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Preface

In 1901, Karl Pearson [1] explained to the scientific community that the
problem of data approximation is (i) important and (ii) nice, and (iii) differs
from the regression problem. He demonstrated how to approximate data sets
with straight lines and planes. That is, he invented Principal Component
Analysis (PCA). Why and when do we need to solve the data approximation
problem instead of regression? Let us look at Pearson’s explanation:

“(1) In many physical, statistical, and biological investigations it
is desirable to represent a system of points in plane, three, or higher
dimensioned space by the “best-fitting” straight line or plane. Ana-
lytically this consists in taking

Yy =aog~+ax, or z=ag~+ ar1x + b1y,

or z=ag+a1r1 + asT2 +asrs+ ...+ anTy,

where y, x, 2, x1, 22, ... x, are variables, and determining the “best”
values for constants ag, ay, b1, ag, a1, as,...a, in relation to the
observed corresponding values of the variables. In nearly all the cases
dealt with in the text-books of least squares, the variables on the
right of our equations are treated as the independent, those on the
left as the dependent variables. The result of this treatment is that
we get one straight line or plane if we treat some one variable as
independent, and a quite different one if we treat another variable
as the independent variable. There is no paradox about this; it is, in
fact, an easily understood and most important feature of the theory
of a system of correlated variables. The most probable value of y for
a given value of z, say, is not given by the same relation as the most
probable value of = for the given value of y. Or, to take a concrete
example, the most probable stature of a man with a given length of
leg I being s, the most probable length of leg for a man with stature
s will not be [. The “best-fitting” lines and planes ... depend upon
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Fig. 1. Data approximation by a straight line. The famous illustration from
Pearson’s paper [1]

a determination of the means, standard-deviations, and correlation-
coefficients of the system. In such cases the values of the independent
variables are supposed to be accurately known, and the probable value
of the dependent variable is ascertained.

(2) In many cases of physics and biology, however, the “indepen-
dent” variable is subject to just as much deviation or error as the
“dependent” variable. We do not, for example, know = accurately and
then proceed to find y, but both z and y are found by experiment
or observation. We observe = and y and seek for a unique functional
relation between them. Men of given stature may have a variety of
leg-length; but a point at a given time will have one position only,
although our observation of both time and position may be in error,
and vary from experiment to experiment. In the case we are about to
deal with, we suppose the observed variables — all subject to error —
to be plotted in plane, three-dimensioned or higher space, and we en-
deavour to tale a line (or plane) which will be the “best fit” to such
system of points.

Of course the term “best fit” is really arbitrary; but a good fit
will clearly be obtained if we make the sum of the squares of the
perpendiculars from the system of points upon the line or plane a

minimum.
For example:—Let Py, Ps, ... P, be the system of points with co-
ordinates x1, y1; T2, Y2;... Tpn, Yn, and perpendicular distances pi,

Pa,...pp from a line AB. Then we shall make!

U = S(p*) = a minimum.”

1 S(p?) stands for Zipf; for details see Fig. 1
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This explanation sounds very modern: in “many cases of physics and biol-
ogy” there is significant noise in the “independent variables”, and it appears
better to approximate data points than the regression functions that trans-
form one set of data coordinates (the “independent variables”) into another.
“Of course the term “best fit” is really arbitrary”, but the least squares ap-
proach remains the method of choice, if there exist no strong arguments for
another choice of metrics. This method was applied to many problems, has
been transformed and rediscovered several times, and is now known under
several names: mostly as PCA or as proper orthogonal decomposition. But
the main idea remains the same: we approximate the data set by a point
(this is the mean point), then by a line (first principal component), then by a
plane, etc.

