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Preface

The present book provides both a survey of the state-of-the-art of scientific
research using particle image velocimetry (PIV) techniques in a wide vari-
ety of application fields and also constitutes a synopsis of the main results
achieved during the EU funded PIVNET 2 thematic network cooperation.
Subtitled with “A European collaboration on development, quality assess-
ment, and standardization of Particle Image Velocimetry for industrial appli-
cations” the PIVNET 2 European thematic network has played an important
role in the transfer of the PIV technique to industry. Together with PIVNET
1 the network’s duration covers a total run time of nearly 10 years during
which significant progress on PIV and its applicability was made. The suc-
cess of this network is due to information exchange, scientific cooperation
and synergy effects between the network partners and beyond, stimulated by
a multitude of dedicated workshops and actual presentations of PIV in the
partner’s respective facilities.

The driving force behind these successful networking activities is credited
to the initiative and efforts of quite a number of people, who were involved
for different periods of time. First of all Michel Stanislas (Laboratoire de
Mcanique de Lille) deserves mention as he initiated the cooperation on PIV on
the European level by establishing a GARTEUR action group which operated
from 1993 to 1995. This activity was later extended to two very successful EC
funded research projects: EUROPIV 1 and 2. These projects were devoted
to addressing the scientific and technical issues relevant to making the PIV
technique operational and feasible in large aeronautical wind tunnels. In the
process the need was felt to establish a platform for information exchange on
the advantages, prospects and problems of the application of PIV in a much
wider range. Thus, the thematic networks PIVNET 1 and later PIVNET 2
were proposed to and subsequently accepted by EC. For more than six years,
until the mid-term review of PIVNET 2, both networks were successfully
co-oordinated by Jrgen Kompenhans, DLR, before this responsibility was
assigned to Andreas Schrder.

The activities of nearly 40 European partners considerably contributed to
the fast spreading of the PIV technique in Europe not only to the aeronautical
industry including turbomachinery, but also to the car industry, the naval
field, the medical and biological fields, as well as household appliances, just
to name a few. An important element of conveying the power of the PIV
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technique to a broader community have been a variety of demonstrations
of its use in industrial facilities, where end users could observe and assess
‘real’ applications. The idea for such demonstrations was conceived during
discussions with Dietrich Knrzer, who supported the network for many years
as Scientific Officer. In his succession, Rolando Simonini and Andrzej B.
Podsadowski both actively continued with the endorsement of the PIVNET
activities.

Two further activities should be mentioned as they were initiated within
PIVNET and supported through its funding, and which have grown to a
much greater extent than initially anticipated. First, the initiative to bring
people performing CFD calculations and experimentalists (here the PIV com-
munity) together was motivated to foster the understanding of the problems
and possibilities on both sides and to encourage the use of 2D-or 3D veloc-
ity data as obtained by PIV for the validation of numerical codes. Lately,
precisely this type of close cooperation between numerical and experimental
people has gained increasing importance and is becoming a standard proce-
dure.

The second significant initiative started within PIVNET is the establish-
ment of the International PIV Challenge by Michel Stanislas (ERCOFTAC
SIG 32) together with the Japanese Flow Visualization Society and colleagues
from the United States. Up to now, three different challenges provided a
common, standardized platform of comparison and benchmarking for PIV
evaluation methods as developed by the leading scientific teams and com-
mercial suppliers. Throughout these activities much knowledge was gained
and many ideas for further developments were generated. For prospective
end-users of the PIV technique the results of these challenges provide a com-
prehensive source of information for the assessment of PIV evaluation algo-
rithms.

On the whole the activities associated with the PIVNET 1 and 2 thematic
networks, namely the way to promote cooperation, the demonstration of the
technique’s potential, and the establishment of standards, especially at the
evaluation algorithms, may serve as example for other areas where methods
developed in the laboratory have the potential to be applied in a wide range
of industrial applications.

