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Preface

This is the Proceedings of the Second International Summer School in High
Energy Physics, focusing on “Standard Model and Beyond”, we have held in
Mḡla, Turkey, on 25–30 September 2006.

The participants were mostly graduate and post-graduate students (about
50) working on the experimental and phenomenological problems. The stu-
dents were mostly Turkish, and there were some from Azerbaijan.

In addition to excellent tutorial lectures on the Standard Model and the
Grand Unification, there were exposures on the current developments on heavy
flavor physics, the physics at LHC, recent experimental data coming from
BABAR and BELLE, as well as neutrino oscillations data, which were pre-
sented by the senior spoke-persons of TEXONO Collaboration.

Encouraged by the success of this year’s event, as well as the preceding
one, we are planning to make this school an annual event, with substantial in-
ternational student participation, and with special focus to those from central
Asian countries.

We think we owe a lot to the venue where the event has been held. The spe-
cial location of the convention center where the event has been held, Gökova,
within half an hour driving distance from Ephesus and Milethos, has been
superbly praised by the international participants. These great heritages from
antique Ionia are the home of some of our founding fathers of western civi-
lization and science, from Thales to Heraklitos. There is another event which
already gained the status of a world event, namely the Gökova School on
Geometry and Topology which uses the same venue. This success story plays
a weighted role in our encouragement. This very special spot of the world des-
erves to be paid special tribute when it comes to looking for a special place
for intellectual gatherings in Europe.

Clearly it is not an easy matter to elevate such events into a world status,
like Erice, Les Houches, Cargese, etc. Continuity and publicity are two most
crucial factors among others. There is another factor, which is a prerequisite
of the first factor, namely the commitment of the sponsors.
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For domestic administrative publicity purpose, as well as for reference
purposes for graduate and post-graduate students, we have decided to publish
the proceedings in the book form. Another reason to publish the proceedings
in the book form is to draw the attention of the international peer community,
to this wonderful spot, one of the cradles of western civilizations. We are sure
that this particular volume will help us to achieve the goals we are aiming at
concerning the future faith of our conference.

The event was partially supported by funds from Turkish National Agen-
cies, Turkish Atomic Energy Authority (TAEK) and The Scientific and
Technical Research Council of Turkey (TÜBİTAK), which we thankfully ac-
knowledge. This proceeding could not have been published without the finan-
cial support of TAEK. We are very grateful to Okay Çakıroğlu, the President
of TAEK, for providing this support.

The Conference would not have been possible without the generous services
provided by the Muḡla University. We thank the Administration of the Uni-
versity as well as many volunteers from the Physics Department that helped
us to organize social events and the excursions to the antique cities of Ephesus
and Miletos.

We thank B. Ögel, the vice president of Middle East Technical University,
and the administration of the Physics Department for a wide spectrum of
support, from printing services to providing conference stationary.

We are most grateful to our speakers for their excellent talks and friendly
cooperation to prepare their manuscripts under a pressing schedule, and the
Springer Verlag publishers for their very positive, and cooperative approach.

We thank the members of organizing committee for their valuable contri-
butions in shaping the scientific program and various organizational services.
We also thank the young researchers who interactively contributed to the
running of discussion hours and tutorials. There are contributed talks which
we could not unfortunately include in these proceeding due to some internal
constraints; we acknowledge these sincerely. We further thank all participants
for their interest and commitment to the school.

We thank last but not the least, to our students, Ç Özkan, S. Sekmen and
H. Gamsızkan for their untiring assistances.

Ankara, T. Aliev, N.K. Pak,
May 2007 M. Serin
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Introduction to Chiral Perturbation Theory

Buḡra Borasoy

Helmholtz-Institut für Strahlen-und Kernphysik, Universität Bonn,
Nussallee 14-16, D-53115 Bonn, Germany borasoy@itkp.uni-bonn.de

A brief introduction to chiral perturbation theory, the effective field theory of
quantum chromodynamics at low energies, is given.

