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Introduction

Stefania Centrone, Deborah Kant, and Deniz Sarikaya

The present volume originates from the conference Foundations of Mathematics:
Univalent Foundations and Set Theory (FOMUS), which was held at the Center for
Interdisciplinary Research of Bielefeld University from the 18th to the 23rd of July
2016. Within this framework approximately 80 graduate students, junior researchers
and leading experts gathered to investigate and discuss suitable foundations for
mathematics and their qualifying criteria, with an emphasis on homotopy type
theory (HoTT) and univalent foundations (UF) as well as set theory. This interdis-
ciplinary workshop, conceived of as a hybrid between summer school and research
conference, was aimed at students and researchers from the fields of mathematics,
computer science and philosophy.

A collected volume represents, it goes without saying, an excellent opportunity
to pursuing and deepening the lively discussions of a conference. This volume,
however, is not a conference proceedings in the narrow sense since it contains also
contributions from authors who were not present at FOMUS. Specifically, 6 from
the 19 contributions have been developed from presentations at the conference and
only 9 from 24 authors were present at FOMUS.

As to the conference, the concomitant consideration of different foundational
theories for mathematics is an ambitious goal. This volume integrates both univalent
foundations and set theory and aims to bring some novelty in the discussion
on the foundations of mathematics. Indeed, a comparative study of foundational
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frameworks with an eye to the current needs of mathematical practice is, even to
this day, a desideratum.

The FOMUS conference was organized with the generous support of the
Association for Symbolic Logic (ASL), the German Mathematical Society (DMV),
the Berlin Mathematical School (BMS), the Center of Interdisciplinary Research
(ZiF), the Deutsche Vereinigung für Mathematische Logik und für Grundlagen-
forschung der Exakten Wissenschaften (DVMLG), the German Academic Schol-
arship Foundation (Stipendiaten machen Programm), the Fachbereich Grundlagen
der Informatik of the German Informatics Society (GI) and the German Society for
Analytic Philosophy (GAP).

The editors received funding from the Claussen-Simon-Stiftung, Studienstiftung
des deutschen Volkes, Heinrich-Böll-Stiftung, Hamburger Stiftung zur Förderung
von Wissenschaft und Kultur, the Schotstek Network and the German Research
Foundation (Temporary Positions for Principal Investigators, Heisenberg Pro-
gramme).

Very special thanks go to the above-mentioned associations for the support of
the conference as well as of the editors. Without this support the volume as it stands
would not have been possible. The opinions in the volume do not necessarily match
with those of the agencies.

The editors warmly thank Lukas Kühne and Balthasar Grabmayr for their help
in organizing the conference. The encouragement at a decisive moment and the
friendly advice from Synthese Library’s editor-in-chief, Otávio Bueno and from
Springer’s project coordinator, Palani Murugesan, were truly invaluable. A very
special thanks goes to the authors of the contributions and to all anonymous referees
who reviewed each single contribution.

The Topic

Set theory is widely assumed to serve as a suitable framework for foundational
issues in mathematics. However, an increasing number of researchers are currently
investigating Univalent Foundations as an alternative framework for foundational
issues. This relatively young approach is based on HoTT. It links Martin-Löf’s
intuitionistic type theory and homotopy theory from topology. Such developments
show the necessity of a novel discussion on the foundation of mathematics, or so we
believe. The volume pursues two complementary goals:

1. To provide a systematic framework for an interdisciplinary discussion among
philosophers, computer scientists and mathematicians

2. To encourage systematic thought on criteria for a suitable foundation

General criteria for foundations of mathematics can be drawn from the single
contributions. Some candidates thereof are:

• Naturalness with regard to mathematical practice
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• Applicability in mathematical practice
• Expressive power
• Possibility of extending the theory by justified new axioms
• Possibility of implementing the theory into formal proof systems
• Interpretability of non-classical (e.g. constructive) approaches
• Plausibility of the ontological implications

As far as set theory is concerned, the research literature is rich in perspectives and
argumentations on foundational criteria. Roughly, set theory is seen as a theory
with much expressive power, in which almost every other mathematical theory
can be interpreted and which also may very well serve as ontological foundational
framework for mathematics. However, it is not applicable in all mathematical areas
and is not easily implemented in formal proof systems.

As far as HoTT is concerned, discussion on specific foundational criteria has not
yet been properly carried out. Many scholars defend the thesis that HoTT is a very
well applicable theory, easily implemented in formal proof systems (such as Coq
and Agda) that can serve as a good foundational framework by dwelling rather on
intensional than on extensional features of mathematical objects, at a variance with
set theory.

Not least, the question about alternatives to the standard set-theoretic foundation
of mathematics seems to be relevant also in view of the last developments of
formal mathematics that appears to develop more and more in the direction of a
mathematical practice focusing on the use of automated theorem provers.

Historical Background

Foundational disputes are not new in the history of mathematics. The Grundlagen-
streit at the beginning of the twentieth century is but one ultimate example of a
controversy, sometimes acrimonious, between various schools of thought opposed
to each other.

Among the questions that mathematics poses to philosophical reflection on
mathematics, those concerning the nature of mathematical knowledge and the
ontological status of mathematical objects are central, when it comes to the
foundations of mathematics. Is mathematics a science with an own content or is it a
language, or rather, a language-schema that admits different interpretations? Does
mathematical activity describe objects that are there, or does it constitute them?
How do we explain our knowledge of mathematical objects?

If we believe that mathematics is a science with an own content, we have to say
which objects mathematics is talking about. If these objects are mind-independent,
how do we have access to them? If we constitute them, how do we explain the fact
that the same mind-dependent objects are grasped by different subjects?

