@tongji.edu.cn

Yu Han

Physical Science and Engineering Division King Abdullah University of Science and Technology Thuwal, Saudi Arabia yu.han@kaust.edu.sa

Peter W. Hawkes

CEMES-CNRS Toulouse, France hawkes@wanadoo.fr

Stefan W. Hell

Dept. of NanoBiophotonics/ Dept. of Optical Nanoscopy Max Planck Institute for Biophysical Chemistry & Max Planck Institute for Medical Research Göttingen, Germany shell@mpibpc.mpg.de

Gregor Hlawacek

Institute for Ion Beam Physics & Materials Research Helmholtz Zentrum Dresden Rossendorf Dresden, Germany g.hlawacek@hzdr.de

Malcolm Howells

Advanced Light Source Lawrence Berkeley National Laboratory Berkeley, CA, USA mrhowells@Ibl.gov

Bryan D. Huey

Dept. of Materials Science & Engineering University of Connecticut Storrs, CT, USA bryan.huey@uconn.edu

John L. Hutchison

Dept. of Materials University of Oxford Oxford, UK *john.hutchison@materials.ox.ac.uk*

Chris Jacobsen

Advanced Photon Source Argonne National Laboratory and Northwestern University Argonne, IL, USA cjacobsen@anl.gov

Benjamin J. Jones

School of Science, Engineering & Technology Abertay University Dundee, UK *b.j.jones@physics.org*

Takeshi Kasama

National Centre for Nano Fabrication and Characterization Technical University of Denmark Kongens Lyngby, Denmark takeshi.kasama@cen.dtu.dk

Thomas F. Kelly

Steam Instruments, Inc. Madison, WI, USA thomas.kelly@steaminstruments.com

Angus I. Kirkland

Dept. of Materials University of Oxford Oxford, UK angus.kirkland@materials.ox.ac.uk

András Kovács

Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute Forschungszentrum Jülich GmbH Jülich, Germany *a.kovacs@fz-juelich.de*

Ondrej Krivanek

Nion Co Kirkland, WA, USA krivanek@nion.com

Luca Lanzanò

Dept. of Nanophysics Italian Institute of Technology Genoa, Italy

Rowan K. Leary

Dept. of Materials Science & Metallurgy University of Cambridge Cambridge, UK *rkl26@cam.ac.uk*

Renkai Li

SLAC National Accelerator Laboratory Menlo Park, CA, USA Irk@slac.stanford.edu

Angela S.P. Lin

Phil and Penny Knight Campus for Accelerating Scientific Impact University of Oregon Eugene, OR, USA *al81@uoregon.edu*

Zheng Liu

Inorganic Functional Materials Research Institute National Institute of Advanced Industrial Science and Technology (AIST) Nagoya, Japan *liu-z@aist.go.jp*

Justin Luria

Microelectronics Engineering and Technology Raytheon Andover, MA, USA *justin.luria@raytheon.com*

Yanhang Ma

School of Physical Science and Technology ShanghaiTech University Shanghai, China mayh2@shanghaitech.edu.cn

Andrew Maiden

Dept. of Electronic & Electrical Engineering University of Sheffield Sheffield, UK *a.maiden@sheffield.ac.uk*

Alvaro Mayoral

School of Science and Technology ShanghaiTech University Shanghai, China amayoral@shanghaitech.edu.cn

Martha R. McCartney

Dept. of Physics Arizona State University Tempe, AZ, USA molly.mccartney@asu.edu

Joseph T. McKeown

Materials Science Division Lawrence Livermore National Laboratory Livermore, CA, USA mckeown3@llnl.gov

Paul A. Midgley

Dept. of Materials Science & Metallurgy University of Cambridge Cambridge, UK *pam33@cam.ac.uk*

Andrew M. Minor

University of California, Berkeley, and Lawrence Berkeley National Laboratory Berkeley, CA, USA *aminor@lbl.gov*

Pietro Musumeci

Dept. of Physics & Astronomy University of California at Los Angeles Los Angeles, CA, USA musumeci@physics.ucla.edu

Peter D. Nellist

Dept. of Materials University of Oxford Oxford, UK peter.nellist@materials.ox.ac.uk

Tetsu Ohsuna

Dept. of Crystaline Materials Science Nagoya University Nagoya, Japan ohsuna@mac.com

Peter Oleynikov

Dept. of Physics ShanghaiTech University Shanghai, China poleynikov@shanghaitech.edu.cn

Michele Oneto

Nikon Imaging Center Italian Institute of Technology Genoa, Italy michele.oneto@iit.it

Ming Pan

Gatan, Inc. Pleasanton, CA, USA mpan@gatan.com

Luca Pesce

Dept. of Nanophysics Italian Institute of Technology Genoa, Italy Iuca.pesce@iit.it

Jürgen Plitzko

Dept. of Molecular Structural Biology Max Planck Institute of Biochemistry Martinsried, Germany *plitzko@biochem.mpg.de*

Sagar Prabhudev

Dept. of Materials Science & Engineering McMaster University Hamilton, Canada prabhus@mcmaster.ca

Rudolf Reichelt (deceased)

John Rodenburg

Dept. of Electronic & Electrical Engineering University of Sheffield Sheffield, UK *j.m.rodenburg@shef.ac.uk*

Frances M. Ross

Dept. of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA, USA fmross@mit.edu

Steffen J. Sahl

Dept. of NanoBiophotonics Max Planck Institute for Biophysical Chemistry Göttingen, Germany steffen.sahl@mpibpc.mpg.de

Yasuhiro Sakamoto

Physical Science Osaka Prefecture University Sakai, Japan sakamoto@nano.phys.sci.osaka-u.ac.jp

Melissa K. Santala

School of Mechanical, Industrial, and Manufacturing Engineering Oregon State University Corvallis, OR, USA melissa.santala@oregonstate.edu

Andreas Scholl

Advanced Light Source Lawrence Berkeley National Laboratory Berkeley, CA, USA *a_scholl@lbl.gov*

Andreas Schönle

Abberior Instruments GmbH Göttingen, Germany a.schoenle@abberior-instruments.com

David J. Smith

Dept. of Physics Arizona State University Tempe, AZ, USA david.smith@asu.edu

John C. H. Spence

Dept. of Physics Arizona State University Tempe, AZ, USA spence@asu.edu

Peter O. Sprau

Dept. of Physics University of California, San Diego La Jolla, CA, USA psprau@physics.ucsd.edu

Dimitar Stamov

Bruker Nano GmbH Berlin, Germany dimitar.stamov@bruker.com

Stuart R. Stock

Northwestern University Chicago, IL, USA s-stock@northwestern.edu

Peter Sutter

Dept. of Electrical & Computer Engineering University of Nebraska-Lincoln Lincoln, NE, USA psutter@unl.edu