1 Introduction

The strong interactions are described by quantum chromodynamics (QCD),
a local non-abelian gauge theory. The QCD Lagrangian comprises quark and
gluon fields which carry color charges and interact with coupling strength g.
The renormalized coupling g depends on the momentum at which the measure-
ment is performed and decreases as the momentum scale Q is increased. This
behavior is referred to as running of the strong coupling constant αs(Q) =
g2(Q)/(4π). The coupling αs decreases for large momenta and the theory
becomes asymptotically free with quasi-free quarks and gluons [1].

In this regime of QCD perturbation theory in αs converges. For small
momenta, on the other hand, αs is large so that quarks and gluons arrange
themselves in strongly bound clusters to form hadrons, e.g., protons, neutrons,
pions, kaons, etc. In order to describe the physics of hadrons at low energies,
perturbation theory is not useful because αs is large. This is illustrated for
ππ scattering in Fig. 1 where both sample diagrams—along with infinitely
many other contributions—are equally important, although the right diagram
appears at a much higher order in the perturbative series in αs.

Alternative model-independent approaches are required in the non-pertur-
bative regime of QCD. These are provided either by QCD lattice simulations
which are a numerical solution to QCD or—at low energies—by chiral pertur-
bation theory, the effective field theory of QCD. In the first case the QCD path
integral in Euclidean space-time is evaluated numerically via Monte Carlo
sampling, see e.g. [2]. In the latter case, one makes use of the fact that at
low energies the relevant, effective degrees of freedom are hadrons rather than
quarks and gluons which are not observed as free particles.



2 B. Borasoy

Fig. 1. Two sample diagrams which contribute to ππ scattering. Solid and curly
lines denote quarks and gluons, respectively.

It is thus convenient to replace in the low-energy limit the QCD Lagrangian
by an effective Lagrangian which is formulated in terms of the effective deg-
rees of freedom, i.e. pions, kaons, eta, etc. The corresponding field theoretical
formalism is called chiral perturbation theory (ChPT) [3–5].

In these lectures a brief introduction to ChPT is presented emphasizing
some basic principles and a few simple applications. It is not intended to
provide a detailed review of ChPT, in particular we restrict ourselves to the
purely mesonic sector and do not consider baryons. For more comprehensive
reviews the reader is referred to [6].

This paper is organized as follows. In the next section some well-known
examples and basic principles of effective field theories in general are pre-
sented. Section 3 describes the construction principles for the chiral effective
Lagrangian. Higher orders and loops are discussed in Sec. 4.

2 Effective Field Theories

The basic idea of an effective field theory is to treat the active, light particles as
relevant degrees of freedom, while the heavy particles are frozen and reduced to
static sources. The dynamics are described by an effective Lagrangian which
is formulated in terms of the light particles and incorporates all important
symmetries and symmetry-breaking patterns of the underlying fundamental
theory.

2.1 Scattering of Light by Light in QED at Very Low Energies

The Lagrangian of quantum electrodynamics (QED) is given by

LQED = L0 + Lint (1)

with the free part

L0 = ψ̄ (i∂/ − m) ψ − 1
4
FµνFµν (2)

and the interaction piece
Lint = −eψ̄A/ψ . (3)



Introduction to Chiral Perturbation Theory 3

Fermion and photon fields are denoted by ψ and Aµ, respectively, Fµν =
∂µAν − ∂νAµ is the field strength tensor, and a gauge fixing term has been
omitted for brevity.