Philosophy of mathematics generally distinguishes three different views as to the
foundations of mathematics: Logicism, Formalism and Intuitionism.
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Logicism. The descriptive view at the turn of the century was represented by
the Logicism of Gottlob Frege (1848–1925). Even the word “descriptive” hints
at the fact that we are confronted with a version of the traditional standpoint of
platonism. Numbers and numerical relations are abstract logical objects. Number
systems are well-determined mathematical realities. The task of the knowing subject
is to discover and to describe such realities that subsist independently of him via
true propositions about such objects. The latter, organized systematically, make up
the theory of that mathematical reality. Platonism is most often associated with
an eminently non-epistemic conception of truth: the truth value of a proposition
is independent of its being known.

The programme of logicism was to ground finite arithmetic on logic: the basic
concepts of arithmetic (natural number, successor, order relation, etc.) had to
be defined in purely logical terms, and arithmetical true propositions had to be
ideographically derived from logical principles.

The arithmetization of analysis initiated by Karl Weierstrass (1815–1897) had
concluded with the simultaneous publication in 1872 of the foundations of the
system of real numbers by Richard Dedekind (1831–1916)1 and Georg Cantor
(1845–1918)2. Since, before then, it was well known how to define rational numbers
in terms of integers and the latter in terms of natural numbers, the last question to be
answered was how to lead back natural numbers to logic. To answer such question,
Frege formulated in his Grundgesetze der Arithmetik (1901-1903) a system of
principles from which the axioms of finite arithmetic should have been derived. Just
as the second volume of the Grundgesetze was getting into print, Frege received a
letter from Bertrand Russell (1872–1970), who called his attention on an antinomy
arising by an indiscriminate use of the principle of unlimited comprehension, that
is, the assumption that each concept has an extension. Frege could only recognize
the mistake in a postscript.

Russell’s Antinomy. Russell’s antinomy, we recall it, says that class of all
classes that are not elements of themselves is and is not element of itself. Indeed,
if it is, it is not, since it is the class of all classes that do not have themselves as
elements. If it is not, it is, for the same reason. The antinomy turns out to be relevant
associated with Basic Law V of Frege’s Grundgesetze that applies to functions and
their course of values as well as to concepts (which for Frege are a special kind
of functions) and their extensions. The gap is caused by the fact that Frege takes
courses of values as well as extensions of concepts to be objects and takes Basic
Law V as an identity criterium for such objects. Basic Law V stipulates that the
extensions of two concepts (more generally the courses of values of two functions)
are the same, if and only if the concepts apply exactly to the same objects (or the
two functions have the same input-output behaviour).

1Hereto see Dedekind 1872.
2Hereto see Cantor 1872.
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Basic Law V for concepts runs as follows:

Ext(P ) = Ext(Q)↔ ∀x(P (x)↔ Q(x))

while its more general version for functions runs as follows:

ε′f (ε) = ε′g (ε)↔ ∀x(f (x) = g(x)) .

Russell’s antinomy can be presented in Frege’s system thus:
Let “R(x)” stand for the predicate “x is Russellian”:

(∗) R(x)↔ ∃Y ( x = Ext(Y ) ∧ ¬Y (x)) .

That is, x is Russellian iff x is the extension of a concept that does not apply to x.
Let “r” be short for “Ext(R)”, the extension of the concept R. Then the

contradiction

R(r)↔ ¬R(r).

is easily derived as follows.

(1) ¬R(r)→ R(r). Assume ¬R(r); then, according to the definition of r:

r = Ext(R) and ¬R(r).

By existential quantifier introduction it follows thereof:

(∗∗) ∃Y. r = Ext(Y ) ∧ ¬Y (r),

and so, by (*), we get R(r).

(2) R(r)→ ¬ R(r). Assume R(r); then by (*)

∃Y ( r = Ext(Y ) ∧ ¬Y (r)) .

Let then (by ekthesis) Y be such that r = Ext(Y) and ¬Y(r).
So r = Ext(R) and r = Ext(Y), hence Ext(Y) = Ext(R). At this point Basic Law

V comes into play, yielding

∀z(Y (z)↔ R(z)) .

Therefore from ¬Y(r) we get ¬R(r).
Thus, in conclusion, r is at once Russellian and not-Russellian, and Frege’s

system is, at least without amendments, inconsistent.
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Formalism: Hilbert’s Program. At the turn of the century Hilbert was trying
to establish in Germany an interdisciplinary area of research for mathematicians,
logicians and philosophers modelled on the kind of cooperation that was in bloom
at Cambridge around Bertrand Russell. Hilbert held Russell’s and Whitehead’s
work in high esteem, and he was “convinced that the combination of mathematics,
philosophy and logic ... should play a greater role in science”.3 Hilbert’s Program
undergoes many phases. The initial phase of his reflections on foundations spans
from 1898 to ca. 1901. Hilbert aimed at an axiomatic foundation not only of
mathematics but also of physics and other sciences through the formal-axiomatic
method. As to mathematics he took to be possible to reduce the axiomatic
foundation of all mathematics to that of the arithmetic of real numbers and set
theory. More specifically, Hilbert took the complete formalization of concrete
mathematics, i.e. of the theory of natural numbers as well as analysis and set theory,
to be possible. He took Peano-Arithmetik (PA), Peano-Arithmetik at the second
order (PA2) and Zermelo-Fraenkel set theory (ZF) to be formal counterparts of the
concrete mathematical theories. Formalization, however, was only the first step of
Hilbert’s Program. For, once the concrete theories were formalized, the proper task
was to prove the consistency of the formalized theories. In this way, Hilbert thought
to avoid antinomies like the Russellian one.

Hilbert addressed the problem of a proof of consistency for arithmetic in a
conference, entitled “Mathematical Problems (Mathematische Probleme)”, held to
the second International Congress of Mathematicians in Paris in 1900. As he put it:
“But above all I wish to designate the following as the most important among the
numerous questions which can be asked with regard to the axioms: To prove that
they are not contradictory, that is, that a definite number of logical steps based upon
them can never lead to contradictory results.”

A kind of criticism is often raised against formalism, namely, that the latter
reduces mathematics to a meaningless symbolic game by investigating the logical
consequences of axiom systems set up arbitrarily. However, formalization was not
the primary goal of formalism, but was conceived of as a necessary condition for
proving the consistency of mathematics. Only then, mathematics would have been
secure.