At this point, the PIV technique is widely spread and differentiated into
many distinct applications ranging from micro flows to combustion to su-
personic flows, for both industrial needs and research. Based on a relatively
simple principle PIV has evolved to a highly versatile flow diagnostics tool
and has found realization in many sophisticated technical adaptations. The
measurement technique along with the associated hard- and software have im-
proved continuously such that PIV has matured to become a reliable and ac-
curate method for “real life” investigations. The partners of the network have
made essential contributions in opening new possibilities for PIV in measure-
ments, scientific research and technology. Nevertheless there is still an ongoing
process of improvement and extension of the PIV technique towards time res-
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olution, volume-resolved measurements, measurements at micro- and macro-
scales, increased accuracy, self-optimizing processing, combinatory measure-
ments with other diagnostics techniques as well as measurements under harsh
conditions.

The present book provides a survey of PIV techniques in a variety of ap-
plication areas corresponding to the workshops organized within PIVNET 2.
On this basis outstanding researchers provided a full paper about their spe-
cific development, application and/or adaptation of the PIV technique to
an experimental investigation within a certain topic of research. In addition,
overview articles on the main application topics have been compiled by the
workshop organizers or prominent scientists in the respective fields.

Reflecting the network’s activities this book is grouped into eleven main
topics reviewing the status and potential of the application of PIV to different
research fields:

— puPIV and applications to micro systems
— bio-medical flows

- 3D-PIV

— comparison with and validation of CFD
— household appliances

— turbo machinery

— internal combustion

— car industry

— complex aerodynamics

— supersonic flows

— naval applications

The Editors believe that this book serves as a guide through a wide range
of research and technology fields in which quantitative flow field data are
utilized. It is also an overview of recent improvements and developments in
hard- and software and reflects the diversity of applications making use of
the powerful PIV technique today. Furthermore this book constitutes the
concluding final report of the PIVNET 2 network and shall give valuable
information for engineers and physicists facing problems in experimental fluid
dynamics using PIV.

The Editors are thankful to all the authors for their efforts in contributing
to this book. In the name of the all the involved network partners the Edi-
tors acknowledge the financial support of this activity through the European
Community. Without doubt this support was a key factor in promoting and
disseminating the PIV technique among basic and applied research through-
out science and industry.
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Abstract. The experimental and numerical verification of the performance of an
electrically excited micromixer is the focus of the present work. For the (local)
measurement of the flow field within the micromixer we use microparticle image
velocimetry (pPIV). Time-dependent and three-dimensional numerical (FEM) sim-
ulations, in conjunction with an asymptotic treatment of the electrical double layer,
are used as theoretical means. If electroosmotic forces act on the flow, we can, even
in straight channel cross sections, resolve complex velocity profiles, which are dom-
inated by electroosmosis close to the walls and by the applied pressure gradient in
the channel core. Hence, even flow at walls against the pressure-driven main flow
can be observed. Particularly within bends a complex and symmetric flow structure
is found, which can be characterized by a number of vortex and saddle points.

1 Introduction

The investigation of mixing and separation processes in microchannels is
of great interest with regard to the implementation of such components into
lab-on-chip applications. Recent work on mixing, e.g., concentrates on passive
mixers, which rely on plane hairpin channels (cf. HIHL on three-dimensional
serpentine channels (cf. E]), or on bas-relief structures on the channel floor
(cf. [3]) to achieve centrifugal or chaotic flows, suitable to enhance mixing.
Alternatively, active means are employed to induce such secondary flows by,
e.g., magnetic forces (cf. [4]) or by electroosmotic forces (cf. [3)6]). Ultimately,
all research on efficient mixing or separation in microchannels needs to vali-
date the respective ideas and models. For the experimental validation of such
processes, the measurement of velocity and species concentration fields in
microchannels appears important.