Consider light by light scattering at very low photon energies ω � m. In
this instance, electrons (and positrons) cannot be produced in the final state,
but contribute instead via virtual processes. The calculation of the lowest
order diagram which is given by a single electron loop, Fig. 2, is straightfor-
ward but cumbersome. However, at very low energies the amplitude for light
by light scattering is equally reproduced by the effective Lagrangian [7, 8]

Leff = −1
4
FµνFµν +

e4

1440π2m4

[
(FµνFµν)2 +

7
16

(FµνF̃µν)2
]

+ . . . (4)

which only contains the field strength tensor Fµν and its dual counterpart
F̃µν = εµνρσF ρσ as explicit degress of freedom. The ellipsis denotes corrections
to this Lagrangian involving more derivatives which arise from the energy
expansion of the original one-loop diagram in powers of ω/m. Moreover, the
coefficients of the operators in the effective Lagrangian receive corrections of
higher orders in e2 through multiloop diagrams.

It is instructive to illustrate the conversion to the effective field theory with
Feynman diagrams. By treating at very low photon energies the electrons as
heavy static sources the electron propagators of the electron loop in QED
“shrink” to a single point. This gives rise to 4-photon contact interactions
which correspond to the vertices of the effective Lagrangian, see Fig. 3.

A significant property is that the U(1) gauge symmetry of the underlying
QED Lagrangian is maintained by the effective Lagrangian, Eq. (4), since the
building blocks FµνFµν and FµνF̃µν are both gauge invariant. As we will see
below, invariance under the relevant symmetries is an important constraint in
constructing effective Lagrangians.

Fig. 2. Light by light scattering to lowest order. The wavy and solid lines denote
the photons and electrons, respectively.

→

Fig. 3. The one-loop diagram of QED is replaced in the effective theory by 4-photon
contact interactions.
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Fig. 4. At low energies the single W boson exchange reduces to a four-quark contact
interaction.

2.2 Weak Interactions at Very Low Energies

A second well-known example of an effective field theory is encountered in
weak interactions. Consider the amplitude for the flavor changing weak process
at lowest order from single W boson exchange

A =
(

ig√
2

)2

VusV
∗
ud

(
ūγµ 1−γ5

2 s
) (

d̄γν 1−γ5
2 u
)( −igµν

p2 − M2
W

)
, (5)

where Vij are elements of the Kobayashi-Maskawa mixing matrix and the
W propagator is given in Feynman gauge. In the limit of small momentum
transfer, p2 � M2

W , the W propagator can be expanded in p2/M2
W such that

the amplitude is approximated by the local interaction

A =
i

M2
W

(
ig√
2

)2

VusV
∗
ud

(
ūγµ 1−γ5

2 s
) (

d̄γµ
1−γ5

2 u
)

+ O
(

p2

M4
W

)
. (6)

Diagrammatically this approximation is illustrated in Fig. 4, where the contact
interaction arises from the effective Lagrangian

Leff = −2
√

2GF VusV
∗
ud

(
ūγµ 1−γ5

2 s
) (

d̄γµ
1−γ5

2 u
)

(7)

with the Fermi constant GF = g2/
(
4
√

2M2
W

)
.

2.3 Chiral Symmetry in QCD

As mentioned above, the relevant symmetries of the underlying theory must
also be maintained by the effective field theory. In this section, we will study
the (approximate) chiral symmetry of QCD. The QCD Lagrangian reads in
compact notation

LQCD = q̄ (iγµDµ − mq) q − 1
2
Trc (GµνGµν) , (8)

where qT = (u, d, s, c, b, t) comprises the six quark flavors, Dµ = ∂µ − igGµ

is the covariant derivative, Gµ the gluon fields, and Gµν = ∂µGν − ∂νGµ −
ig [Gµ, Gν ] the gluon field strength tensor. Trc denotes the trace in color space.
The Dirac field q is a 72-component object; each of the 6 quark flavors appears
in 3 different colors and has 4 spinor components.
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The quarks can be grouped into light and heavy flavors according to their
masses: the u, d, s quarks are substantially lighter than the c, b, t quarks [9].
Hence, the limit of massless light quarks, mu = md = ms = 0, the so-called
chiral limit, seems to be a reasonable approximation and can be improved by
treating the light quark masses as perturbations. The c, b, t quarks, on the
other hand, can be treated at low energies as infinitely heavy and the only
active degrees of freedom are those associated with the light u, d, s quarks.