Osamu Terasaki

Centre for High-resolution Electron Microscopy, School of Physical Science and Technology ShanghaiTech University Shanghai, China osamuterasaki@mac.com

Bradley Thiel

College of Nanoscale Engineering and Technology Innovation SUNY Polytechnic Institute Albany, NY, USA bthiel@sunypoly.edu

Rudolf Tromp

IBM T.J. Watson Research Center Yorktown Heights, NY, USA rtromp@us.ibm.com

Sandra Van Aert

Electron Microscopy for Materials Research (EMAT) University of Antwerp Antwerp, Belgium sandra.vanaert@uantwerpen.be

Giuseppe Vicidomini

Dept. of Nanoscopy Italian Institute of Technology Genoa, Italy giuseppe.vicidomini@iit.it

Tony Warwick

Advanced Light Source Lawrence Berkeley National Laboratory Berkeley, CA, USA warwick@Ibl.gov

Han Wen

National Heart, Lung and Blood Institute National Institutes of Health Bethesda, MD, USA han.wen@nih.gov

Yihan Zhu

College of Chemical Engineering Zhejiang University of Technology Hangzhou, China yihanzhu@zjut.edu.cn

Jian-Min Zuo

Dept. of Materials Science & Engineering and Materials Research Laboratory University of Illinois at Urbana-Champaign Urbana, IL, USA *jianzuo@illinois.edu*

Contents

List of Abbreviations	XXVII
-----------------------	--------------

Part A Electron and Ion Microscopy

1	Atom	ic Resolution Transmission Electron Microscopy	
	Angus	s I. Kirkland, Shery LY. Chang, John L. Hutchison	3
	1.1	Introduction and Historical Context	3
	1.2	Essential Theory	7
	1.3	Instrumentation	20
	1.4	Exit-Wave Reconstruction	30
	1.5	HRTEM Image Simulation	34
	Refere	ences	38
2	Scani	ning Transmission Electron Microscopy	
	Peter	D. Nellist	49
	2.1	Overview	50
	2.2	The STEM Probe	52
	2.3	Coherent CBED and Ronchigrams	55
	2.4	Bright-Field Imaging and Reciprocity	59
	2.5	Annular Dark-Field (ADF) Imaging	61
	2.6	Electron Energy-Loss Spectroscopy (EELS)	77
	2.7	X-Ray Analysis and Other Detected Signals in the STEM	83
	2.8	Electron Optics and Column Design	84
	2.9	Electron Sources	85
	2.10	Resolution Limits and Aberration Correction	88
	2.11	Conclusions	92
	Refere	ences	93
3	In Sit	u Transmission Electron Microscopy	
	Franc	es M. Ross, Andrew M. Minor	101
	3.1	A Working Definition of In Situ Transmission Electron Microscopy	102
	3.2	Phase Transformations	103
	3.3	Surface Reactions, Catalysis, and Crystal Growth	116
	3.4	Functional Materials and Devices	130
	3.5	Mechanical Deformation of Materials	146
	3.6	Liquid-Phase Processes	160
	3.7	Electron-Beam-Induced Processes	165
	3.8	Outlook	171
	Refere	ences	173
4	Cryo-	Electron Tomography	
	Jürgel	n Plitzko, Wolfgang P. Baumeister	189
	4.1	A Short Overview	192
	4.2	Cryo-Electron Tomography: The Workflow	195
	4.3	Technical Details of the Cryo-ET Workflow	199
	4.4	Perspectives and Outlook	217
	Refere	ences	218

5	Scan	ning Electron Microscopy	220
		Conventional Scanning Electron Microscopy	229
	5.1	Conventional Scatting Election Microscopy	251
	5.2	Commission Scalining Election Microscopy	213
	5.3	Scanning Electron Microscopy at Elevated Pressure	293
	5.4	Microanalysis in Scanning Electron Microscopy	298
	5.5	Crystal Structure Analysis	
		by Electron Backscatter Diffraction	302
	Refer	ences	305
6	Varia	ble Pressure Scanning Electron Microscopy	24.0
	Braal		319
	6.1	Variable-Pressure Vacuum Systems	321
	6.2	Electron–Gas Interactions	322
	6.3	Imaging Considerations in a Low-Vacuum Environment	325
	6.4	Working with Hydrated Specimens	339
	6.5	Microanalysis in the VPSEM	342
	6.6	Summary	344
	Refer	ences	344
7	Analy	/tical Electron Microscopy	
	Gianl	uigi Botton, Sagar Prabhudev	345
	7.1	Overview	346
	7.2	Instrumentation	352
	7.3	Fundamentals	374
	7.4	Quantification	386
	7.5	Resolution in Microanalysis	396
	7.6	Elemental Mapping	403
	7.7	Detection Limits in Microanalysis	415
	7.8	Energy-Loss Fine Structures	421
	7.9	Atomic-Scale Spectroscopy	433
	7.10	Signal Processing with Advanced Statistical Methods	440
	7.11	Advanced STEM Detectors	442
	Refer	ences	444
0	High	-Speed Electron Microscony	
0	Gooff	roy H. Campholl, Joseph T. McKoown, Molissa K. Santala	455
	0 1	Technologies of High-Speed Electron Microscony	455
	0.1	limitations	450
	0.2	Applications of High Speed Electron Microscopy	402
	8.5	Applications of High-speed Election Microscopy	470
	8.4	OUTIOOK	4/6
	8.5	Conclusions	4/8
	Refer	ences	478
9	LEEM	, SPLEEM and SPELEEM	
	Ernst	Bauer	487
	9.1	Electron Beam–Specimen Interactions	488
	9.2	Instrumentation	492
	9.3	Electron Optics	497
	9.4	Contrast	500
	9.5	Applications	504