There are several articles in the literature addressing to some extent the
measurement of flow fields in microchannels. The application of laser Doppler
anemometry (LDA) in a straight microchannel is discussed, e.g., by ﬂ], fea-
turing a measuring volume of 5 pm x 10 pm. A LDA profile sensor is outlined
A. Schroeder, C. E. Willert (Eds.): Particle Image Velocimetry,

Topics Appl. Physics 112, 1-{I8] (2008)
(© Springer-Verlag Berlin Heidelberg 2008
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by B], reporting a spatial resolution of 1.6 pm. Such a sensor uses two colors
to capture both one velocity component and the position of a tracer within
a (long) measuring volume and appears promising for microchannels. Paul
et al. Tﬁ] use scalar image velocimetry (SIV) for pressure-driven (and elec-
trokinetic) flows in capillaries and report reliable measurements at a spatial
resolution of typically 20 um. Molecular tagging velocimetry (MTV) is dis-
cussed in [@] and applied to the time-dependent interaction of a vortex ring
with a wall, whereas the measuring plane has a few centimeters side length.
This technique projects an illumination pattern into the liquid and, by a
crosscorrelation technique, determines the offset of this (chemically stored)
pattern between two moments in time. This technique, likewise, has great
potential for application in microchannel flows. The microparticle image ve-
locimetry (pPIV), finally, is the most widely used method to measure velocity
fields in microchannels. Introduced in ﬂ_'L_1|] and ﬂﬂ], it employs an epifluores-
cent microscope to illuminate the complete volume of a microchannel at two
given moments in time. The images of the fluorescent particles are then cross-
correlated to obtain offset and velocity fields at a spatial resolution of down
to 1pm in the measuring plane, whereas the “thickness” of the measuring
plane can be reduced to 1.5 pm (cf. [11]) or 1.8 pm (cf. [12]). A comprehensive
discussion on the spatial resolution of various measuring techniques for the
velocity fields in microchannels is conducted in ] The pPIV technique has
found numerous applications since. Examples are the apparent liquid slip at
hydrophoblc walls (cf. m the electrokinetic flow excited by dielectric forces

the mixing of two phases due to hydraulic focusing in microchan-
nels |£ , and the transition to turbulent flows in straight rectangular

Nﬁ or straight circular (cf. [19]) microchannels.

We shall concentrate in this chapter on the flow field in an electrically
excited micromixer, which has been proposed in ﬂa] In detail, the authors
propose a micromixer comprising a Y-junction and a single meander down-
stream in the common channel. Mixing is enhanced by applying an alter-
nating electrical field, and hence by superimposing an alternating electroos-
motic flow, upon the pressure-driven base flow. The preliminary numerical
simulations by ﬂa] demonstrate that, given a reasonable ratio of primary and
secondary velocity amplitudes, the time-dependent secondary flow serves to
significantly increase mixing quality at the outlet of the device. The present
experiments and simulations, therefore, aim to validate the preliminary nu-
merical findings with regard to both velocity and concentration fields. While
a concentration-field measuring technique and some concentration measure-
ments are discussed in ﬂﬁ], we shall restrict discussion in this chapter to the
velocity field.
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Fig. 1. Physics of electroosmosis

2 Experimental Realization

2.1 Electroosmosis

Before we explain the details of the experimental realization, it appears
worthwhile to physically discuss electroosmosis. Given a liquid with mobile
charges (e.g., an aqueous solution with ions) adjacent to an electrically in-
sulating solid wall (e.g., glass, plastics), due to chemical/physical interaction
we typically find surface charges on the solid. This situation is sketched in
Fig. @l As the surface charges on the solid attract opposite charges out of
the liquid, an electrically non-neutral layer of liquid (the so-called electrical
double layer, EDL) is the consequence. By applying an electrical field tan-
gentially to the wall, we can introduce electrical forces into this (non-neutral)
liquid layer. These forces cause a movement of the liquid — the so-called elec-
troosmotic flow. This effect can be employed in microchannels not only to
pump liquids, but likewise to induce secondary flows.