What was invented in the data approximation during the century? First
of all, the approximation by linear manifolds (lines, planes, ...) was supple-
mented by a rich choice of the approximate objects. The important discovery
is the approximation of a data set by a smaller finite set of “centroids”. In
the least squares approach to the best fit this gives the famous K-means algo-
rithm [2]. Usually, this method is discussed as a clustering algorithm, but its
application field is much wider. It is useful for adaptive coding and data bin-
ning, and is a model reduction method, as well as the PCA: the PCA allows us
to substitute a high-dimensional vector by its projection on a best fitted low-
dimensional linear manifold, the K-means approach gives an approximation
of a big data set by K best fitted centroids.

Between the “most rigid” linear manifolds and “most soft” unstructured
finite sets there is the whole universe of approximants. If we change the
PCA linear manifolds to algebraic curves and manifolds, then a branch of
the algebraic statistics appears. This field is still relatively new (less than ten
years old) [3]. Algebraic curves and manifolds are much more flexible than
linear ones, but remain rigid in the following sense: it is impossible to change
the algebraic manifold locally, only near a point. Differential manifolds give
more freedom, but require specific efforts for regularization.

A step from absolute flexibility of finite sets gives the Self-Organizing Map
(SOM) approach [4]. SOM can be formalized either as a manifold learner which
represents the manifold as a discretized grid, or a K-means-like clustering
algorithm which adds a topology to the cluster centroids. Although SOM
has been slowly replaced by theoretically better founded and better behaving
algorithms, its simplicity and computational efficiency makes it one of the
most popular data analysis techniques even today. An important improvement
of SOM came with the introduction of the Generative Topographic Mapping
(GTM) [6], establishing a probabilistic framework and a well-defined objective
function. The generative probabilistic model has also become an analytical
tool to formalize the faithfulness-conciseness trade-off.

Another big shift of the century is the appearance of the whole framework
of machine learning which significantly extends Pearson’s initial “geometrical”
approach. It is a common practice in general discussions on machine learning
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Fig. 2. An ill-defined unsupervised learning problem. Which curve describes the
data better, (a) a short curve that is “far” from the data, or (b) a long curve that
follows the data closely?

to use the dichotomy of supervised and unsupervised learning to categorize
learning methods. Supervised learning algorithms assume that a training set
of (input, output) observations is given (e.g., digitized images of characters
and their class labels). The goal is then to learn a function that predicts the
output for previously unseen input patterns. This is a very far generaliza-
tion of Pearson’s linear regression onto various types of inputs, outputs, and
functions.

In unsupervised learning, we only have a set of (input) observations with-
out a desired target, and the goal is to find an efficient representation of
the data (for example by reducing the number of attributes or grouping the
data into a small number of clusters), or to characterize the data-generating
process.

From a conceptual point of view, unsupervised learning is substantially
more difficult than supervised learning. Whereas in supervised learning the
cost of mis-predicting the output provides a well-defined criteria to optimize,
in unsupervised learning we often face a trade-off of representing the data as
faithfully as possible while being as concise as possible (Fig.2). In a certain
sense, an unsupervised learner can be considered as a supervised learner where
the target is the input itself. In other words, the task is to find a function as
close to the identity function as possible. Of course, without restricting the
set of admissible predictors this is a trivial problem. These restrictions origi-
nate from the other objective of unsupervised learning of finding a mapping
which is simple in a certain sense. The trade-off between these two competing
objectives depends on the particular problem.

Manifold learning is a sub-domain of unsupervised learning where the goal
is to project the input data into a new space which is simpler in a certain sense
than the input space, or in which the data distribution is more regular than
originally.

Two distinct groups of methods exist for this purpose that differ in their
way of representing the manifold. Thus, Non-linear PCA (NLPCA) extends
PCA by replacing the linear encoder and decoder by non-linear functions
(for example, feed-forward neural networks [7]), and optimizing them in an
auto-encoding setup. The embedded manifold appears only implicitly as the
decoded image of the input space, and the geometric notion of projection does
not apply.
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Principal curves and manifolds [8], on the other hand, extend the geometric
interpretation of PCA by explicitly constructing an embedded manifold, and
by encoding using standard geometric projection onto the manifold. How to
define the “simplicity” of the manifold is problem-dependent, however, it is
commonly measured by the intrinsic dimensionality and/or the smoothness
of the manifold.