It is straightforward to see that in the chiral limit the QCD Lagrangian
has an extra symmetry. In this limit, the relevant part of LQCD is (we use the
same notation for simplicity)

LQCD =
∑

q=u,d,s

q̄iγµDµq − 1
2
Trc(GµνGµν) . (9)

Here, q represents a one-flavor quark field. By introducing right- and left-
handed quark fields

qR/L =
1
2
(1 ± γ5) q (10)

one arrives at

LQCD =
∑

q=u,d,s

(q̄LiγµDµqL + q̄RiγµDµqR) − 1
2
Trc(GµνGµν) . (11)

Independent transformations of the right- and left-handed quark fields

qR → R qR , qL → LqL (12)

with R ∈ SU(3)R, L ∈ SU(3)L leave the massless QCD Lagrangian invariant.
This invariance is referred to as SU(3)L×SU(3)R chiral symmetry of massless
QCD. One observes that the gluon interactions do not change the helicity of
quarks but the quark mass term does.

Due to Noether’s theorem an immediate consequence of a continuous
symmetry of a Lagrangian is the existence of a conserved current Jµ with
∂µJµ = 0. The corresponding charge

Q(t) =
∫

d3x J0(t,x) (13)

is time-independent, i.e. dQ/dt = 0. Familiar examples are the invariance of
the Lagrangian with regard to translations in time and space and rotations
which imply, respectively, conservation of energy, momentum and angular
momentum. At the operator level, the conserved charges commute with the
Hamiltonian.

In the chiral limit of QCD the conserved currents of chiral symmetry are

La
µ =

∑
q=u,d,s

q̄Lγµ
λa

2
qL , Ra

µ =
∑

q=u,d,s

q̄Rγµ
λa

2
qR (14)
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with the Gell-Mann matrices λa. The invariant charges Qa
L, Qa

R generate the
algebra of SU(3)L and SU(3)R, respectively. It is useful to define the combi-
nations

Qa
V = Qa

R + Qa
L ; Qa

A = Qa
R − Qa

L (15)

which have a different behavior under parity

Qa
V → Qa

V ; Qa
A → −Qa

A . (16)

Consider an eigenstate |ψ〉 of HQCD (in the chiral limit)

HQCD|ψ〉 = E|ψ〉 . (17)

The states Qa
V |ψ〉 and Qa

A|ψ〉 have the same energy E but opposite parity.
Thus for each positive parity state there should be a negative parity state with
equal mass. This pattern is, however, not observed in the particle spectrum [9].
For example, the light pseudoscalar (JP = 0−) mesons, (π,K, η), have a consi-
derably lower mass than the scalar (JP = 0+) mesons.

The solution to this paradoxon is provided by the Nambu-Goldstone real-
ization of chiral symmetry [10] which asserts that the QCD vacuum, |0〉, is
not invariant under the action of the axial charges

Qa
V |0〉 = 0 Qa

A|0〉 �= 0 . (18)

The chiral SU(3)L×SU(3)R symmetry of the QCD Hamiltonian is said to be
spontaneously broken down to SU(3)V . Spontaneous breakdown of a symme-
try takes place if the full symmetry group of the Hamiltonian is not shared
by the vacuum.

Another example of spontaneous symmetry breakdown occurs in ferromag-
nets. For temperatures above the Curie temperature, T > Tc, the magnetic
dipoles are randomly oriented. As soon as the temperature falls below the
Curie temperature Tc spontaneous magnetization occurs and the dipoles are
aligned in some arbitrary direction. Spontaneous symmetry breakdown takes
also place for the SU(2)L×U(1) symmetry of the electroweak interactions.