	9.6	Spin-Polarized LEEM (SPLEEM)	512
	9.7	SPELEEM	516
	Refere	ences	523
10	Photo	pemission Electron Microscopy	
	Jun Fe	eng, Andreas Scholl	537
	10.1	A Brief History of PEEM	537
	10.2	X-Ray PEEM	538
	10.3	Uncorrected PEEM Microscopes	541
	10.4	Aberration-Corrected PEEM Microscopes	545
	10.5	Spectromicroscopy: Electronic Structure, Chemistry,	
		and Magnetism	550
	10.6	Time-Resolved Microscopy	556
	10.7	Conclusion	559
	Refere	ences	559
11	Snect	roscony with the Low Energy Electron Microscone	
**	Rudol	f Tromp	565
	11.1	Aspects of the LEEM Instrument	568
	11.2	LEEM-IV	576
	11.3	ARPES and ARRES	581
	11.4	Potentiometry	586
	11.5	SPA-LEED	590
	11.6	LEEM-EELS	593
	11.7	Radiation Effects with LEEM	595
	11.8	Electron-Volt Transmission Electron Microscopy	
		in the LEEM Instrument	598
	11.9	Conclusion	600
	Refere	ences	601
12	Mode	I-Based Electron Microscopy	
	Sandr	a Van Aert	605
	12.1	Model-Based Parameter Estimation	606
	12.2	Experiment Design	608
	12.3	Quantitative Atomic Column Position Measurements	612
	12.4	Quantitative Composition Analysis	614
	12.5	Atom Counting	616
	12.6	Atomic Resolution in Three Dimensions	619
	12.7	Conclusions	620

References		621
12.7	Conclusions	620
12.6	Atomic Resolution in Three Dimensions	619

13 Aberration Correctors, Monochromators, Spectrometers

Peter W. Hawkes, Ondrej L. Krivanek	625
13.1 Types of Aberrations	626
13.2 Aberration Correction	633
13.3 Practical Aspects of Corrector Operation	652
13.4 Concluding Remarks	659
13.A Appendix: Power Series Expansions of Electrostatic Potential	
and Vector Potential	661
References	663

14 Ion Microscopy

6	Gregor	Hlawacek	677
1	4.1	Fundamentals of Beam Formation	678
1	.4.2	Signals	684
1	.4.3	Imaging	689
1	4.4	Analytical Approaches to Reveal Composition	
		and Other Material Parameters	699
1	4.5	Conclusion	708
R	Referei	nces	708
15 A	tom-	Probe Tomography	
T	homa	s F. Kelly	715
1	.5.1	The History of APT	715
1	5.2	Fundamentals of APT	724
1	5.3	Limitations and Strengths of APT	735
1	5.4	Specimen Preparation	739
1	5.5	Applications	743

15.7 Conclusions

References

758 758

Part B Holography, Ptychography and Diffraction

16 Electron Holography

67
67
72
74
91
00
02
05
06

17 Ptychography

John Rodenburg, Andrew Maiden		
17.1	Nomenclature	822
17.2	A Brief History of Ptychography	823
17.3	How Ptychography Solves the Phase Problem	825
17.4	Sampling and Removal of Artifacts in Images	833
17.5	Experimental Configurations	844
17.6	Volumetric Imaging	861
17.7	Spectroscopic Imaging	867
17.8	Mixed-State Decomposition and Handling Partial Coherence	868
17.9	Theory of Iterative Methods	
	for the Ptychographic Inverse Problem	874
17.10	Wigner Distribution Deconvolution (WDD) and Its Approximations .	884
17.11	Conclusions	899
Refere	nces	900

18 Electi	ron Nanodiffraction	
Jian-I	Min Zuo	905
18.1	Electron Diffraction Techniques	906
18.2	Electron Probes	919
18.3	Energy Filtering	924
18.4	Diffraction Analysis	926
18.5	Conclusions	963
Refere	ences	964
19 High	-Energy Time-Resolved Electron Diffraction	
Pietro	Musumeci, Renkai Li	971
19.1	Ultrafast Electron Diffraction	971
19.2	High-Energy Time-Resolved Electron Diffraction Instrumentation.	979
19.3	Applications	993
19.4	Future Developments and Outlook	996
Refere	ences	1001
	stive Imaging of Cingle Particles	
	Clive imaging of Single Particles	1000
		1009
20.1	History	1010
20.2	ine Projection Approximation, Multiple Scattering, Objects,	1012
20.2	and Images	1012
20.3	The HIU Algorithm and its variants, Uniqueness,	1015
20.4		1015
20.4	Experimental Results	1019
20.5	Iterated Projections	1025
20.6	Coherence Requirements for CDI Resolution	1026
20.7	Single-Particle Image Reconstruction from XFEL Data	1027
20.8	Summary	1032
Refere	ances	1032

Part C Photon-based Microscopy

Part	. Photon-Dased Microscopy	
21 Flu	orescence Microscopy	
Alb	erto Diaspro, Paolo Bianchini, Francesca Cella Zanacchi, Luca	
Lar	zanò, Giuseppe Vicidomini, Michele Oneto, Luca Pesce, Isotta Cainero.	1039
21.	1 Brief Chronological Notes	1040
21.	2 Basic Principles on Confocal and Two-Photon Excitation	
	of Fluorescent Molecules	1041
21.	3 Fluorescent Molecules Under the TPE Regime	1048
21.	4 Optical Consequences of TPE	1049
21.	5 The Optical Setup	1050
21.	6 Comparison of Confocal and Two-Photon Excitation Microscopy	1053
21.	7 Super-Resolved Imaging of Biological Systems	1055
21.	8 Conclusions	1074
Ref	erences	1075

22	Fluor	escence Microscopy with Nanometer Resolution	
	Steffer	n J. Sahl, Andreas Schönle, Stefan W. Hell	1089
	22.1	The Resolution Limit	1090
	22.2	Improvement in Axial Resolution by Aperture Enlargement:	
		4Pi Microscopy and Related Approaches	1093
	22.3	Breaking the Diffraction Barrier: STED Microscopy	
		and the RESOLFT Concept	1102
	22.4	Coordinate-Stochastic State Transfer at the Single-Molecule	
		Level: PALM, STORM, PAINT, and Related Approaches	1120
	22.5	Imaging Capabilities for a New Age of Nanobiology	1123
	22.6	Nanoscopy at the MINimum: Molecular Resolution with MINFLUX	1127
	Refere	nces	1134
	7	Disto V. Day Microscomy	
23	Chris I	-Plate X-Ray Microscopy	11/5
		Packground	1145
	23.1	Freepol Zono Diatos	1151
	23.2		1162
	23.5	Applications	1102
	23.4		1101
	25.5 Doford		1101
	Refere	nices	1191
24	Micro	computed Tomography	
	Angel	a S.P. Lin, Stuart R. Stock, Robert E. Guldberg	1205
	24.1	X-Ray CT	1206
	24.2	MicroCT System Components	1210
	24.3	Data Acquisition and Image Processing	1214
	24.4	Quantitative Analyses and Advanced Post-Processing Methods	1224
	24.5	Other Variants and Recent Developments	1226
	24.6	Summary	1232
	Refere	nces	1232