Clustering, another important sub-domain of unsupervised learning, can
also be formalized in this framework: the clustering “manifold” is a finite
partitioning of the input space, in the simplest case represented as a finite set
of singular centroid points. Obviously, in this case simplicity can be measured
neither by smoothness nor dimensionality, nevertheless, manifold learning and
clustering methodologies are intimately connected both in their theoretical
underpinning and on a technical-algorithmic level.

Most of the modern manifold learners find their theoretical and algorith-
mic roots in one of three basic and well-known data analysis techniques: PCA,
K-means, and Multidimensional Scaling (MDS) [5] also known as Torgerson
or Torgerson-Gower scaling. Thus, the basic loop of K-means that alternates
between a projection and an optimization step became the algorithmic skele-
ton of many non-linear manifold learning algorithms. The SOM algorithm is
arguably the torch holder of this batch of nonlinear manifold learners.

The objective of original MDS is somewhat different: find a linear projec-
tion that preserves pairwise distances as well as possible. The method does not
explicitly construct an embedded manifold, but it has the important role of be-
ing the algorithmic forefather of “one-shot” (non-iterative) manifold learners.
The most recent representatives of this approach are Local Linear Embed-
ding (LLE) [9] and ISOMAP [10]. Both methods find their origins in MDS
in the sense that their goal is to preserve pairwise relationships between data
points. LLE conserves local linear patterns whereas ISOMAP applies MDS
using the geodesic (manifold) distance approximated by the shortest path on
the neighborhood graph (the graph constructed by connecting nearby points).
Since the birth of these two methods, several neighborhood-graph-based tech-
niques have emerged, stimulating the development of a common theory around
Laplacian eigenmaps and spectral clustering and embedding.

Despite the significant progress made in the last decade, the manifold
learning problem is far from being solved. The main drawback of iterative
methods is that they are sensitive to initialization, and they can be stuck
easily in suboptimal local minima, especially if the manifold is “loopy” or
has a complicated topology. Neighborhood-graph-based “one-shot” techniques
behave much better in this respect, their disadvantages are computational
inefficiency (the complexity of the construction of the neighborhood graph by
itself is quadratic in the number of data points) and increased sensitivity to
noise around the manifold. One of today’s challenges in manifold learning is
to find techniques that combine the advantages of these often incompatible
approaches. Another exciting area is non-local manifold learning [11], which
abandons two of the implicit premises of manifold learning: that manifolds are
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smooth (locally linear) and that we have enough observations in every neigh-
borhood to locally estimate the manifold. A third, very recent but promising,
new domain is building deep networks (multiply nested functions) using an
unsupervised paradigm (building all the layers except for the last using, for
example, an autoassociative objective function [12]). These new areas share
the ambitious goal of embedding manifold learning into artificial intelligence
in a broad sense.

This book is a collection of reviews and original papers presented partially
at the workshop “Principal manifolds for data cartography and dimension re-
duction” (Leicester, August 24-26, 2006). The problems of Large Data Sets
analysis and visualisation, model reduction and the struggle with complex-
ity of data sets are important for many areas of human activity. There exist
many scientific and engineering communities that attack these problems from
their own sides, and now special efforts are needed to organize communication
between these groups, to support exchange of ideas and technology transfer
among them. Heuristic algorithms and seminal ideas come from all application
fields and from mathematics also, and mathematics has a special responsibility
to find a solid basis for heuristics, to transform ideas into exact knowledge,
and to transfer the resulting ideal technology to all the participants of the
struggle with complexity. The workshop was focused on modern theory and
methodology of geometric data analysis and model reduction. Mathemati-
cians, engineers, software developers and advanced users from different areas
of applications attended this workshop.