In general, spontaneous breakdown of a continuous symmetry has imp-
ortant consequences. Goldstone’s theorem states that a spontaneously bro-
ken continuous symmetry implies massless spinless particles: the Goldstone
bosons. In the case of massless QCD, the eight axial charges Qa

A create states
|φ〉 = QA|0〉 which are energetically degenerate with the vacuum |0〉 since

H|φ〉 = HQA|0〉 = QAH|0〉 = 0 . (19)

This gives rise to eight massless pseudoscalar mesons. The axial charges Qa
A

acting on any particle state generate Goldstone bosons, e.g. an energy eigen-
state |ψ〉 is degenerate with the multi-particle state Qa

A|ψ〉 which resolves the
paradoxon from above.

The eight lightest hadrons are indeed the pseudoscalars π±,π0,K±,K0,K̄0,
η with masses mπ ≈ 138 MeV, mK ≈ 495 MeV and mη ≈ 547 MeV [9]. Since
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the nonzero masses of the light quarks break chiral symmetry explicitly the
Goldstone bosons are not exactly massless. However, the explicit breaking can
be considered to be small and treated perturbatively. In the limit of vanishing
quark masses, mu,md,ms → 0, the Goldstone boson masses approach zero,
mπ,mK ,mη → 0, while all other hadrons remain massive in the chiral limit
and are separated from the ground state roughly by a characteristic gap

∆ ∼ Mproton ∼ 1GeV . (20)

In the remainder of this section, it is demonstrated that only the sponta-
neous breakdown of a continuous symmetry gives rise to Goldstone bosons,
whereas in the case of a discrete symmetry Goldstone bosons are not generated.

Discrete symmetry case

Consider the Lagrangian density with a scalar field φ

L =
1
2
∂µφ∂µφ +

1
2
m2φ2 − 1

4
λφ4 . (21)

The Lagrangian is invariant under the discrete symmetry of reflections,
φ → −φ. The corresponding potential is given by

V (φ2) = −1
2
m2φ2 +

1
4
λφ4 , (22)

and since the energy must be bound from below the coupling λ is positive.
The coefficient m2, on the other hand, is not constrained. There are two
possible cases depending on the sign of m2 as illustrated in Fig. 5. For m2 < 0
there is a unique minimum at φ = 0, but for m2 > 0 the potential V (φ2) is
minimized by two possible ground state fields φ = ±

√
m2/λ. In the quantum

field theoretical language this implies that the field φ develops a vacuum
expectation value

〈0|φ|0〉 = ±
√

m2

λ
. (23)

Hence, there are two possible vacua but each vacuum is not invariant under
reflection symmetry, i.e. the theory is spontaneously broken. Massless Gold-
stone bosons, however, do not appear.

φ

V (φ2)

φ

V (φ2)

Fig. 5. Potential V (φ2), Eq. (22), for m2 < 0 (left) and m2 > 0 (right).
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Continuous symmetry case

Consider now the Lagrangian with two scalar fields σ and π

L =
1
2
(∂µσ)2 +

1
2
(∂µπ)2 − V (σ2 + π2) (24)

with V defined as in Eq. (22). It exhibits an O(2) symmetry; continuous
transformations of the type(

σ
π

)
→
(

cos α sin α
− sin α cos α

)(
σ
π

)
(25)

leave the Lagrangian invariant. The extrema of the corresponding potential
V are determined by the equations

dV

dσ
= σ[−m2 + λ(σ2 + π2)] = 0 ,

dV

dπ
= π[−m2 + λ(σ2 + π2)] = 0 . (26)

For m2 > 0 the minima are at σ2 + π2 = m2/λ and related to each other
through O(2) rotations. Any point on the circle of minima may be chosen to
be the true vacuum |0〉. One may take, e.g.,

〈0|σ|0〉 =

√
m2

λ
; 〈0|π|0〉 = 0 . (27)