Part D Applied Microscopy

25 Scanning Probe Microscopy in Materials Science	
Bryan D. Huey, Justin Luria, Dawn A. Bonnell	1239
25.1 Imaging at Atomic Resolution with Force Interactions	1240
25.2 Imaging Properties: Advanced SPM Techniques	1246
25.3 Future Trends	1262
25.4 Conclusion	1267
References	1267
26 Electron Tomography in Materials Science	
26 Electron Tomography in Materials Science Rowan K. Leary, Paul A. Midgley	1279
 26 Electron Tomography in Materials Science Rowan K. Leary, Paul A. Midgley. 26.1 Foundations of Tomography. 	1279 1280
 26 Electron Tomography in Materials Science Rowan K. Leary, Paul A. Midgley	1279 1280 1284
 26 Electron Tomography in Materials Science Rowan K. Leary, Paul A. Midgley	1279 1280 1284 1287
 26 Electron Tomography in Materials Science Rowan K. Leary, Paul A. Midgley	1279 1280 1284 1287 1300

	26.6	Segmentation, Visualization, and Quantitative Analysis	1317
	26.7	Conclusions	1321
	Refere	nces	1321
77	Scann	ing Tunnoling Microscopy in Surface Science	
21	Peter S	Suffer	1331
	27.1	Basic Principles of STM Imaging	1332
	27.2	Tunneling Spectroscopy	1339
	27.3	STM at High and Low Temperatures	1349
	27.4	Heterostructures and Buried Interfaces: Ballistic Electron	
		Emission Microscopy.	
		Ouantum Size Effects, and Cross-Sectional STM	1355
	27.5	STM Image Simulation	1361
	Refere	nces	1363
28	Visual	Izing Electronic Quantum Matter	
	Kazun	iro Fujita, Monammaa H. Hamialan, Peter U. Sprau, Stephen ing J.C. Séamus Davis	1260
	D. EUK	Electrons in Crystals	1270
	20.1	Electrons in Crystals	1271
	20.2	Electrons in Crystals: Wookly to Strongly Interacting Discos	1271
	20.5	Spectroscopic Imaging Scapping Tuppeling Microscopy	1373
	20.4	Cooper-Dair Condensate Visualization	1376
	20.5	Visualizing Effects of Individual Impurity Atoms	1310
	20.0	and Dopant Atoms	1377
	28.7	Quasinarticle Interference Imaging	1379
	20.1	Momentum-Space Imaging of Energy Gans	1313
	20.0	of Ordered Phases: Superconductivity	1381
	28.9	Real-Space Imaging of Energy Gaps of Ordered Phases	1383
	28.10	Visualizing Electronic Symmetry Breaking	1385
	28.11	Visualizing New Phases of Strong-Correlation Electronic Matter	1386
	Refere	nces	1388
29	Micros	scopy of Nanoporous Crystals	
	Yanha	ng Ma, Lu Han, Zheng Liu, Alvaro Mayoral, Isabel Diaz, Peter	
	Sakam	kov, Telsu Onsuna, Tu Han, Ming Pan, Tinan Znu, Tasunno Joto, Shungi Cho, Osamu Torasaki	1201
	20 1	Classification of Nanonorous Crystals	1202
	29.1	History of Transmission Electron Microscopy (TEM) Study	1392
	29.2	of Nanonorous Materials	1393
	20.3	Comparison with X-Ray Diffraction	1394
	29.5 29.4	Crystal and Crystal Structure Factors	1396
	29.5	Accidental Extinction	1396
	29.6	Double Refraction	1399
	29.7	New Prohlems Give Exciting Challenges	1400
	29.8	Recent Technical Developments Important	2.00
		for the Structural Study of Nanoporous Crystals	1401
	29.9	Structural Characterization and Solutions	1406
	29.10	Conclusions	1441
	Refere	nces	1441

30 Biomedical X-Ray Phase-Contrast Imaging and Tomography	
Han Wen	1451
30.1 Overview	1451
30.2 In-Line Phase-Contrast or Free-Space Propagation-Based Me	thod 1453
30.3 Wavefront Tagging	1455
30.4 Wavefront Tagging with Grating Interferometry	1456
30.5 Diffraction-Enhanced Imaging with Monolithic Crystal	
Collimator and Analyzer	1460
30.6 Split-Beam Interferometry	1461
30.7 Conclusion	1463
References	1463
31 Atomic Force Microscopy in the Life Sciences	
Matthias W. Amrein, Dimitar Stamov	1469
31.1 Instrumentation and Imaging	1472
31.2 Sample Preparation	1486
31.3 Imaging and Locally Probing Macromolecular and Cellular	
Samples: Examples	1491
31.4 Outlook and Perspective	1499
References	1499
32 Microscopy in Forensic Sciences	
Benjamin J. Jones	1507
32.1 Enhancing Forensic Science	1507
32.2 Trace Evidence at the Crime Scene	1508
32.3 Gunshot Residue (GSR)	1509
32.4 Glass and Paint	1512
32.5 Other Trace Evidence Types	1513
32.6 Fingerprints	1514
32.7 Conclusions	1520
References	1520
Subject Index	1525

List of Abbreviations

1-D	one-dimensional	BF	bright-field
2-D	two-dimensional	BIV	best imaging voltage
2PE	two-photon excitation	BOPI	Bogoliubov quasiparticle interference
3-D	three-dimensional	BS	backscatter spectrometry
3-D-EBSD	three-dimensional electron backscattered	BSE	backscattered electron
3-D-XRDM	diffraction three-dimensional x-ray diffraction	С	
2 D 4 D	microscopy		
3-DAP	three-dimensional atom probe	CAD	computer aided design
3M	multimessenger microscopy	CAST	Centre for Applied Science and
4-D	four-dimensional		Technology
5-D	five-dimensional	CBED	convergent-beam electron diffraction
6-D	six-dimensional	CC	charge collection
_		CCD	charge-coupled device
Α		cCDI	conventional coherent diffractive
ABF	annular bright-field	сср	cubic close-packed
ACF	absorption correction factor	CDI	coherent diffractive imaging
ADC	analog-to-digital-converter	CDW	charge density wave
ADF	annular dark-field	CE	collection efficiency
ADT	automated diffraction tomography	CEC	constant energy contours
AE	Auger electron	CF	charge-flipping
AEEM	Auger electron emission microscopy	CFEG	cold field emission gun
AEES	Auger electron emission spectroscopy	CFM	chemical force microscopy
AEM	analytical electron microscopy	CFT	forward cylindrical FT
AFT	analytical electron tomography	CITS	current imaging tunneling spectroscopy
AFAM	atomic force acoustic microscopy	CI	cathodoluminescence
ΔFM	atomic force microscopy	CLEM	correlative light and electron microscony
AIR	algebraic iterative reconstruction		confectative light and electron microscopy
	Advanced Light Source	CLS	constant meen curvature
ALS	amplitude modulation	CMOS	complementary metal evide
ADEIM	amplitude modulation	CIVIOS	complementary metal-oxide
	atom probe tomography	CNT	serbon panotuba
ADDES	angle resolved photoemission	COE	carbon nanotube
AKEES	angle-resolved photoennission	CDF	covalent organic framework
ADDEC	specific received reflected electron	CPD	critical point drying
AKKES		CPU	charged particle optics
A DT	spectroscopy	CRB	Cramer-Rao bound
	angle reconstruction technique	CKLB	Cramer–Rao lower bound
AKAPS	angle-resolved x-ray photoennission	cryo-EM	cryo-electron microscopy
ASEM	stmospheric scanning electron	cryo-EI	cryo-electron tomography
ASEM	microscope	cryo-FI M	correlative fluorescence microscopy
ASR	averaged successive reflection	CS	compressed sensing
AU	Airy unit	CSEM	conventional high-vacuum scanning
AWG	arbitrary waveform generation	COLM	electron microscopy
		CSE	crystal structure factor
P		CT	computed tomography
D		CTAFM	computed tomography AFM
BART	binary algebraic reconstruction	CTEM	conventional transmission electron
	technique		microscope
bcc	body-centered cubic	CTF	coherent transfer function
BCS	Bardeen–Coopper–Schrieffer	CVD	chemical vapor deposition
BEEM	ballistic electron emission microscopy	CW	continuous wave