A necessary condition for the formalization was to find for each concrete theory
a formal counterpart able to capture all its truths. In particular, all arithmetical truths
should have been provable in PA, all truths of analysis should have been provable in
(a theory equivalent to) PA2 and all set-theoretical truths should have been provable
in ZF. However, like the logicistic programme also the formalistic programme was
doomed to fail. In 1931 Kurt Gödel (1906–1978) proved his famous incompleteness
theorems. They can both be conceived as limits put to the power of formalisms. The
first theorem says that arithmetic is syntactically incomplete. More specifically, the
theorem says that each theory that is (i) consistent, (ii) effective and (iii) contains
some arithmetic (precisely, as much as Robinson’s arithmetic Q, a weak subsystem

3Cp. Hilbert et al.’s “Minoritätsgutachten” of 1917.
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of PA) is syntactically incomplete: there is, at least, one sentence of the language
of the theory that is neither provable nor refutable within the theory. So, PA is not
able to capture formally all arithmetical truths. All the more so, as to the formalized
counterparts of analysis (equivalent to PA2) and set theory (ZF).

The second step of Hilbert’s Program was to make mathematics secure. In
particular, Hilbert required the use of infinitary parts of mathematics to be justified.
It must be said that Hilbert started to talk about “ideal elements” in a later phase
of the foundational research (1920–1924), in which “Hilbert’s Program” takes
its proper shape. In a paper presented in Leipzig in 1922 entitled “The Logical
Foundations of Mathematics (Die logischen Grundlagen der Mathematik)” (Hilbert
1923), Hilbert indicates finitary mathematics as that part of mathematics that “has a
concrete content”, that is, that it operates concretely with symbols and does not use
infinitary procedures and principles. It is in this context that he starts talking about
“finitary logic” (the logic of finitary procedures) and of “ideal elements”. Hilbert
presents his paper “On Infinite (Über das Unendliche)” (Hilbert 1926) in Münster
in 1925, where he explicitly speaks of “ideal elements”. Here finitary mathematics
is said to be that part of mathematics that can be rightfully considered as “secure”.
It does not need a justification but must itself serve as justification for infinitary
mathematics, which is that part of mathematics that deals with actual infinity, lacks
a concrete content and is moreover a possible source of contradictions. Infinitary
instruments are acknowledged as “useful”: they are used to prove real propositions.
However, they must be justified, that is one has to demonstrate that their use does
not lead to contradictions.

To this aim, the proof of consistency for the formalized theories PA, PA2 and ZF
turned out to be essential. But, to serve as a justification, the proof should have used
means that did not need themselves a justification. It should have used only finitary
mathematics.

However, while the first of Gödel’s theorems had shown the impossibility of
completely formalizing the concrete mathematical theories, the second theorem
showed that it was not possible to prove the consistency of an arithmetical theory
using only means formalizable in that very same theory. More exactly, Gödel’s
second incompleteness theorem says that each theory, that is (i) consistent, (ii)
effective and (iii) contains as much arithmetic as PA (actually, a weaker system
like, e.g. PRA, primitive recursive arithmetic, suffices), cannot prove (the statement
formalizing) its own consistency. Thus, if one assumes that finitary mathematics is
part of PA, is it not possible to prove the consistency of PA with finitary means.

Thus, even the formalistic approach was denied the likelihood of success.

Intuitionism. Intuitionism was first brought forward by Luitzen E. J. Brouwer
(1881–1966). Brouwer had completed his academic studies in 1907 at the University
of Amsterdam with a dissertation on the foundations of mathematics (Over de
grondslagen des wiskunde). Already at this time he had taken up a position in
direct opposition to formalism and logicism, many years before he would engage
in the attempt to construct intuitionistic mathematics. What was at issue was, once
again, to build mathematics on an absolutely secure ground with no risk to run into
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antinomies. Intuitionism is in its origin a particular way of conceiving mathematics.
Mathematics is the exact part of the thinking activity of an idealized knowledge-
subject. Such activity grounds on our Ur-intuition of the flow of time. Kant’s
conception of time explicitly works at the background. In his doctoral dissertation of
1907 Brouwer writes: “Mathematics can deal with no other matter than that which it
has itself constructed.”4 At a variance with Platonism, mathematical objects are not
objects that are there and stand in certain relations, but rather mental constructions
of an idealized knowledge-subject. At a variance with formalism, the role of the
language is only peripheral, it is useful to communicate the results of the thinking
activity of the idealized subject as well as aide-mémoire, but mathematics as a
mental construction has not to be confused with its linguistic expression.5

The basic phenomenon of intuitionism, the Ur-intuition of time, consists,
according to Brouwer, in the perception of the split-up of one moment of life into
two different things which differ qualitatively. Therein consists the “first act of
intuitionism” that is attributed, by Brouwer, to the mind and not to sensitiveness.

Mathematics arises when the subject of two-ness, which results from the passage of time,
is abstracted from all special occurrences. The remaining empty form [the relation of n
to n+1] of the common content of all these two-nesses becomes the original intuition of
mathematics and repeated unlimitedly creates new mathematical subjects.6

According to Brouwer, a mathematical proof is a mental construction. It is essential,
for the intuitionistic view, to conceive mathematical objects as results of finite
mental construction processes. This conception goes hand in hand with a strongly
epistemic view about truth: the truth of a proposition depends, in an essential way,
on the knowledge of the subject.