Clearly, the O(2) symmetry of the Lagrangian is spontaneously broken by the
vacuum state. Small oscillations around this vacuum state can be described
by shifting the σ field

σ′ ≡ σ −
√

m2

λ
(28)

so that the Lagrangian reads in terms of the new fields (up to an irrelevant
constant)

L =
1
2

(∂µσ′)2 +
1
2

(∂µπ)2 − m2σ′2

−λ

√
m2

λ
σ′ (σ′2 + π2

)
− 1

4
λ
(
σ′2 + π2

)2
. (29)

With this choice of coordinates the mass term for the π field has disappeared
and the π becomes massless. The π field is then interpreted as a polar angle
oscillation around the vacuum which does not cost any energy. A Goldstone
boson has been created through spontaneous breakdown of the continuous
O(2) symmetry in the original Lagrangian.
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3 Construction of the Chiral Effective Lagrangian

In this section we outline the construction principles for the chiral effec-
tive Lagrangian. The chiral SU(3) Lagrangian is in general a function of the
Goldstone boson (GB) fields (π0, π±,K±,K0, K̄0, η). In order to construct the
effective Lagrangian, we must first know the interaction between the GBs.

To this aim, we recall from the previous section that the eight axial charges
Qa

A do not annihilate the vacuum, Qa
A|0〉 �= 0. The states Qa

A|0〉 �= 0 are associ-
ated with the GBs φa = (π,K, η). This implies non-vanishing matrix elements
of the axial vector current Aa

µ

〈0|Aa
µ(x)|φb(p)〉 = ie−ip·x pµ δab fa (30)

(no summation over a). The decay constant fa measures the strength with
which the Goldstone boson φa decays via the axial vector current Aa

µ into
the hadronic vacuum. The decay constants are extracted experimentally from
weak decays of the GBs, e.g., π+ → l+νl yields fπ = 92.4 MeV [11].

Taking the divergence of Eq. (30) leads to

〈0|∂µAa
µ(0)|φb(p)〉 = δabm2

afa . (31)

In the chiral limit, the axial vector current is conserved, ∂µAa
µ = 0, so that

m2
a = 0 as required by Goldstone’s theorem. In the real world, however, chiral

SU(3)L× SU(3)R symmetry is explicitly broken by the finite quark masses
mu,md,ms and the axial vector current is not conserved. One introduces the
GB field operators Φa with the normalization 〈0|Φa(0)|φb(p)〉 = δab. Eq. (31)
can then be rewritten as

〈0|∂µAa
µ(0)|φb(p)〉 = m2

afa〈0|Φa(0)|φb(p)〉 . (32)

At the operator level, this is the hypothesis of the partially conserved axial
vector current (PCAC)

∂µAa
µ = m2

afaΦa . (33)

The axial currents can thus be employed as interpolating fields for the
Goldstone bosons and identity (33) implies a vanishing interaction between
the GBs at zero momentum. Consider to this end, e.g., the matrix element
(suppressing flavor indices)

Mµ(p1, p2, p3) = 〈φ(p2)φ(p3)|Aµ(0)|φ(p1)〉 . (34)

The amplitude Mµ contains two parts: contributions with no GB poles and
contributions where the axial current generates a GB pole, see Fig. 6. In the
chiral limit, the matrix element has the decomposition

Mµ(p1, p2, p3) =
fqµ

q2
T (p1, p2, p3, q) + Rµ , (35)
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f

ff f f

f

Fig. 6. Contributions to Mµ in Eq. (34) with (left) and without (right) a GB pole.
The wavy and solid lines denote the axial vector current and the Goldstone bosons,
respectively.

where q = −p1 − p2 − p3, T is the GB-GB scattering matrix element, f
the decay constant in the chiral limit, and Rµ is non-singular as qµ → 0 by
definition. Contracting both sides with qµ yields

0 = qµMµ(p1, p2, p3) = fT (p1, p2, p3, q) + qµRµ . (36)