The first chapter of the book presents a general review of existing NLPCA
algorithms (U. Kruger, J. Zhang, and L. Xie). Next, M. Scholz, M. Fraunholz,
and J. Selbig focus attention on autoassociative neural network approach for
NLPCA with applications to metabolite data analysis and gene expression
analysis. H. Yin provides an overview on the SOM in the context of manifold
learning. Its variant, the visualisation induced SOM (ViSOM) proposed for
preserving local metric on the map, is introduced and reviewed for data visual-
isation. The relationships among the SOM, ViSOM, multidimensional scaling,
and principal curves are analysed and discussed. A. Gorban and A. Zinovyev
developed a general geometric framework for constructing “principal objects”
of various dimensions and topologies with the simple quadratic form of the
smoothness penalty. The approach was proposed in the middle of 1990s. It is
based on mechanical analogy between principal manifolds and elastic mem-
branes and plates.

M. Pena, W. Barbakh, and C. Fyfe present a family of topology preserv-
ing mappings similar to SOM and GTM. These techniques can be considered
as a non-linear projection from input or data space to the output or latent
space. B. Mirkin develops the iterative extraction approach to clustering and
describes additive models for clustering entity-to-feature and similarity. This
approach emerged within the PCA framework by extending the bilinear Sin-
gular Value Decomposition model to that of clustering.
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In their contribution, J. Einbeck, L. Evers, and C. Bailer-Jones give a
short review of localized versions of PCA, focusing on local principal curves
and local partitioning algorithms. These methods can work with branched and
disconnected principal components. S. Girard and S. Iovleff introduce auto-
associative models, a new tool for building NLPCA methods, and compare it
to other modern methods. A. Gorban, N. Sumner, and A. Zinovyev propose
new type of low-dimensional “principal object”: principal cubic complex, the
product of one-dimensional branching principal components. This complex is
a generalization of linear and non-linear principal manifolds and includes them
as a particular case. To construct such an object, they combine the method
of topological grammars with the minimization of elastic energy defined for its
embedding into multidimensional data space.

B. Nadler, S. Lafon, R. Coifman, and I. G. Kevrekidis provide a diffusion
based probabilistic analysis of embedding and clustering algorithms that use
the normalized graph Laplacian. They define a random walk on the graph
of points and a diffusion distance between any two points. The characteristic
relaxation times and processes of the random walk on the graph govern the
properties of spectral clustering and spectral embedding algorithms. Specifi-
cally, for spectral clustering to succeed, a necessary condition is that the mean
exit times from each cluster need to be significantly larger than the largest
(slowest) of all relaxation times inside all of the individual clusters. Diffusion
metrics is studied also by S. Damelin in the context of the optimal discretiza-
tion problem. He shows that a general notion of extremal energy defines a
diffusion metric on X which is equivalent to a discrepancy on X. The dif-
fusion metric is used to learn X via normalized graph Laplacian dimension
reduction and the discepancy is used to discretize X.

Modern biological applications inspire development of new approaches to
data approximation. In many chapters biological applications play central role.
For the comparison of various algorithms, several test datasets were selected
and presented to the workshop participants. These datasets contain results of
a high-throughput experimental technology application in molecular biology
(microarray data). Principal component analysis and principal manifolds are
useful methods for analysis of this kind of data, where the “curse of dimension-
ality” is an important issue. Because of it some variant of dimension reduction
is absolutely required, for example, for regularization of classification problems
that simply can not be solved otherwise. An interesting and underexplored
question is: can non-linear principal manifolds serve better for this purpose
as compared to the linear PCA or feature preselection?

M. Journée, A. E. Teschendorff, P.-A. Absil, S. Tavaré, and R. Sepulchre
present an overview of the most popular algorithms to perform ICA.
These algorithms are then applied on a microarray breast-cancer data set.
D. Elizondo, B. N. Passow, R. Birkenhead, and A. Huemer present a compar-
ison study of the performance of the linear principal component analysis and
the non linear local tangent space alignment principal manifold methods to
the problem of dimensionality reduction of microarray data.
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The volume ends with a tutorial “PCA and K-Means decipher genome”.
This exercise on principal component analysis and K-Means clustering can
be used for courses of statistical methods and bioinformatics. By means of
PCA students “discover” that the information in the genome is encoded by
non-overlapping triplets. Next, they learn to find gene positions. In Appendix
the MatLab program listings are presented.