Another characteristic feature of intuitionism is the refusal of the actual infinite.
Only finite reasoning can be justified. Measurable infinities are admitted in the
sense that the step from n to n+1 can be repeated unlimitedly and is understood
as principle of formation of the sequence of natural numbers. As Dummett puts
it: “[T]he thesis that there is no completed infinity means, simply, that to grasp an
infinite structure is to grasp the process which generates it, that to refer to such
a structure is to refer to that process, and that to recognize the structure as being
infinite is to recognize that the process will not terminate.”7 This view contrasts
markedly with classical mathematics, which deals with the infinite process as a
whole: “It is, however, integral to classical mathematics to treat infinite structures
as if they could be completed and then surveyed in their totality.”8 To top it off, “an
infinite process is spoken of as if it were merely a particularly long finite one”.9

4Brouwer 1975, 51.
5Cp. Heyting’s Introduction to Brouwer 1975, xiv.
6Cit. in Kline 1972, 1199–2000.
7Dummett 1977, 56.
8loc.cit., 56.
9loc.cit., 57.
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Intuitionistic Logic. Arendt Heyting (1881–1996) makes intuitionistic logic sys-
tematic in his work Die Formalen Regeln der intuitionistischen Logik (1930). While
classical logic makes use of non-epistemic concepts of truth and falsehood (the truth
of a statement is independent of its being known), intuitionistic logic grounds on a
basically epistemic conception of them. Truth and falsehood are not properties that a
statement has independently of its being known. That a statement is true means that
the knowledge-subject has direct evidence for it or can exhibit a proof, i.e. a suitable
mental construction, for it. Similarly, that a statement is false means the knowledge-
subject knows that no matter how his knowledge will develop, he will never be
able to exhibit a proof for it. Thus, while intuitionism reads the sentence “that p,
is true” as “the epistemic subject is in possession of a proof for the proposition,
that p”, the assertion “that p, is false”, in symbols: “¬p”, is saying something much
stronger than “the epistemic subject is not in possession of a proof for p”. “¬p”
means “the epistemic subject is in possession of a proof of the impossibility of p”,
i.e. he knows he will never have evidence for p, no matter how his cognitive process
develops further. On the basis of these reflections, intuitionism does not include,
among others, the law of the excluded middle in the tautologies of logic. There
are statements, such as Goldbach’s Conjecture (every even, positive integer greater
than two is the sum of two primes), that are at the present undecided. Intuitionism
emphasizes the temporal aspect of knowledge. The fact that someday, it will be
perhaps possible to determine whether Goldbach’s Conjecture is true or false does
not change the current indecision. Potential truth values cannot replace actual ones.
Only if a proper mental construction lays before the epistemic subject, he or she
knows that p, or, respectively, that¬p. The excluded middle (p∨¬p) as valid logical
principle is dropped.

After this argumentation, it becomes clear that intuitionistic logic cannot admit
the formal counterpart of indirect reasoning:

[¬p]
...

⊥
p

Another point of disagreement between classical and intuitionistic (predicate) logic
is constituted by the interpretation of the quantifiers. Classical logic deals with
quantified statements as if the multiplicity of objects the quantifier ranges over
would be finite. To say it roughly: when the classical logician writes ‘∀xα(x)’ he
or she takes for granted that it is in principle possible to verify, for each single
element of the domain in question, that it has the property of being α. But this is
possible only if the quantifier ranges over a collection of only finitely many entities.
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Current Foundations

Set Theory

Set theory is rather well known to be a quite efficient framework for foundational
issues: mathematical as well as metamathematical objects can easily be represented
within it, it gives clear answers to old philosophical questions on basic assumptions,
allowed inferences and gapless proofs. Set-theoretic accounts, however, have to face
one main challenge: the independence phenomenon, or syntactic incompleteness of
set theory.

Let us recall that ZFC originated, in the first place, as an answer to the problems
arisen within the context and set of problems of Cantor’s naïve set theory. As is
well known, Zermelo suggested a first axiomatization in 1908,10 which was further
developed to ZFC. ZFC as foundational framework helps to give an answer to the
following fundamental questions:

(i) Which are the basic assumptions of mathematics?
(ii) What is an allowed inference?

(iii) What counts as a proof without gaps?

Indeed, one takes (i) the basic assumptions to be the axioms of ZFC, (ii) an
allowed inference to be such that it only employs inference rules whose premises
and conclusions are written in the language of first order logic, and (iii) a proof
without gaps to be a derivation of a sentence from the ZFC-axioms through the use
of allowed inferences.

Set theory can represent most mathematical objects from any mathematical area.
There are standard representations of simple mathematical objects such as the
following of natural numbers:

0 = ∅, 1 = {∅} , 2 = {∅, {∅}} , . . . , n+ 1 = n ∪ {n} , . . .

Functions are represented as sets of ordered pairs, groups (G, ·) as the ordered pairs
of a set G and an operation ·, and so on.

Set theory can represent metamathematical objects as well, for instance, through
Gödel’s coding.

It is worth mentioning that we do not need the full power of ZFC to formalize
a number of metamathematical concepts. In particular, for that part of mathematics
needed to set up ZFC, only some recursion theory is actually needed.

It is the representing property that makes it possible to take set theory as
foundational framework for mathematics, metamathematics and yet, as some argue,

10Zermelo 1908.
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for all mathematical reasoning. De facto “foundational framework” and “set theory”
are most often used as tantamount.11

Nonetheless, the independence phenomenon constitutes no minor problem for
any set-theoretic account. For, if set theory cannot decide every sentence of its own
language, how can it work as a suitable framework for all mathematical reasoning?
We recall that a theory T is syntactically complete when it decides every sentence
A of its language. Sentences that are neither provable nor refutable in a theory
are called “independent sentences”. Set theory happens to be more sensible to the
independence phenomenon than other mathematical areas, and it is often the use of
a set-theoretic framework that makes the independence problem come to the fore in
different mathematical fields, such as in operator algebra.12

A number of set theorists appear to be quite indifferent to the philosophical
implications of the independence phenomenon. Others consider independence to
be avoidable and search for stronger methods to decide whether an independent
sentence is true or false. Two main questions arise in this context:

(i) Are all set-theoretic sentences either true or false?
(ii) If ZFC is extended to a stronger theory which axioms should be added?