2.2 Experimental Setup

An overview of the experimental setup is presented in Fig.[2l To arrange a flow
of liquids through the mixer, we engage a gravity-driven flow with the two
inlet reservoirs positioned at a defined height above the outlet reservoir. The
liquids are driven through the two inlet channels and leave the micromixer
through the common channel. In all cases the flow rates through both inlet
channels are identical. As liquid we use deionized water, which has a low
electrical conductivity. The low electrical conductivity has two advantages:
1. we minimize electrical currents (due to the applied electrical field) through
the liquid, and hence minimize Joule heating, 2. we obtain a thick electrical
double layer, and hence pronounced electroosmotic effects. The mass flow rate
m leaving the common channel is measured by means of a precision balance
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Fig. 2. Sketch of the overall experimental setup

(Sartorius), engaged for time-resolved measurement of the outlet reservoir
mass. This balance has an accuracy of +0.01 mg and submits the data via
a RS232 serial interface to a PC, where LabVIEW (National Instruments)
handles the processing of the data. The gravity-driven delivery system is
calibrated by mass-flow measurements at several flow rates. First, in the
outlet reservoir the evaporation rate of the water is measured. Secondly, after
connecting all reservoirs, the levels of the inlet reservoirs are adjusted at
different heights above the outlet reservoir, namely in the range 0 < Ah <
100 mm. The measured mass flow rates 1 are measured and corrected by the
evaporation rate (typically e, ~ 20 pg/s). This method ensures an accuracy
for the mass flow rate of better than +3 ug/s. From the mass flow rates, the
volumetric flow rates V = 1/ p are obtained at known density p. This defines
the Reynolds number for the rectangular (square) common channel
ud

Re = > (1)
with the mean velocity @ =V /d? and the kinematic viscosity of the liquid v.
We use temperature-dependent data for density and viscosity. In summary,
the (steady) forced flow through the micromixer will be characterized by the
Reynolds number. The Reynolds numbers in () is valid for the common
channel, whereas both inlet channels are characterized by half the Reynolds
number.
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2.3 Electrical Excitation

In parallel with the (steady) forced flow, we apply a time-dependent electrical
field to set up an electroosmotic flow. The arrangement for the electrical field
buildup is sketched in Fig. Bl A DC power supply and an amplifier allow to
us apply potential differences of up to 5kV. Gold electrodes are placed in the
inlet and outlet reservoirs. One potential is connected to both inlet reservoirs,
the second potential is connected to the outlet reservoir. This arrangement
sets up an electrical field, which is roughly directed tangentially to the channel
axis. A function generator in conjunction with a relay exchanges the polarity
of all electrodes periodically in time at a defined frequency (typically 0.1 Hz).
This provides a local electrical field in the channel, alternating in a square-
signal fashion. The electrical signal from the function generator is, moreover,
used for triggering purposes. In detail, the triggering is necessary to record
phase-correctly multiple velocity fields for averaging.

2.4 Micromixer

The micromixer under investigation (cf. Fig. [B)) features a Y-form joining
of two inlet channels, followed by a straight common channel with a single
meander downstream, all realized in FOTURAN glass (cf. ﬂ2_1|]) The chan-
nels of the Y-mixer and the meander channel, all have square cross sections
of 110 pm x 110 pm. At the Y-mixer, the merging channels comprise an an-
gle of 40°, while the meander is located 17 mm downstream of this point.
A closeup sketch of the meander is given in Fig. @

2.5 Optical Measurement Technique

The micromixer, mounted on the support table, allows for optical access via
an inverted microscope (Leica, DMIRM). A number of microscope objectives
(Leica, NPLANL, HCPLFL) with different magnification M and numerical
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Fig. 4. Closeup sketch of the meander part; measures are given in pm

aperture NA, all accommodated for air, is mounted onto the microscope,
depending on the actual field of interest.

We aim to perform flow-field measurements through this microscope by
means of the so-called microparticle image velocimetry (pPIV), which is de-
scribed in detail, e.g., in ﬂﬂ] or ﬂﬂ] For that reason we engage a fluorescence
technique as sketched in Fig.[Bl Two Nd:YAG lasers (New Wave, Solo-PIV)
provide two pulses of green light (\; = 532 nm), which are expanded and cou-
pled into the coaxial illumination path of the microscope. Hence, we obtain
green volume illumination of the microchannel. Within the flow a mixture
of fluorescent microspheres of diameter 200 nm and 500 nm (Duke Scientific)
is suspended. The density of the microspheres (p = 1.05g/cm?) is well ad-
justed to the water density. The microspheres are customized for emission
in the red regime, i.e., at a wavelength around A, ~ 612nm. The red light
from the microspheres passes the epifluorescent cube within the microscope
and is imaged onto the CCD camera. In contrast, green reflected light is
blocked by the epifluorescent cube from reaching the CCD camera. We use a
high-performance cooled interline CCD camera (PCO, Image Intense) with
1376 x 1040 pixels and 12-bit readout resolution to record the double frames.
The acquired double frames from the camera are transferred to a PC, the
software DaVis6.2 (LaVision) is applied for further processing. All timing,
synchronization, and control of the camera and the lasers is achieved by a
programmable timing unit (PTU) card, installed in the PC, in conjunction
with the DaVis software.