CW-STED	continuous wave-stimulated emission depletion	EFTEM	energy-filtered transmission electron microscopy
CXDI	coherent x-ray diffractive imaging	EFTEM-SI ELNES	energy-filtered TEM spectrum imaging energy-loss near-edge structure
D		EM	electron microscopy
		EMC	expectation maximization and
DAC	digital to analog conversion		compression
DAM	drive amplitude modulation	EMCCD	electron multiplying charge coupled
DART	discrete algebraic reconstruction	EMED	device
	technique	EMFP	elastic mean free path
DAXM	differential-aperture x-ray microscopy	EMPAD	electron microscope pixel array delector
DCT	diffraction contrast tomography	EOM	electro-optic modulator
DDC	direct detection camera	edie Die	extended ptychographical iterative
DDEC	direct-detection electron-counting	er ill	engine
DF	dark-field	FOM	electronic quantum matter
DFT	density functional theory	ESD	electron-stimulated desorption
DIC	differential interference contrast	eSE	electron-induced secondary electron
DIRECTT	direct iterative reconstruction of	ESEM	environmental scanning electron
	computed tomography trajectories		microscope
DLA		ESI	electron spectroscopic imaging
DLS	Dariaguin Landau Varruau Ovarhaalt	ESM	electrochemical strain microscopy
DLVO	Dzuglashingkii Mariya interaction	EST	equally sloped tomography
DIVII	density of states	ET	electron tomography
DDS	diffraction pattern	ETD	Everhart-Thornley detector
dna	displacements per atom	ETEM	environmental transmission electron
DPC	defocusing phase contrast		microscope
DPN	din pen nanolithography	EUV	extreme ultra-violet
DOF	detective quantum efficiency	eV-TEM	electron-volt TEM
DREEM	double reflection electron emission	EXAFS	extended x-ray absorption fine structure
DICE	microscope	EXELFS	extended energy-loss fine structure
dSTORM	direct stochastic optical reconstruction	EXM	expansion microscopy
	microscopy	-	
DTEM	dynamic transmission electron	<u> </u>	
	microscopy	FC	flux aloguro
DWNT	double walled nanotube	FC	fluorescence correlation spectroscopy
DWT	discrete wavelet transform	FD	Fourier diffractogram
		FF	finite element
E		FEBID	focused electron-beam-induced
			deposition
EBIC	electron beam-induced current	FEG	field emission gun
EBIV	electron beam-induced voltage	FEL	free-electron laser
EBSD	electron backscatter diffraction	FEM	field electron microscopy
EC	electron crystallography	FESEM	field emission scanning electron
ECoPoSAP	energy-compensated position-sensitive		microscope
ECD	atom probe	FET	field-effect transistor
ECP	electron channeling pattern	FFM	friction force microscopy
ED	electron diffraction	FFP	front-focal plane
EDS	energy-dispersive spectroscopy	FFT	fast Fourier transform
EDI	electron diffraction tomography	FIB	focused ion beam
EDA	energy dispersive x ray spectroscory	FIM	neid ion microscopy
EDAS	electron energy loss	FIIC	nuorescenne isotniocyanate
EEL FELM	electron energy loss microscopy	FLICS	nuorescence infetime correlation
	electron energy loss spectroscopy	ELM	spectroscopy fluorescopeo light microscopy
EELS FF	energy filtering	гLM FM	frequency modulation
FFM	electrostatic force microscopy	FMT	fluorescence molecular tomography
L/1 1V1	chechostatic force interoscopy	1 1/1 1	nuorescence morecular tomography

FMTI	ferromagnetic topological insulator
FOM	figures of merit
FOV	field of view
FP	Fourier ptychography
FPALM	fluorescence photoactivation localization
fps	frames per second
FRAP	fluorescence recovery after
	photobleaching
FRC	Fourier-ring-correlation
FRET	fluorescence resonance energy transfer
FRM	fast rotation matching
FT	Fourier transform
FTIR	Fourier transform infrared
	microspectroscopy
FWHM	full width at half maximum
FWTM	full width at tenth maximum

G

gCW-STED	gated continuous wave-stimulated
	emission depletion
GED	gas-phase electron diffraction
GENFIRE	generalized Fourier iterative
	reconstruction
GFIS	gas field ion source
GFP	green fluorescent protein
GIS	gas injection system
GOF	goodness of fit
GOS	generalized oscillator strength
GPILRUFT	global ptychographic iterative linear
	retrieval using Fourier transforms
GPT	general particle tracer
GS	Gerchberg-Saxton algorithm
GSD	ground state depletion
GSDIM	ground state depletion followed by
	individual molecule return
GSED	gaseous secondary electron detector

Η

	high angle annular dort fold	LEAD
ПААДГ	nign-angle annular dark-neid	LEAP
hcp	hexagonal close-packed	LEED
HIM	helium ion microscopy	LEELM
HOLZ	high-order Laue zone	LEEM
HPI	hexagonally packed intermediate	LFL
HPR	hybrid projection reflection	LIQUIT
HREM	high-resolution electron microscopy	LMAIS
HRSEM	high-resolution scanning electron	LMIS
	microscopy	LO
HRTEM	high-resolution transmission electron	LPS
	microscopy	LSC
HS	Hartree–Slater	LSI
HV	high vacuum	LSM
		LV
		LVFESE
IAP	imaging atom probe	LVSEM
IBA	ion beam analysis	