Question i. is usually referred to as “realism/pluralism debate”. “Realism”
denotes that particular position in the philosophy of mathematics that takes every
set-theoretic sentence to be either true or false, “pluralism”, at variance, denotes the
view that there are set-theoretic sentences that are true in one mathematical reality
and false in another.13 Ontological talk is often used to formulate question i.. Under
the heading “universism” one usually understands the view that set theory has a
unique model (as argued, for instance, by W. Hugh Woodin), under “multiversism”
the view that there is a multiverse of various different universes of sets (as argued,
for instance, by Joel D. Hamkins.)14

Answers to question ii. are often articulated in proposing criteria for new axioms.
Already Kurt Gödel had suggested that new axioms could be justified either
intrinsically or extrinsically.15 We can render the idea of an intrinsically justified
axiom by saying that it flows from the very nature of set or that it roots in the
concept of set. The extrinsic justification plays, nowadays, a major role in Penelope
Maddy’s approach. Roughly, an axiom is justified if it meets the practical goals of
set theorists. A further criterion welcomed by all parties (even those who are critical
towards both intrinsicality and extrinsicality) is maximality. Shortly, there exist as
many sets as there can possibly exist. A problem here is constituted by the fact
that there are different ways to formally capture this property and that, depending

11See, for instance, Caicedo et al. (eds.) 2017.
12Hereto cp. Farah 2011.
13See, among others, the symposia on Set-theoretic Pluralism (https://sites.google.com/site/
pluralset).
14See Hamkins 2012.
15Gödel 1947.

https://sites.google.com/site/pluralset
https://sites.google.com/site/pluralset
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on this formal rendering, different existence axioms are introduced, to wit, large
cardinal axioms or forcing axioms.16

The philosophy of set theory is today an active research field, in which new ideas
are regularly brought into discussion, available concepts are constantly refined and
farsighted perspectives are developed. The first chapter of the present volume gives
more detailed insights into debated topics in current philosophy of set theory.

Homotopy Type Theory/Univalent Foundations

Part II of the present volume pursues two complementary goals, namely, (i) to
explain the basic ideas of HoTT and (ii) to present special properties of it.

Classic set theory, as we saw, can represent all mathematical objects via sets,
i.e. by one kind of objects. Type theory, on the contrary, works with a hierarchy of
different kinds of objects, called “Types”. The idea of a type-sensitive foundation
has become more and more important along with the progressive development of
data-types-talk in computer science. Moreover, actual mathematical practice seems
to be aware of type differences even when single mathematicians plead for untyped
frameworks: nobody would try to differentiate a vector space!

In type theory each term has a type.
Let “nat” be the type of natural numbers. Thus, “5 is a natural number” will be

written as follows:

5 : nat .

Operations are type-sensitive too. The addition on natural numbers, e.g., takes two
objects of the kind nat as input and gives one object of the kind nat as output:

+ : nat × nat→nat .

As already said, the type-hierarchy of mathematical objects and operations makes
it possible to ascribe to each term its own type. Under “rewrite systems” is usually
meant the reduction of complex terms to their normal forms. For instance, “5 + 2”
and “7” are names of the very same object. The latter has a well-determined place
in the natural number series. We write:

5+ 2 � 7,

to indicate the reduction of the complex term “5 + 2” to its normal form “7”.

16Cp. Incurvati 2017, 162 for Large Cardinal Axioms, and 178ff. for Forcing Axioms.
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Type theory was introduced by Bertrand Russell as a way out from the difficulties
come into being within the context and set of problems of naive set theory. At a
variance with Russell’s, current type theory has the additional problem of reducing
terms to their normal form (rewrite problem). This makes it necessary to look for
a formal counterpart for the operation represented by “�”.

This operation is to be found formally implemented, for the first time, in
combinatory logic,17 a logic which was introduced by Schönfinkel with the aim to
drop quantifiers from the language of predicate logic. Combinatory logic is usually
seen as the forerunner of the λ-calculus. In this regard it is worth mentioning that
A. Church elaborated, around 1930, a framework for a paradox-free reconstruction
of mathematics based on the notion of a type-free function-in-intension. The
original theory was proved inconsistent around 1933 by S. Kleene and J.B. Rosser.
Subsequently, its sound fragment, the so-called untyped λ-calculus, was isolated
and employed in the context of the theory of computability. In this theory the
abstraction operator “λ” plays a fundamental role. Such approach is based on the
procedural conception of function, i.e. its conception as rule, prescription, algorithm
in a general sense.

Indeed, two natural ways of thinking of functions are often appealed to. The first
way is the relational way: it takes a function to be a type of relation. The second
way takes a function to be a rule, or algorithm in a general sense, as we said above.
Under the extensional reading, the concept of function and the concept of set are
interdefinable. We reduce functions to sets by means of the notion of “graph of
a function” and, conversely, we reduce sets to functions by means of the notion
of “characteristic function of a set”. This interdefinability no longer obtains when
we consider functions as rules, since the latter notion always implies the idea of
a procedure that is more or less effective. Note that an implicit type-distinction is
present in the set-theoretical account of functions: functions, on the one hand, and
arguments and values, on the other hand, live at different levels of the cumulative
hierarchy. Thus, from a set-theoretical perspective the application of a function to
itself makes no sense: from f : A → B it follows, in standard set theory with the
axiom of foundation, that f �∈ A. By contrast, in the λ-calculus it does make sense
to apply an operation to itself: intuitively, operations can be thought of as finite
lists of instructions which, therefore, do not differ in principle from the arguments
on which they act: both are, loosely speaking, finite pieces of data. The active role
(behaving as an operation) and the passive role (behaving as an argument) of certain
elements F, G of this untyped universe is only position-determined. When we write
F(G), F is a rule that is applied to the argument G; but this does not prevent us from
considering also the application G(F) of G to F, where now G is the rule.