The methods of data approximation, data visualization and model reduc-
tion developed during last century form an important part of the modern
intellectual technology of data analysis and modeling. In this book we present
some slices of this interdisciplinary technology and aim at eliminating some
of the traditional language barriers that, unnecessarily sometimes, impede
scientific cooperation and interaction of researchers across disciplines.
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Summary. Although linear principal component analysis (PCA) originates from
the work of Sylvester [67] and Pearson [51], the development of nonlinear coun-
terparts has only received attention from the 1980s. Work on nonlinear PCA, or
NLPCA, can be divided into the utilization of autoassociative neural networks,
principal curves and manifolds, kernel approaches or the combination of these
approaches. This article reviews existing algorithmic work, shows how a given
data set can be examined to determine whether a conceptually more demanding
NLPCA model is required and lists developments of NLPCA algorithms. Finally,
the paper outlines problem areas and challenges that require future work to mature
the NLPCA research field.

1.1 Introduction

PCA is a data analysis technique that relies on a simple transformation of
recorded observation, stored in a vector z € RYM, to produce statistically
independent score variables, stored in t € R", n < N:

t=P7z. (1.1)

Here, P is a transformation matrix, constructed from orthonormal column
vectors. Since the first applications of PCA [21], this technique has found
its way into a wide range of different application areas, for example signal
processing [75], factor analysis [29,44], system identification [77], chemomet-
rics [20,66] and more recently, general data mining [11,58,70] including image
processing [17,72] and pattern recognition [10,47], as well as process moni-
toring and quality control [1,82] including multiway [48], multiblock [52] and
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multiscale [3] extensions. This success is mainly related to the ability of PCA
to describe significant information/variation within the recorded data typ-
ically by the first few score variables, which simplifies data analysis tasks
accordingly.

Sylvester [67] formulated the idea behind PCA, in his work the removal of
redundancy in bilinear quantics, that are polynomial expressions where the
sum of the exponents are of an order greater than 2, and Pearson [51] laid
the conceptual basis for PCA by defining lines and planes in a multivariable
space that present the closest fit to a given set of points. Hotelling [28] then re-
fined this formulation to that used today. Numerically, PCA is closely related
to an eigenvector-eigenvalue decomposition of a data covariance, or correla-
tion matrix and numerical algorithms to obtain this decomposition include
the iterative NIPALS algorithm [78], which was defined similarly by Fisher
and MacKenzie earlier in [80], and the singular value decomposition. Good
overviews concerning PCA are given in Mardia et al. [45], Joliffe [32], Wold
et al. [80] and Jackson [30].

The aim of this article is to review and examine nonlinear extensions of
PCA that have been proposed over the past two decades. This is an impor-
tant research field, as the application of linear PCA to nonlinear data may
be inadequate [49]. The first attempts to present nonlinear PCA extensions
include a generalization, utilizing a nonmetric scaling, that produces a non-
linear optimization problem [42] and constructing a curves through a given
cloud of points, referred to as principal curves [25]. Inspired by the fact that
the reconstruction of the original variables, z is given by:

demapping

Zz=Pt=P (P2, (1.2)
W._/
mapping

that includes the determination of the score variables (mapping stage) and the
determination of z (demapping stage), Kramer [37] proposed an autoassocia-
tive neural network (ANN) structure that defines the mapping and demapping
stages by neural network layers. Tan and Mavrovouniotis [68] pointed out,
however, that the 5 layers network topology of autoassociative neural net-
works may be difficult to train, i.e. network weights are difficult to determine
if the number of layers increases [27].