We typically subdivide the total area occupied by the fluid into interro-
gation areas of 16 x 16 pixels (4.8 pm x 4.8 pm), whereas the computation of
the displacement vector within each interrogation area of the double frames
is based on a crosscorrelation method within the DaVis software. We keep
the ratio of microsphere volume and fluid volume in the range 0.05-0.07 %
to ensure by this moderate concentration of microspheres a high signal-to-
noise ratio. This gives typically around 5 microspheres per interrogation area.
We use in all cases ensemble averaging of typically 20—40 single crosscorrela-
tion functions, to improve the accuracy of the measured flow fields (cf. ﬂﬁ])
As we have a periodically alternating electrical field, we can expect likewise
a periodically oscillating flow field. Hence, a phase-correct sampling of the
flow field during a large number of alternation periods (20—40) is established,
which uses the electrical signal from the electrodes for triggering. The fre-
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quency of alternation in all cases is 0.1 Hz, i.e., each 5s the direction of the
electrical field is inverted. Accordingly, the double frames are recorded with
a small time offset in the range At < 10ms in all cases.

In contrast to conventional PIV, with the thickness of the lightsheet defin-
ing the measuring volume, the illumination within the pPIV setup is respon-
sible for an unsharp measuring volume, resulting from the focal plane and the
depth of field. Following ﬂﬁ], the thickness of the measuring volume should
rather be defined from the so-called depth of correlation than from the pure
depth of field. Meinhart et al. @] estimate the depth of correlation by

A 2.16d,

0% = NAZ2 tan 6 T

2)
In (@) n is the refractive index of the medium between the microchannel and
the objective, A is the emitted light wavelength, NA is the numerical aperture
of the objective, d;, the particle diameter, and 6 is the collection angle of
the optical system. For the present measurements the depth of correlation
is 0z, ~ 16 pm.

Particles, as used for the pPIV technique, in principle experience elec-
trophoretic forces if subjected to an electrical field. The electrophoretic ve-
locity is checked in a (separate) sealed microchannel of identical cross section
and subjected to identical electrical field conditions. For these experiments,
particles of diameter d,, = 0.2 pm and 1.0 pm are used, giving velocity ampli-
tudes of up to 7.7 pm/s and 5.8 pm/s, respectively. This choice of particles is
made to cover a, preferably wide, range of sizes. In both cases this is smaller
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than 0.7 % of the electroosmotic velocity amplitude and therefore the elec-
trophoretic contribution can be neglected in the remainder of the chapter.

3 Theoretical Model

The numerical simulations of flow and transport within the micromixer rely
on the time-dependent and three-dimensional Navier—Stokes equations and
the continuity equation. Hence, for an incompressible Newtonian liquid we
have

Vov=0, (3)
ov
p[at + ('v-V)'v] = _Vp+,uA'u —qVop. (4)

For a poorly conducting liquid, further, the Gaussian law

q
Vo(eVp) =—— ()

€0
holds. For the electrical charge distribution ¢ within the (thin) electrical dou-
ble layer (EDL) we can, moreover, invoke the Debye—Hiickel approximation

q=~ %exp (f%) . (6)

Within the above equations we engage a local coordinate system, with the
origin on the wall. Hence, = and y are the wall-tangential coordinates and
z is the wall-normal coordinate. Further, v is the fluid velocity vector, p
denotes density, p pressure, p dynamic viscosity, ¢ the electrical potential,
o€, the respective dielectric properties, g¢ the charge density at the boundary
between shear layer and Gouy—Chapman layer (within the EDL), and Ip the
Debye length.