Martin-Löf’s type theory provides an alternative foundational framework
inspired by constructive mathematics. In particular, the requirements we recalled
above as to intuitionistic logic are taken to hold; to wit, the exhibition of a
witness for any existential assumption, the existence of a proof for one of the

17Cp. Schönfinkel 1924 and Church 1932.
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horns of a disjunction, if the disjunction is taken to be true, or the exhibition
of the proof that a sentence A leads to contradiction if this sentence is taken to
be false. The implementation of such requirements within the theory is referred
to as internalization of the Brouwer–Heyting–Kolmogorov interpretation (BHK-
interpretation) of the logical operators. In addition, constructive type theory presents
the particular feature of admitting dependent types.

HoTT is a form of type theory based on constructive type theory18 endowed
with some elements from topology that can be used to construct models for logical
systems.19 One important reading of HoTT sees types as spaces and terms as points.
Dependent types correspond to fibrations in topology, and the identity between
terms is rendered by the concept of path between points. At a variance with set
theory there is here no need for a logic next to or on top of it: constructive
types already act as a formal calculus for deduction. HoTT (in the mentioned
interpretation) along with the corresponding models has properties that naturally
bring to the fore candidates for new axioms, as for instance, the univalence
axiom.20 Voevodsky’s univalent foundations programme that emerged from these
investigations is but one good example for a foundational framework, which,
moreover, turns out to be well suited as a background theory for the implementation
of modern mathematics in formal proof systems such as Coq.21

HoTT is a very promising approach. Even the Institute of Advanced Study in
Princeton has dedicated a Special Year on Univalent Foundations of Mathematics
(2012/2013), during which topologists, computer scientists, category theorists and
mathematical logicians have collaborated to jointly promote HoTT.

The Contributions

Let us now give a short overview of all contributions.

18Cp. Martin-Löf 1975.
19Hofmann and Streicher 1998 constructed a model of Martin-Löf’s type theory in the category
of groupoids. Moerdijk 2011 conjectured that there exists a general link between Quillen models
(models that contain, in particular, classical homotopy of spaces and simplicial sets) and type
theory. Awodey, Warren and Voevodsky proved fundamental connections between homotopy
theory and type theory.
20This approach interprets types as spaces or homotopy types. This makes it possible to directly
work with spaces, without having to define a set-theoretic topology. The univalence axiom
additionally holds in several possible models. Hereto see Voevodsky 2009.
21In the univalent perspective one uses a modified type theory, which is extended by certain
axioms, such as the univalence axiom. This approach can very well be implemented as theoretical
background of formal proof system, such as Agda and Coq.
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Part I: Current Challenges for the Set-Theoretic Foundations

Mirna Džamonja and Deborah Kant attempt in their chapter “Interview with
a Set Theorist” to give insights into current set-theoretic practice with a focus
on independence and forcing. After giving some technical remarks, Džamonja
describes the introduction and adoption of the forcing method in set theory and they
present important forcing results. In a next section, they discuss the meaning of the
word “axiom”, differing between ZFC-axioms, large cardinal axioms and forcing
axioms, and mentioning the questions of existence and truth in set theory. Then,
some experience-based statements on set theory are revealed in a conversation on
surprising events. Džamonja and Kant argue that such statements are part of set-
theoretic knowledge. They give three hypotheses and encourage further research on
set-theoretic practice.

Laura Fontanella provides in her chapter “How to Choose New Axioms for
Set Theory” a mathematically highly informed overview on specific arguments
for and against new axiom candidates for set theory. First, she discusses common
justification strategies and focuses on Gödel’s and Maddy’s ideas. Second, she
considers in detail the axiom of constructibility, large cardinal axioms (small ones
and large ones), determinacy hypotheses, Ultimate-L and forcing axioms.

Claudio Ternullo considers in his chapter “Maddy on the Multiverse” Maddy’s
objections to multiverse approaches in set theory and suggests counter-arguments
to her concerns. He elaborates in particular on the role of set theory as a generous
arena, and as fulfilling the goal of conceptual elucidation, and on the issues of the
metaphysics and possible axiomatization of the multiverse. In particular, Ternullo
identifies two forms of multiversism – instrumental and ontological multiversism –
and while he agrees with Maddy that all metaphysical considerations relating to
the status and prospects of the multiverse should be disregarded, he argues that a
multiverse theory can fulfil set theory’s foundational goals, in particular generous
arena and conceptual elucidation, and that, ultimately, it might also be axiomatized.

Penelope Maddy clarifies her view on multiversism in her “Reply to Ternullo on
the Multiverse”. She points out that extrinsic reasons for new axioms cannot simply
be rejected by evaluating them as practical, since multiverse views also use extrinsic
considerations as theoretical. Categorizing important forms of multiversism, as
Ternullo did, she considers theory multiversism as an explicit form of instrumental
multiversism, and heuristic multiversism. The main problem for theory multiversism
is in her view that there is only one axiomatic multiverse theory (given by John
Steel), but this theory is not intended to replace ZFC. Maddy rejects the claim that a
multiverse theory is a better foundational theory than ZFC. However, she embraces
the heuristic value of multiverse thinking for set theory.

Philip Welch presents in his chapter “Proving Theorems from Reflection” some
open problems of analysis which are independent of ZFC. For their solution, he
suggests a global reflection principle. First, he describes important relations between
large cardinal axioms, determinacy principles and regularity properties of projective
sets of reals. Second, he explains how reflection principles can justify large cardinal
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axioms. Welch considers a family C of the mereological parts of V and formulates
the global reflection principle which states that the structure (V,∈, C) be reflected to
some (Vα , ∈ , Vα + 1). This principle justifies the existence of certain large cardinals,
which implies that all projective sets of reals have the regularity properties. This
answers the problems presented at the beginning.

Part II: What are Homotopy Type Theory and the Univalent
Foundations?