In the limit qµ → 0 one obtains

T (p1, p2, p3, q) = 0 . (37)

The GBs do not interact at vanishing momenta.
At low but finite energies, the interaction between GBs can be expanded

in powers of small momenta. Consider for example the GB-GB scattering
matrix T which can be written as a function of the three Mandelstam variables
s = (p1 + p2)2, t = (p1 + p3)2 and u = (p1 + q)2. Its low energy expansion
reads

T (s, t, u) = f1s + g1t + h1u + . . . (38)

with momentum-independent expansion coefficients fi, gi, hi. The chiral effec-
tive Lagrangian is also ordered according to the low energy expansion. Powers
of GB momenta in the amplitude correspond to powers of derivatives on GB
fields in the Lagrangian. The ordering of the effective Lagrangian in increasing
powers of derivatives is called chiral ordering or chiral power counting.

Next, we would like to investigate how GB fields are represented in the
chiral Lagrangian. To this aim, we shall study the transformation properties
of the GBs under chiral transformations.

Let G be the group of chiral SU(3)L× SU(3)R transformations. For a given
representation of G the GB fields transform according to

φ → φ′ = F (g, φ) , g ∈ G (39)

with the representation property

F (g1, F (g2, φ)) = F (g1g2, φ) . (40)

Consider group elements h ∈ G which leave the “origin”, i.e. the vacuum,
invariant, F (h, 0) = 0. Obviously, these elements form a subgroup H: for
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h1, h2 ∈ H it follows that h1h2 ∈ H. H is equivalent to the subgroup SU(3)V

which leaves the vacuum invariant.
The function

g → F (g, 0) = F (gh, 0) h ∈ H (41)

maps the coset space G/H onto the space of GB fields. This mapping is
invertible since F (g1, 0) = F (g2, 0) implies g−1

1 g2 ∈ H. As the dimension of
the coset space is equal to the number of Goldstone boson fields, the GBs can
be identified with elements of G/H. The Goldstone boson fields are said to
live on the coset space SU(3)L× SU(3)R/SU(3)V .

Any g ∈ G can be decomposed as g = qh with q ∈ G/H and h ∈ H. The
choice of representatives in the coset space G/H is arbitrary. Possible choices
are for example

g = (gL, gR) = (1, gRg−1
L )(gL, gL) ≡ qh (42)

or
g = (gL, gR) = (gLg−1

R , 1)(gR, gR) ≡ q′h′ . (43)

If we pick, e.g., the latter choice then the action of G on G/H is given by

(L,R)(gLg−1
R , 1) = (LgLg−1

R , R) = (LgLg−1
R R−1, 1)(R,R) . (44)

The Goldstone bosons are then summarized by the matrix-valued field
U = gLg−1

R which transforms under chiral transformations as

U(x) → U ′(x) = LU(x)R−1 = LU(x)R† (45)

for L/R ∈ SU(3)L/R. The exponential representation is convenient for U ∈
SU(3)

U = exp
(

i

f
φaλa

)
, (46)

where λa are the generators of SU(3)

φ = φaλa =
√

2

⎛⎜⎝
1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

⎞⎟⎠ . (47)

The chiral effective Lagrangian for QCD is written in terms of the GB
fields which are collected in the matrix-valued field U

Leff = Leff(U, ∂U, ∂2U, . . .) . (48)

The effective Lagrangian shares the same symmetries with QCD: C,P, T ,
Lorentz invariance and, in particular, chiral SU(3)L× SU(3)R symmetry. As
outlined above, the chiral Lagrangian is expanded in chiral powers which are



12 B. Borasoy

related (in the chiral limit) to the number of derivatives acting on the GB
fields. The chiral power counting of the Lagrangian reads

Leff = L(0)
eff + L(2)

eff + L(4)
eff + . . . . (49)

Only even chiral powers arise since the Lagrangian is a Lorentz scalar which
implies that tensor indices of derivatives appear in pairs. At each chiral or-
der the effective Lagrangian must be invariant under chiral SU(3)L× SU(3)R

transformations. At zeroth chiral order this invariance implies that L(0)
eff can

only be a function of UU† = 1. This amounts to an irrelevant constant in the
Lagrangian which can be dropped.