IBF IBSC IC ICA ICL	incoherent bright-field ion beam slope cutting intermittent contact independent component analysis integration classification likelihood
ICP-MS	criterion inductively coupled plasma mass
IDC IETS	spectroscopy indirect detection camera inelastic electron tunneling spectroscopy
IL IMFP	inelastic mean free path
IML-SPIM	individual molecule localization selective plane illumination microscopy
IOM	inverted optical microscope
IR	infrared
IS	image scanning
1SE	ion-induced secondary electron
ISEED	ion-induced secondary electron energy
iSFY	induced secondary electron yield
ITA	iterative transformation algorithms
K	
KCBED	kinematic convergent beam blank disk
KE	kinetic emission
KFM	Kelvin probe force microscopy
KKA	Kramers-Kronig analysis
KRIPES	k-resolved inverse photoelectron
	emission spectroscopy
	low-angle annular dark-field
LAADF LACBED	low-angle annular dark-field large-angle convergent-beam electron diffraction
LAADF LACBED LARBED	low-angle annular dark-field large-angle convergent-beam electron diffraction large-angle rocking-beam electron diffraction
LAADF LACBED LARBED LCTEM	low-angle annular dark-field large-angle convergent-beam electron diffraction large-angle rocking-beam electron diffraction liquid cell transmission electron microscopy
LAADF LACBED LARBED LCTEM LEAP	low-angle annular dark-field large-angle convergent-beam electron diffraction large-angle rocking-beam electron diffraction liquid cell transmission electron microscopy local-electrode atom probe
LAADF LACBED LARBED LCTEM LEAP LEED	low-angle annular dark-field large-angle convergent-beam electron diffraction large-angle rocking-beam electron diffraction liquid cell transmission electron microscopy local-electrode atom probe low-energy electron diffraction
LAADF LACBED LARBED LCTEM LEAP LEED LEELM	low-angle annular dark-field large-angle convergent-beam electron diffraction large-angle rocking-beam electron diffraction liquid cell transmission electron microscopy local-electrode atom probe low-energy electron diffraction low-electron energy loss microscopy
LAADF LACBED LARBED LCTEM LEAP LEED LEELM LEEM	low-angle annular dark-field large-angle convergent-beam electron diffraction large-angle rocking-beam electron diffraction liquid cell transmission electron microscopy local-electrode atom probe low-energy electron diffraction low-electron energy loss microscopy low-energy electron microscopy
LAADF LACBED LARBED LCTEM LEAP LEED LEELM LEEM LFL	low-angle annular dark-field large-angle convergent-beam electron diffraction large-angle rocking-beam electron diffraction liquid cell transmission electron microscopy local-electrode atom probe low-energy electron diffraction low-electron energy loss microscopy low-energy electron microscopy low-energy electron microscopy
LAADF LACBED LARBED LCTEM LEAP LEED LEELM LEEM LFL LIQUITOPY	low-angle annular dark-field large-angle convergent-beam electron diffraction large-angle rocking-beam electron diffraction liquid cell transmission electron microscopy local-electrode atom probe low-energy electron diffraction low-electron energy loss microscopy low-energy electron microscopy low-energy electron microscopy Landau–Fermi liquid liquid tunable microscopy
LAADF LACBED LARBED LCTEM LEAP LEED LEELM LEEM LFL LIQUITOPY LMAIS	low-angle annular dark-field large-angle convergent-beam electron diffraction large-angle rocking-beam electron diffraction liquid cell transmission electron microscopy local-electrode atom probe low-energy electron diffraction low-electron energy loss microscopy low-energy electron microscopy low-energy electron microscopy Landau–Fermi liquid liquid tunable microscopy liquid metal alloy ion source
LAADF LACBED LARBED LCTEM LEAP LEED LEELM LEEM LFL LIQUITOPY LMAIS LMIS LO	low-angle annular dark-field large-angle convergent-beam electron diffraction large-angle rocking-beam electron diffraction liquid cell transmission electron microscopy local-electrode atom probe low-energy electron diffraction low-electron energy loss microscopy low-energy electron microscopy Landau–Fermi liquid liquid tunable microscopy liquid metal alloy ion source liquid metal ion source
LAADF LACBED LARBED LCTEM LEAP LEED LEELM LEEM LFL LIQUITOPY LMAIS LMIS LO LPS	low-angle annular dark-field large-angle convergent-beam electron diffraction large-angle rocking-beam electron diffraction liquid cell transmission electron microscopy local-electrode atom probe low-energy electron diffraction low-electron energy loss microscopy low-energy electron microscopy Landau–Fermi liquid liquid tunable microscopy liquid metal alloy ion source liquid metal alloy ion source liquid metal ion source longitudinal optical longitudinal phase space
LAADF LACBED LARBED LCTEM LEAP LEED LEELM LEEM LFL LIQUITOPY LMAIS LMIS LO LPS LSC	low-angle annular dark-field large-angle convergent-beam electron diffraction large-angle rocking-beam electron diffraction liquid cell transmission electron microscopy local-electrode atom probe low-energy electron diffraction low-electron energy loss microscopy low-energy electron microscopy Landau–Fermi liquid liquid tunable microscopy liquid metal alloy ion source liquid metal ion source longitudinal phase space longitudinal phase space
LAADF LACBED LARBED LCTEM LEAP LEED LEELM LEEM LFL LIQUITOPY LMAIS LMIS LO LPS LSC LSI	low-angle annular dark-field large-angle convergent-beam electron diffraction large-angle rocking-beam electron diffraction liquid cell transmission electron microscopy local-electrode atom probe low-energy electron diffraction low-electron energy loss microscopy low-energy electron microscopy low-energy electron microscopy landau–Fermi liquid liquid tunable microscopy liquid metal alloy ion source liquid metal alloy ion source longitudinal optical longitudinal phase space longitudinal space charge linear space invariant
LAADF LACBED LARBED LCTEM LEAP LEED LEELM LEEM LFL LIQUITOPY LMAIS LMIS LO LPS LSC LSI LSI LSM	low-angle annular dark-field large-angle convergent-beam electron diffraction large-angle rocking-beam electron diffraction liquid cell transmission electron microscopy local-electrode atom probe low-energy electron diffraction low-electron energy loss microscopy low-energy electron microscopy low-energy electron microscopy laudau–Fermi liquid liquid tunable microscopy liquid metal alloy ion source liquid metal alloy ion source liquid metal ion source longitudinal optical longitudinal phase space longitudinal space charge linear space invariant laser scanning microscopy
LAADF LACBED LARBED LCTEM LEAP LEED LEELM LEEM LFL LIQUITOPY LMAIS LMIS LO LPS LSC LSI LSI LSM LV	low-angle annular dark-field large-angle convergent-beam electron diffraction large-angle rocking-beam electron diffraction liquid cell transmission electron microscopy local-electrode atom probe low-energy electron diffraction low-electron energy loss microscopy low-energy electron microscopy Landau–Fermi liquid liquid tunable microscopy liquid metal alloy ion source liquid metal alloy ion source liquid metal ion source longitudinal optical longitudinal phase space longitudinal space charge linear space invariant laser scanning microscopy low vacuum
LAADF LACBED LARBED LCTEM LEAP LEED LEELM LEEM LFL LIQUITOPY LMAIS LMIS LO LPS LSC LSI LSM LV LVFESEM	low-angle annular dark-field large-angle convergent-beam electron diffraction large-angle rocking-beam electron diffraction liquid cell transmission electron microscopy local-electrode atom probe low-energy electron diffraction low-electron energy loss microscopy low-energy electron microscopy Landau–Fermi liquid liquid tunable microscopy liquid metal alloy ion source liquid metal alloy ion source liquid metal ion source longitudinal optical longitudinal phase space longitudinal space charge linear space invariant laser scanning microscopy low-voltage field emission scanning
LAADF LACBED LARBED LCTEM LEAP LEED LEELM LFL LIQUITOPY LMAIS LMIS LO LPS LSC LSI LSM LV LVFESEM	low-angle annular dark-field large-angle convergent-beam electron diffraction large-angle rocking-beam electron diffraction liquid cell transmission electron microscopy local-electrode atom probe low-energy electron diffraction low-electron energy loss microscopy low-energy electron microscopy Landau–Fermi liquid liquid tunable microscopy liquid metal alloy ion source liquid metal alloy ion source liquid metal ion source longitudinal optical longitudinal phase space longitudinal space charge linear space invariant laser scanning microscopy low-voltage field emission scanning electron microscope