Thorsten Altenkirch motivates and explains in his chapter “Naive Type Theory”
the use of homotopy type theory. He starts his presentation from a clear position
by arguing that HoTT is a better foundation of mathematics than set theory. In
the first half of the chapter, he revises important basic notions of type theory such
as judgements, propositions, the Curry-Howard equivalence, functions, induction
and recursion. Throughout the chapter, his explanations are supplemented by many
exercises which invite the reader to use the introduced definitions. The second half
is dedicated to HoTT. While referring to set-theoretic concepts for clarification,
he literally denotes some classical principles as forms of lying and elaborates on
several type-theoretic versions of AC. Altenkirch concludes with the topic of higher
inductive types and gives an extended example of the definition of the integers.

Benedikt Ahrens and Paige Randall North focus in their chapter “Univalent
Foundations and the Equivalence Principle” on the notion of equivalence of
mathematical objects, which is one fundamental notion of the univalent foundations.
Their aim is to prove the equivalence principle for different domains D, and
defining equivalence through reference to D-properties and D-structures such that
it coheres with mathematical practice. They review the univalence principle which
holds in Voevodsky’s simplicial set model and prove the equivalence principle for
propositions, sets and monoids. Ahrens and North close their presentation with
categories and show that the equivalence principle does not hold for arbitrary
categories but for univalent categories.

Ulrik Buchholtz presents the construction of higher structures in his chapter
“Higher Structures in Homotopy Type Theory”. He distinguishes between two
aims of HoTT: On the one hand its use as a foundation of mathematics in the
univalent foundations, and on the other hand, the study of structures that are
needed in mathematics. He introduces many technicalities to show in which specific
aspects the constructions are complicated. Elementary HoTT is defined as MLTT
with univalence, pushouts and propositional resizing, and can already be most
needed. There remain, among others, the problems of constructing (∞,1)-categories
and developing a meta theory for HoTT/UF. Here, Buchholtz offers detailed and
optimistic considerations on the challenges and possible means that could solve
these problems.
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In his chapter “Univalent Foundations and the UniMath Library: The Architec-
ture of Mathematics” Anthony Bordg first explains the univalent foundations of
mathematics, the Univalence Axiom and the so-called homotopy levels. Then, he
gives insights into the UniMath library of formalized mathematics based on the
univalent foundations, underlying in the process the compatibility of this library
with classical reasoning supported by the Law of Excluded Middle and the Axiom of
Choice. Second, he analyses some challenges for large-scale libraries of formalized
mathematics. Bordg devotes his third part to an investigation of parallels between
ideas from the architect Christopher Alexander and some organic features of
mathematics. He argues that these features need to be preserved, hence they should
become desirable properties of libraries of formalized mathematics if one wants
these libraries to be scalable and a sustainable way of doing mathematics.

Andrei Rodin’s article “Models of HoTT and the constructive view of theories”
can be read in two ways: As the development of new formal tools to do philosophy
of science and as a case study of the usefulness of the new developments around the
Univalent Foundation program. On the philosophical side of things, he develops the
constructive view of (scientific) theories in contrast to axiomatic approaches and
those based on set theory. A crucial distinction here is between rules and axioms
in their role as first principles. These general thoughts find their way to precise
formal counterparts and similar to the part before both axiomatic deduction system
and model theoretic tools based on set theory are contrasted with proof-theoretic
alternatives benefitting from the tools of Martin-Löf Type Theory and Homotopy
Type Theory. While still being a first study, it offers a very detailed account of the
technical apparatus.

Part III: Comparing Set theory, Category Theory, and Type
Theory

Neil Barton and Sy Friedman deal with the problem of different foundational
perspectives – categorial and set-theoretic – in their chapter “Set theory and
Structures” by presenting a modification of set theory to better respect structural
discourse. In the first part, they respond to various concerns about both category-
theoretic and set-theoretic foundations such as the problem of a determinate subject
matter for category theory and too little isomorphism invariance in set theory.
In a second part, they present a class theory with structures (NBGS), in which
material set theory is combined with structures in such a way that a higher degree of
isomorphism invariance is provable. Barton and Friedman advocate methodological
pluralism for the foundations of mathematics and encourage further research on
combining foundational theories.

Mirna Džamonja faces in her chapter “A New Foundational Crisis in Math-
ematics, Is It Really Happening?” the question of a potential rivalry between
different foundational theories in mathematics. Her main aim is to describe the
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current situation of the foundations of mathematics and to resolve some worries.
In order to illustrate some differences, she describes type theory, elaborates on
identity and univalence and explains the topology behind the univalent foundations.
She concludes by claiming that there does not have to be a unique foundation of
mathematics. Džamonja argues for pluralism and that the univalent foundations and
set theory can well complement each other.

Ansten Klev elucidates in his chapter “A Comparison of Type Theory with Set
Theory” fundamental conceptual differences between Martin-Löf’s type theory and
set theory. He argues that type theory is better suited to clarify mathematical notions.
In a first part, he describes types to be kinds or sorts of objects. In contrast, he
explains sets as pluralities which can contain objects of arbitrary different types. In
a second part, he considers in detail the syntax of type theory and presents types,
propositions, terms, judgements and contexts (for hypothetical judgements). In his
third part on functions, the advantage of having functions as primitive notions in
type theory is highlighted. The final part is dedicated to identity, in which Klev
elaborates on the difference between propositional and judgemental identity in type
theory.

Penelope Maddy addresses in her chapter “What Do We Want a Foundation
to Do?: Comparing Set-Theoretic, Category-Theoretic, and Univalent Approaches”
the question of foundational theories by isolating rigorously the foundational jobs
that are done by a suggested theory. First, she argues that set theory does the jobs risk
assessment, generous arena, shared standard, and metamathematical corral. Second,
she analyses that the foundational job that category theory was argued to be better
suited for is essential guidance. Third, she introduces a new foundational job, proof
checking, that is done by the univalent foundations. With her new terminology,
Maddy provides a theoretic framework which is very well suited for a thorough
comparison and discussion of foundational theories in mathematics.

Part IV: Philosophical Thoughts on the Foundations
of Mathematics

In “Formal and Natural Proof: A Phenomenological Approach” Merlin Carl
elaborates on the relation between formal proofs in the sense of a derivation and
proofs in the sense we can find them in mathematical discourse. He motivates
a positive connection via Gödel’s Completeness Theorem and success of the
generation of deduction with formal mathematics.