At second order, the chiral invariant terms with two derivatives are

L(2)
eff = c1〈∂µU†∂µU〉 + c2〈U†�U〉 , (50)

where 〈. . .〉 is the trace in flavor space. The second term can be reduced to the
first one by partial integration; only one term remains at second chiral order

L(2)
eff = c1〈∂µU†∂µU〉 . (51)

Since terms of zeroth chiral order have been dropped, the second chiral order
is effectively the leading order (LO). We note the appearance of a coupling
constant c1, a so-called low-energy constant (LEC). It is fixed by expanding
the matrix-valued field U in the GB fields φ

U = exp
(

i

f
φ

)
= 1 +

i

f
φ − 1

2f2
φ2 + O(φ3) (52)

and requiring the standard kinetic term

L(2)
eff =

1
2
∂µφa∂µφa + O(φ4) (53)

which yields c1 = f2/4.
Therefore, the effective Lagrangian at LO reads

L(2)
eff =

f2

4
〈∂µU†∂µU〉 . (54)

At leading chiral order there is only one LEC (in the chiral limit) and chiral
symmetry constrains all vertices with increasing number of GB fields in the
LO Lagrangian.

The interpretation of the LEC f can be directly inferred by considering
the Noether axial current of chiral symmetry for L(2)

eff

Aa
µ = i

f2

4
〈λa{∂µU,U†}〉 . (55)
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Upon comparison with the PCAC hypothesis

〈0|Aa
µ(0)|φb(p)〉 = ipµδabfa (56)

one confirms that f is the GB decay constant in the chiral limit.
As a first application we are now in a position to predict, e.g., ππ scattering

at leading chiral order. The scattering amplitude has the decomposition

M(πa(pa)πb(pb) → πc(pc)πd(pd))
= δabδcdA(s, t, u) + δacδbdA(t, s, u) + δadδbcA(u, t, s) , (57)

where a, b, c, d are flavor indices and s = (pa + pb)2, t = (pa − pc)2, u =
(pa − pd)2. Employing L(2)

eff one calculates

A(s, t, u) =
s

f2
. (58)

Up to now, we have worked in chiral limit mu,md,ms = 0 where chiral
symmetry is exact. In the real world the quark masses do not vanish and
introduce an explicit breaking of chiral symmetry in LQCD

LQCD = L0
QCD − q̄Mq = L0

QCD − q̄RMqL − q̄LMqR , (59)

where L0
QCD is the massless QCD Lagrangian and M = diag(mu,md,ms) the

light quark mass matrix. The chiral symmetry breaking patterns induced by
the light quark masses must be reproduced at the level of the effective field
theory. To this end, we interpret the quark mass matrix as an external scalar
source s

q̄Mq = q̄LMqR + q̄RM†qL → q̄LsqR + q̄Rs†qL . (60)

The external scalar source s is required to transform under chiral rotations as

s → LsR† . (61)

Obviously, this leaves the QCD Lagrangian invariant under chiral rotations
and implies that the effective Lagrangian must also remain invariant in the
presence of s. Hence, the chiral invariant effective Lagrangian is extended with
s as an additional building block

Leff(U, ∂U, ∂2U, . . .) → Leff(U, ∂U, ∂2U, . . . ; s) . (62)

Once the effective Lagrangian is constructed one can go back to the real
world by setting s = M. In (standard) chiral perturbation theory1 the chiral
counting rule is s = M = O(p2), i.e. the quark masses are booked as second

1 We do not consider here the framework of generalized ChPT wherein M = O(p)
[12].