microscopy

M		0	
MAADF	medium-angle annular dark-field	OBD	optical beam deflection
MAL	maximum likelihood	OIM	orientation imaging microscopy
MALDI	matrix-assisted laser	OL	objective lens
	desorption/ionization	OTF	optical transfer function
MAPS	monolithic active pixel sensor		I
MDF	minimum detectable fraction	D	
MDFF	mixed dynamic form factor	_ r	
MDN	minimum detectable number	PACBED	position averaged CBED
MEM	mirror electron microscopy	PAD	pixel area detector
MEMS	microelectromechanical system	PAINT	points accumulation for imaging in
MFM	magnetic force microscopy		nanoscale topography
MFP	mean free path	PALM	photoactivated localization microscopy
microCT	microcomputed tomography	PALMIRA	PALM with independently running
MIEEM	metastable impact electron emission microscopy	DDG	acquisition
MIL	Materials of the Institute Lavoisier	PBS	polarization beam-splitter
MINFLUX	nanoscopy with minimal photon fluxes	PCA	principal component analysis
MIP	mean inner potential	PCAFM	photoconductive AFM
MMF	minimum mass fraction	PCD	projected charge density
MMM-4Pi	multifocal multiphoton microscopy 4Pi	PCF	phase-correlation function
MOF	metal organic framework	pCF	pair correlation function
MOGA	multi-objective genetic algorithm	PCI	phase contrast index function
MOS	metal oxide semiconductor	PCTF	phase contrast transfer function
MOSFET	metal-oxide-semiconductor field-effect	PDF	probability density function
	transistor	PDW	pair density wave
MOST	multiple off-state transitions	PE	potential emission
MOTIS	magneto-optical trap ion source	PED	precession electron diffraction
MPA	magnetic prism array	PEELS	parallel electron energy-loss spectrum
MPE	multiphoton excitation	PEEM	photoelectron emission microscopy
MRI	magnetic resonance imaging	PFI	polychromatic far-field interferometer
MRP	mass resolving power	PFM	piezoelectric force microscopy
MSA	multivariate statistical analysis	PG	point-group
MSI	multivariate statistical methods	PGA	phase grating approximation
MTE	mean transverse energy	PIE	ptychographical iterative engine
MTF	modulated transfer function	PINEM	photon-induced near-field electron microscopy
Ν		PL	photoluminescence
		PLA	pressure-limiting aperture
NA	numerical aperture	PLD	pulsed laser deposition
NAD	nonlinear anisotropic diffusion	PMQ	permanent magnet quadrupole
NAED	nanoarea electron diffraction	PMT	photomultiplier tube
NBD	nanobeam diffraction	POA	phase object approximation
NC-AFM	noncontact atomic force microscopy	POCS	projections onto convex set
NCC	normalized cross-correlation	PoSAP	position-sensitive atom probe
NEMS	nanoelectromechanical system	PPFFT	pseudopolar fast Fourier transform
NEXAFS	near-edge x-ray absorption fine structure	PR	piezoresponse
NFFT	nonequispaced fast Fourier	PSD	power-spectral-density
	transformation	PSE-CVD	pulsed-spray evaporation chemical vapor
NFMM	near-field microwave microscopy		deposition
NIM	nanoimpedance microscopy and	PSF	point spread function
	spectroscopy	PSM	presharpened microtip
NMR	nuclear magnetic resonance	PSRT	progressive stochastic reconstruction
NPC	nuclear pore complex	DUD	technique
NSOM/SNOM	near-neld scanning optical microscopy	PVD	physical vapor deposition
NTF	noise transfer function	PXRD	powder x-ray diffraction