The boundary conditions require no slip and a prescribed electrical po-
tential, according to the Debye-Hiickel approximation, at all channel walls.
Hence, we have

v(z,y,0) =0, (7)

,@. (8)

0) =
o(x,y,0) e

We restrict our simulations to the meander segment of the micromixer and
exclude the Y-mixer segment. Hence, we need to formulate boundary con-
ditions within the inlet and outlet cross sections. We assume in both cross
sections a pressure-driven fully developed and unidirectional flow; for a rect-
angular channel the developed-flow profile follows a series solution (cf. [23]).
Further, the electrical potential at the inlet and outlet cross section is inferred
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from the time-dependent electrical potential at both electrodes. Hence, we
have

1 dp d?
uin(y, 2) = —ﬂa [<4 - y2>

)™ cosh(N,z
B 72 N3 coshNd/)Q) cos(Nag)|»  (9)

Vin = 0, Win =0, (10)
Doy

a;t :Oa Uout:Oa woutZOa (11)

@n:fl(t)v @Out:fQ(t)a (12)

whereas N, = (2n + 1)w/d and fi(t), f2(t) are of square-signal type and
phase shifted by .
We treat the above system (B)—(I2) in nondimensional form by introduc-
ing the (channel) scales
(u, v, w)

(Kxﬂzug@,(UVW)nga (13)

ot _ e
“@w T T w

Thus, lengths are scaled by the width d and velocities by the average
(pressure-driven) velocity @ of the microchannel. Further, a transport time-
scale and a viscous pressure scale is used; the electrical potential is scaled
by the applied potential difference ¢g. Due to the nondimensionalization, be-
yond the Reynolds number (cf. (), a number of dimensionless groups arise,
namely

(14)

z
=<1, m=%%

y pat (15)

The Reynolds number Re characterizes the pressure-driven flow through the
micromixer, J is a ratio of length scales, and IT is the ratio of electrical and
viscous forces, characterizing the strength of the electroosmotic flow.

Due to largely different length scales (0 < 1), it appears reasonable to
seek, by asymptotic means, an inner solution, valid within the EDL, and an
outer solution, valid within the channel core; the details of this procedure are
given by ﬂa] The inner solution can be given analytically, the outer solution
is obtained by the standard finite-element code FIDAP. It is important to
note that, for the outer solution, there remains no need to resolve the EDL
numerically. The matching and superposition of both solutions provides an
approximation for the solution in the entire domain. The finite-element sim-
ulations for the channel core are time dependent and three-dimensional in
nature.
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Fig. 6. Velocity fields of the flow at Re =~ 0.1 at the level z/d = 0.25 in the straight
channel of the micromixer: (a) without electrical field, (b) subject to an electrical
field £, ~ —14.5V/mm, and (c¢) E, ~ +14.5V/mm. The velocity amplitudes are
color coded, according to the given color tables at each part of the figure

4 Results

The setup, the pPIV measurements, and the numerical simulations are en-
gaged to study the flow in various parts of the micromixer, with and without
electrical excitation. The results in this section cover the electroosmotic flow
1. in the straight channel and 2. within the meander bends of the micromixer.

4.1 Electroosmotic Flow in the Straight Channel
of the Micromixer

All measurements in this section are taken in the straight channel of the glass
micromixer, which is located between the Y-junction and the meander. The
precise position is 15mm downstream of the Y-junction, all cross sections
are 110 pm x 110 pm. We establish a pressure-driven flow by applying a pres-
sure difference of Ap ~ 157 Pa between both inlet reservoirs and the outlet
reservoir. This results in a Reynolds number of Re ~ 0.1 in the common chan-
nel. This weak pressure-driven flow is chosen to have both the pressure-driven
flow and the contingent electroosmotic flow at similar velocity amplitudes.
Hence, the superposition of both flows makes a real (measurable) difference.
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The result for the pure pressure-driven flow at the level z/d = 0.25 is given
in Fig. [Bh. The origin of the coordinate system is on the channel axis, with x
pointing downstream along the channel axis and y and z orthogonal to the
channel axis, pointing in horizontal and vertical directions. Hence, z/d = 0.25
is exactly between the midheight level and the top wall. The velocity vectors
in Fig. Bk are based on an ensemble average of the crosscorrelation functions
of 40 double frames, with a time interval of At = 2ms between the two images
of each double frame. The microscope objective has a magnification of 20x,
featuring a depth of correlation (cf. @) of 0z, ~ 16 pm for the given particle
size. Interrogation areas of 16 x 16 pixels (4.8 pm x 4.8 um) are engaged with
an overlap of 50 %. We recognize a steady flow profile, parallel to the walls,
with a maximum velocity of about 1.2mm/s in the middle of the channel
(y = 0), and vanishing velocities at the walls. This profile appears roughly
parabolic.