To reduce the network complexity, Tan and Mavrovouniotis proposed an
input training (IT) network topology, which omits the mapping layer. Thus,
only a 3 layer network remains, where the reduced set of nonlinear principal
components are obtained as part of the training procedure for establishing
the IT network. Dong and McAvoy [16] introduced an alternative approach
that divides the 5 layer autoassociative network topology into two 3 layer
topologies, which, in turn, represent the nonlinear mapping and demapping
functions. The output of the first network, that is the mapping layer, are
the score variables which are determined using the principal curve approach.
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The second layer then represents the demapping function for which the score
variables are the inputs and the original variables are the outputs. Jia et al. [31]
presented a critical review of the techniques in references [16,68] and argued
that the incorporation of a principal curve algorithm into a neural network
structure [16] may only cover a limited class of nonlinear functions. Hence, the
IT network topology [68] may provide a more effective nonlinear compression
than the technique by Dong and McAvoy [16]. In addition, Jia et al. [31]
further refined the IT concept by introducing a linear compression using PCA
first, which is followed by the application of the IT algorithm using the scaled
linear principal components.

More recently, Kernel PCA (KPCA) has been proposed by Scholkopf
[56,57]. KPCA first maps the original variable set z onto a high-dimensional
feature space using the mapping function ®(z). Then, KPCA performs a con-
ventional linear principal component analysis on ®(z). The KPCA approach
takes advantage of the fact that the mapping function z — ®(z) does not need
to be known a priori. Furthermore, this mapping function can be approxi-
mated using Kernel functions in a similar fashion to a radial basis function
neural network. In fact, the identification of a KPCA model utilizes scalar
products of the observations, which are then nonlinearly transformed using
Kernel functions. This presents a considerable advantage over neural network
approaches since no nonlinear optimization procedure needs to be considered.
Resulting from this conceptual simplicity and computational efficiency, KPCA
has recently found its way into a wide range of applications, most notably in
the areas of face recognition [36], image de-noising [40] and industrial process
fault detection [12,81].

This article is divided into the following sections. A brief review of PCA
including its most important properties is given next, prior to the introduc-
tion of a nonlinearity test. Section 4 then details nonlinear extensions of PCA.
Section 5 then critically evaluates existing work on NLPCA in terms of com-
putational demand in computing a model as well as generalization issues and
provides a roadmap for future research work.

1.2 PCA Preliminaries

PCA analyses a data matrix Z € RE*" that possesses the following structure:

211 221 213 215 ot ZIN
221 222 223 225 ottt 22N
231 232 233 °t R35 -t Z3N
Zil Zi2 23t %yt &N
ZK—-1,1 RK—-1,2 RK—1,3 """ 2K—1,j """ 2K—1,N
L *K1 ZK2 ZK3 *** ZKj *'* ZKN |
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where N and K are the number of recorded variables and the number of
available observations, respectively. Defining the rows and columns of Z by
vectors z; € RY and ¢; € RX respectively, Z can be rewritten as shown

below:
T oA

Z= T :[C1C2C3"'C<j"'CN]' (1-4)

T
Zx_1
L Zk

The first and second order statistics of the original set variables z”7 =

(2’1 22 23t Zj ot ZN> are:
E{z}=0 E{zz"} =Sz (1.5)

with the correlation matrix of z being defined as Ry .
The PCA analysis entails the determination of a set of score variables
ty, k € { 123.---n }, n < N, by applying a linear transformation of z:

N
t = Zpkaj (1.6)
j=1

under the following constraint for the parameter vector

Pi = (Pr1 Pr2 PR3~ Drj =+ DN )

N
> pdi=lprl2=1. (1.7)
=1

Storing the score variables in a vector t7 = (t1 totzg -t 1tp ), t € R” has
the following first and second order statistics:

E{t}=0 E{tt"} =A, (1.8)

where A is a diagonal matrix. An important property of PCA is that the
variance of the score variables represent the following maximum:

Ap = arg max {E {ti}} = arg max {E {pgzszk}} , (1.9)
Pk Pk
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that is constraint by:

E ts [t 3 =0 [pel2—1=0. (1.10)

tr—1

Anderson [2] indicated that the formulation of the above constrained opti-
mization can alternatively be written as:

Ap = arg max {E {pTzsz} — Ak (pr — 1)} (1.11)
P

under the assumption that Ay is predetermined. Reformulating (1.11) to de-
termine pj gives rise to:

0
pr = arg o {E {pTzsz} — Xk (pr — 1)} =0 (1.12)

and produces
pPr = arg {E {zzT} p— 2)\kp} =0. (1.13)

Incorporating (1.5) allows constructing an analytical solution of this con-
strained optimization problem:

[Szz —MIlpr =0, (1.14)

which implies that the kth largest eigenvalue of S is the variance of the
kth score variable and the parameter vector px, associated with g, stores the
kth set of coefficients to obtain the kth linear transformation of the original
variable set z to produce ;. Furthermore, given that Sz~ is a positive definite
or semidefinite matrix it follows that the eigenvalues are positive and real and
the eigenvectors are mutually orthonormal. The solution of Equation (1.14)
also implies that the score variables are statistically independent, as defined
in (1.10), which follows from:

~ 1 aps amn 1 -~ ~ 1 -~ -
Sy;=—Z7Z"Z2=PAPT — — PT7Z2T72P=—"—_TT'T=A.
S "] K—1 K—1

Here, the index © represents estimates of the covariance matrix, its eigen-
vectors and eigenvalues and the score matrix using the reference data stored
in Z. A solution of Equations (1.9) and (1.10) can be obtained using a singular
value decomposition of the data covariance matrix S 7z or the iterative Power
method [22].
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1.3 Nonlinearity Test for PCA Models

This section discusses how to determine whether the underlying structure
within the recorded data is linear or nonlinear. Kruger et al. [38] introduced
this nonlinearity test using the principle outlined in Fig.1.1. The left plot in
this figure shows that the first principal component describes the underlying
linear relationship between the two variables, z; and 25, while the right plot
describes some basic nonlinear function, indicated by the curve.

By dividing the operating region into several disjunct regions, where the
first region is centered around the origin of the coordinate system, a PCA
model can be obtained from the data of each of these disjunct regions. With
respect to Fig.1.1, this would produce a total of 3 PCA models for each
disjunct region in both cases, the linear (left plot) and the nonlinear case (right
plot). To determine whether a linear or nonlinear variable interrelationship
can be extracted from the data, the principle idea is to take advantage of the
residual variance in each of the regions. More precisely, accuracy bounds that
are based on the residual variance are obtained for one of the PCA models, for
example that of disjunct region I, and the residual variance of the remaining
PCA models (for disjunct regions II and IIT) are benchmarked against these
bounds. The test is completed if each of the PCA models has been used to
determine accuracy bounds which are then benchmarked against the residual
variance of the respective remaining PCA models.

The reason of using the residual variance instead of the variance of the
retained score variables is as follows. The residual variance is independent of
the region if the underlying interrelationship between the original variables
is linear, which the left plot in Fig.1.1 indicates. In contrast, observations
that have a larger distance from the origin of the coordinate system will,
by default, produce a larger projection distance from the origin, that is a
larger score value. In this respect, observations that are associated with an

V4
disjunct | AZ2

disjunct | Az )
region |

region Il |

I
T I

|
|
|
|
|
| |
T
|
|
|
|

XA
1
X \ I /J///k' o
)
disjunct disjunct l | disjunct disjunct | |
regionIll |~ regionl \ regionlll |~ regionl

Fig. 1.1. Principle of nonlinearity test
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adjunct region that are further outside will logically produce a larger variance
irrespective of whether the variable interrelationships are linear or nonlinear.

The detailed presentation of the nonlinearity test in the remainder of this
section is structured as follows. Next, the assumptions imposed on the non-
linearity test are shown, prior to a detailed discussion into the construction
of disjunct regions. Subsection 3.3 then shows how to obtain statistical con-
fidence limits for the nondiagonal elements of the correlation matrix. This
is followed by the definition of the accuracy bounds. Finally, a summary of
the nonlinearity test is presented and some example studies are presented to
demonstrate the working of this test.