Q		SHARP	scalable heterogeneous adaptive
0D	quantum dot	51	real-time ptychography
QD	qualitum doi	SI SI STM	spectrum image
QPI	quasiparticle scattering interference	51-51 M	specific scopic maging scanning
QSE	quantum size effect	SIM	scanning impedance microscopy
		SIMS	secondary ion mass spectroscopy
ĸ		SINIS	simultaneous iterative reconstruction
DAAD		SIRI	technique
RAAR	relaxed averaged alternating reflector	SITM	scanned Iosenhson tunneling
RBS	Rutherford backscattering spectrometry	551101	microscony
REAP	remote-electrode atom probe	SLEEM	scanning low-energy electron
KEM	reflection electron microscopy	SEELIN	microscopy
RESOLFI	reversible saturable optical nuorescence	SMACM	single-molecule active-control
DE	transition models fragmented		microscopy
КГ DI	radio frequency	SMART	spectromicroscope for all relevant
NI	rester imaging correlation spectroscopy		techniques
DIM	raflaction ion microscony	SMFS	single-molecule force spectroscopy
	reactive multilever foil	SMI	structure model index
DMS	root mean square	SMIM	scanning microwave impedance
ROI	region of interest		microscopy
RD-CVD	reduced pressure chemical vapor	SNDM	scanning nonlinear dielectric microscopy
KI-CVD	deposition	SNOM	scanning near-field optical microscope
RSEP	reversibly switchable fluorescent protein	SNR	signal-to-noise-ratio
RVM	ray_voxel interaction matrix	SP	single-particle
	Tuy voxer meraeton matrix	SPA-LEED	spot-profile analysis LEED
c		SPAD	single photon avalanche diode
2		SPELEEM	spectroscopic photoemission and
S A	selected area		low-energy electron microscopy
SAFD	selected area electron diffraction	SPEM	scanning photoemission microscope
SAP	scanning atom probe	SPIM	selective-plane-illumination microscopy
SAP	selected area ptychography	SPLEEM	spin-polarized low-energy electron
SART	simultaneous algebraic reconstruction		microscopy
5/11(1	technique	SPLIT	separation of photons by lifetime tuning
SAT	single atom tip	SPM	scanning probe microscopy
SAXS	small-angle x-ray scattering	spi-PALM	single-particle tracking-photoactivation
SBR	signal-to-background-ratio	CD CIM	super resolved structured illumination
SCBED	scanning convergent-beam electron	3K-3110	mieroscopy
	diffraction	SRIM	stopping and range of ions in matter
SCEM	scanning confocal electron microscopy	SRIM	spin_reorientation transition
SCFS	single-cell force spectroscopy	SIM	saturated structured-illumination
SCM	scanning capacitance microscopy	551141	microscopy
SDD	silicon drift detector	SSPM	scanning surface potential microscopy
SDM	spatial distribution map	SSRM	scanning spreading resistance
SE	secondary electron	Sortin	microscopy
SEC	Schottky emission cathode	STED	stimulated emission depletion
SECM	scanning electrochemical microscopy	STEM	scanning transmission electron
SED	scanning electron diffraction		microscopy
SEED	secondary electron energy distribution	STEM-SI	scanning transmission electron
SEEM	secondary electron emission microscopy		microscopy spectrum-imaging
SEM	scanning electron microscopy	stFCS	spatiotemporal fluorescence correlation
SEM-EDX	scanning electron microscopy with		spectroscopy
	energy dispersive x-ray spectroscopy	SThM	scanning thermal microscopy
SEND	scanning electron nanodiffraction	STIM	scanning transmission ion microscopy
SFIM	scanning field ion microscopy	STM	scanning tunneling microscopy
SFXM	scanning fluorescence x-ray microprobe	STORM	stochastic optical reconstruction
SG	space group		microscopy
SGM	scanning gate microscopy	STXM	scanning transmission x-ray microscopy

SW	single wavelength	VLVSEM	very low-voltage scanning electron
SWM	standing wave microscope		microscopy
SWNT	single-walled carbon nanotube	VOA	virtual objective aperture
		VP	variable pressure
Т		VPP	Volta phase plate
-		VPSE	variable pressure secondary electron
t-EBSD	transmission EBSD	VPSEM	variable pressure scanning electron
TAP	tomographic atom probe		microscopy
TCC	transmission cross coefficient		
tcp	tetrahedrally close-packed	W	
TDS	thermal diffuse scattering		
TEEM	thermionic emission electron	WAXS	wide-angle x-ray scattering
	microscopy	WBP	weighted back-projection
TEM	transmission electron microscopy	WD	working distance
TEY	total electron vield	WDD	Wigner distribution deconvolution
TFE	thermal field emitter	WDS	wavelength-dispersive spectrometer
TGA	thermogravimetric analysis	WDX	wavelength-dispersive x-ray
TI	topological insulators	WKB	Wentzel-Kramers-Brillouin
TIE	transport of intensity	WPOA	weak phase object approximation
TIRF	total internal reflection fluorescent	WSIRT	weighted-SIRT
TKD	transmission Kikuchi diffraction	WTF	wave transfer function
TO	transverse optical		
ToA	time-of-arrival	Х	
ToF	time-of-flight		
ToF-SIMS	time of flight secondary ion mass	X-PEEM	x-ray photoemission electron
101-511015	spectrometry		microscopy
TDE	two photon excitation	X-STM	cross-sectional scanning tunneling
TDMS	triply periodic minimal surface		microscopy
TP CED	time received and phase electron	XAFS	x-ray absorption fine structure
IK-GED	diffraction	XANES	x-ray absorption near-edge structure
TD NIM	torrignal recommon nemocratic	XAS	x-ray absorption spectroscopy
I K-INIIVI	impedence microscopy	XASPEEM	x-ray absorption PEEM
TTM	two temperature model	XCF	cross-correlation function
		XEDS	x-ray energy dispersive spectroscopy
		XFCT	x-ray fluorescence CT
IXM	transmission x-ray microscope	XFEL	x-ray free-electron laser
		XMCD	x-ray magnetic circular dichroism
U		XMCDPEEM	x-ray magnetic circular dichroism
			photoemission electron microscopy
UBMS	unbalanced magnetron sputtering	XMLDPEEM	x-ray magnetic linear dichroism
UED	ultrafast electron diffraction		photoemission electron microscopy
UEM	ultrafast electron microscopy	XPEEM	x-ray-induced photoemission electron
UFM	ultrasonic force microscopy		microscopy
UHV	ultrahigh vacuum	XPS	x-ray photoelectron spectroscopy
UHVTEM	ultrahigh vacuum transmission electron	XRD	x-ray diffraction
	microscope		5
ULV	ultralow vibration	V	
USAXS	ultrasmall angle x-ray scattering	-	
UTEM	ultrafast TEM	YAG	vttrium-aluminum-garnet
UTW	ultrathin window	YAP	vttrium-aluminum-perovskite
UV	ultraviolet	YSZ	vttria stabilised zirconia
UVPEEM	ultraviolet photoemission electron	102	julia subilisea Elicollia
e vi bbin	microscopy	7	
	erobeopj	<u> </u>	
V		ZIF	zeolitic imidazolate framework
V		Z11 ⁻ 71	zero-loss
VB	valence hand	ZL 7I P	zero-loss peak
VEP	visible fluorescent protein		zero order I que zono
VISI	very-large-scale integration	ZULZ 7DD	Zero-Oluei Laue Zolle Zernike phase plate
101	very-large-scale integration		Zernike phase plate