To excite an electroosmotic flow, we apply a potential difference of 1.0kV
between the inlet reservoirs and the outlet reservoir (cf. Sect. Z3]), alternat-
ing at a frequency of 0.1 Hz. This causes an electrical field of strength |E,| ~
14.5V/mm, directed tangentially to the channel axis and inverting its direc-
tion every five seconds. For all measurements we trigger the first image of
the double frame at 4.5s after the switch of polarity, while the time interval
between two images of a double frame remains At = 2ms. After each switch
of polarity the flow needs less than two seconds to adjust to the new electri-
cal field direction. Hence, between two and five seconds after the switch of
polarity a quasisteady flow persist. In summary, we sample phase-correctly
multiple measurements of the flow field at the end of the quasisteady period
and ensemble average the crosscorrelation functions of 40 double frames. The
results are given in Figs. [Gb,c.

During the period of a negatively directed electrical field with F, =~
—14.5V/mm (cf. Fig. Bb) we find close to both walls of the microchannel
electroosmotic flow into the negative z-direction, i.e., against the pressure-
driven flow. In the middle of the channel (y = 0), due to the pressure field, the
flow is in the positive xz-direction, again featuring a roughly parabolic profile
around the middle region. Hence, negative velocities of up to u ~ —0.6 mm/s
are found near the walls, while positive velocities of up to u ~ +0.4 mm/s are
found in the middle of the channel. During the period of a positively directed
electrical field with E, ~ +14.5V/mm we find the flow field given in Fig. [Gk.
Here, near both walls an electroosmotic movement of the liquid into the posi-
tive z-direction is obvious, rapidly rising to velocities of u ~ 1.4mm/s across
a thin wall layer. This leads to larger velocities of up to u ~ 2.0mm/s in the
middle of the channel. The roughly parabolic form of the velocity profile in
the channel core appears to be preserved.

It is obvious from Figs. [Bb,c that the electrical field causes movement of
the liquid near the walls in either direction, depending on the direction of
the electrical field. The combination of glass and water is characterized by
negative electrical charges at the glass surface (wall). The negatively charged
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Fig. 7. Axial velocity profiles of the flow at Re ~ 0.1 for the straight channel of the
micromixer: (a) subject to an electrical field of E; ~ —14.5V/mm and (b) subject
to an electrical field of F, ~ +14.5V/mm

wall accumulates positive charges (e.g., H3O™ ions) next to the wall, leading
to a positively charged layer in the liquid — the electrical double layer (EDL).
The application of a positively directed electrical field causes forces on the
ions in the EDL, which tend to move these ions (and the layers) towards
the electrode at the outlet, i.e., in the positive x-direction. The opposite
direction of the electrical field inverts the forces onto the wall layer and a
complex velocity field, directed at the walls in the negative x-direction and
in the middle of the channel in the positive z-direction, is the consequence.

In addition to the measurements in a specific level, we have performed
velocity measurements in 15 levels of the microchannel in the range —0.5 <
z/d < 0.5. This allows us to infer, e.g., the axial velocity field within the
complete cross section of the microchannel. For these measurements all opti-
cal and evaluation parameters and procedures remain unchanged, an overlap
of the interrogation areas, however, is avoided. In order to verify the mea-
suring technique, the measured flow field of the pure pressure-driven flow
has been compared with the analytical series solution for the laminar flow in