1.3.1 Assumptions

The assumptions imposed on the nonlinearity test are summarized below [38].

1. The variables are mean-centered and scaled to unit variance with respect
to disjunct regions for which the accuracy bounds are to be determined.

2. Each disjunct region has the same number of observations.

3. A PCA model is determined for one region where the the accuracy bounds
describe the variation for the sum of the discarded eigenvalues in that
region.

4. PCA models are determined for the remaining disjunct regions.

5. The PCA models for each region include the same number of retained
principal components.

1.3.2 Disjunct Regions

Here, we investigate how to construct the disjunct regions and how many dis-
junct regions should be considered. In essence, dividing the operating range
into the disjunct regions can be carried out through prior knowledge of the
process or by directly analyzing the recorded data. Utilizing a prior: knowl-
edge into the construction of the disjunct regions, for example, entails the
incorporation of knowledge about distinct operating regions of the process.
A direct analysis, on the other hand, by applying scatter plots of the first
few retained principal components could reveal patterns that are indicative of
distinct operating conditions. Wold et al. [80], page 46, presented an example
of this based on a set of 20 “natural” amino acids.

If the above analysis does not yield any distinctive features, however, the
original operating region could be divided into two disjunct regions initially.
The nonlinearity test can then be applied to these two initial disjunct regions.
Then, the number of regions can be increased incrementally, followed by a
subsequent application of the test. It should be noted, however, that increasing
the number of disjunct regions is accompanied by a reduction in the number
of observations in each region. As outlined the next subsection, a sufficient
number of observations are required in order to prevent large Type I and II
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errors for testing the hypothesis of using a linear model against the alternative
hypothesis of rejecting that a linear model can be used.

Next, we discuss which of the disjunct regions should be used to estab-
lish the accuracy bounds. Intuitively, one could consider the most centered
region for this purpose or alternatively, a region that is at the margin of the
original operating region. More practically, the region at which the process is
known to operate most often could be selected. This, however, would require
a priori knowledge of the process. However, a simpler approach relies on the
incorporation of the cross-validation principle [64,65] to automate this selec-
tion. In relation to PCA, cross-validation has been proposed as a technique
to determine the number of retained principal components by Wold [79] and
Krzanowski [39].

Applied to the nonlinearity test, the cross-validation principle could be
applied in the following manner. First, select one disjunct region and compute
the accuracy bounds of that region. Then, benchmark the residual variance of
the remaining PCA models against this set of bounds. The test is completed
if accuracy bounds have been computed for each of the disjunct regions and
the residual variances of the PCA models of the respective remaining disjunct
regions have been benchmarked against these accuracy bounds. For example,
if 3 disjunct regions are established, the PCA model of the first region is used
to calculate accuracy bounds and the residual variances of the 3 PCA models
(one for each region) is benchmarked against this set of bounds. Then, the
PCA model for the second region is used to determine accuracy bounds and
again, the residual variances of the 3 PCA models are benchmarked against
the second set of bounds. Finally, accuracy bounds for the PCA model of
the 3rd region are constructed and each residual variance is compared to this
3rd set of bounds. It is important to note that the PCA models will vary
depending upon which region is currently used to compute accuracy bounds.
This is a result of the normalization procedure, since the mean and variance
of each variable may change from region to region.

1.3.3 Confidence Limits for Correlation Matrix

The data correlation matrix, which is symmetric and positive semidefinite, for
a given set of N variables has the following structure:

1 7rig MmN
ro1 1 - 1on
Rzz=| . . . . |- (1.16)
rN1 TN - 1

Given that the total number of disjunct regions is m the number of obser-
vations used to construct any correlation matrix is K = K /m, rounded to
the nearest integer. Furthermore, the correlation matrix for constructing the