A crucial problem is the nature of formal and natural proofs. A classical
dispute is the one between Rav and Azzouni, while the second explains the strong
agreement of mathematicians and the statements they prove with a link to underlying
derivation, the first claims that a derivation presupposes a sufficient understanding
of the natural proof, which makes it absolute.
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This is a challenge for the connection that the author answers in two ways. Via
the success of formal mathematics and especially via the Naproche system, which
tries to bridge the gap with linguistic methods including a historic case study, where
a formalization attempt would have helped to find a flaw in a proof attempt. And
via phenomenological methods, namely by enlarging Husserl’s distinction between
distinctiveness and clarity of judgements, to the mathematical proofs.

Michèle Friend provides with “Varieties of Pluralism and Objectivity in Math-
ematics” a revised version of an article published in Mathematical Pluralism,
Special Issue of the Journal of the Indian Council of Philosophical Research, Mihir
Chakraborty and Michèle Friend (Guest Editors) Springer. JICPR Vol. 34.2 pp.
425 – 442. DOI 10.1007/s40961-061-0085-3. ISSN: 0970-7794. pp. 425 – 442.

She offers an alternative to the realist and traditional accounts of objectivity in
mathematics by elaborating the pluralistic position. To be more precise, there are
several ways in which a philosophy of mathematics can be pluralistic, namely,
epistemology, foundations, methodology, ontology and truth. Friend gives an
overview on these different approaches, delivers thereby an interesting typography
and analyses how each variation can explain objectivity in mathematics.

Graham Priest’s chapter “From the Foundations of Mathematics to Mathe-
matical Pluralism” tells the story of different foundational endeavours pinned at
historically important actors, namely, Frege, Russell, Zermelo, Brouwer and Hilbert.
These more historical aspects yield to the recent history of category theory. In § 9
and 10 the author introduces paraconsistent accounts of mathematics, motivated
by impossible manifolds, which can be formalized by paraconsistent tools. This
roundtrip to the study of such different mathematical structures motivates the final
vote towards a more pluralistic philosophy of mathematics.

Roy Wagner’s chapter “Does Mathematics Need Foundations?” is an important
step back from our endeavour of the comparison of different foundational theories. It
starts with a revisit of the classical foundational enterprises: Russell, Brouwer and
Hilbert but also critical accounts like Poincaré’s and Wittenstein or the maverick
tradition. This offers insights into a variety of schools of thoughts in a broad
narrative of the problems and possibilities of foundational thinking. The chapter
ends with a very interesting case study from anti-foundationalist mathematics,
namely, Kerala mathematics in the fourteenth to sixteenth century.

The chapter offers an account which preserves a lot of positive aspects often
connected to the foundations of mathematics, like shared standards and risk
assessment, and shows that this is not only a metaphysical possibility but historical
fact.

Part V: Foundations in Mathematical Practice

Nathan Bowler’s chapter “Foundations for the Working Mathematician, and for
Their Computer” discusses the aspects of the candidates discussed in this volume
which are reflected in the mathematical practice. The chapter focuses mainly on
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ZFC but considers some advantages of categorical or type-theoretic foundations. A
key distinction is in how far we differentiate between human-friendly and machine-
friendly aspects of the foundations.

Bernhard Fisseni, Martin Schmitt, Bernhard Schröder and Deniz
Sarikaya’s Article “How to frame a mathematician: Modelling the cognitive
background of proofs” uses the tool of frame semantics, developed in linguistics
and artificial intelligence, as a basis for describing and understanding proofs. The
key idea of frames is that concepts offer some roles (also: features, attributes):
When talking about “selling” something, we know, for example, that the transfer
involves a seller, a buyer, a sold item, money, etc., and, if not given explicitly, we
assign default entities from the discourse universe to (some of) those roles. The
general argument is that we proceed similarly when comprehending proofs. As an
illustration, the authors develop a frame representation for induction proofs. They
use a formalism based on feature structures, a general data structure prominent in
formal linguistics.

Lawrence C. Paulson gives in his chapter “Formalising Mathematics in Simple
Type Theory” an intriguing insight into the formalization of mathematics. Starting
from the conviction that there will always be different formalisms that are better
suited than others for specific purposes, he carefully delineates the possibilities of
simple type theory. He shares his personal perspective, which is based on long
experience with different automated proof systems and presents the original code
of a theorem on stereographic projections in HOL Light and its translation into
Isabelle/HOL. Paulson shows here how translations from one proof system to
another are accomplished, and he emphasizes the importance of such translational
work for the future use of proof systems in mathematics.

In “Dynamics in Foundations: What Does It Mean in the Practice of Mathemat-
ics?” Giovanni Sambin gives insight in the programme of dynamic constructivism.
The first part gives a philosophical motivation and explains the interplay between
mathematical practice and the philosophy of mathematics. We learn (without too
many technical details) about a possible shared arena for classical and constructive
mathematics, the minimalist foundation (developed jointly by the Author and M.
E. Maietti). The second part offers a proof of concept for dynamic constructivism,
we learn about point free topology and other theories developed by the author in
this new paradigm. This is especially important given the motivation in the first
section asking from a foundation to foster new and creative pieces of mathematics.
The last part reflects on the benefits of the adaption to this position and draws a
parallel to fruitful developments in the sciences via the vocabulary from philosophy
of science, namely by elaborating how the adaption of this position yields a helpful
new perspective - a new paradigm.



Introduction xxv

The Editors

Stefania Centrone holds an Heisenberg Stelle at the Technische Universität Berlin.
She is author, among others, of Logic and Philosophy of Mathematics in the Early
Husserl (Springer, Synthese Library 2010) and Studien zu Bolzano (Academia
Verlag 2015). She is editor of the collected volumes Versuche über Husserl (Meiner
2013) and Essays on Husserl’s Logic and Philosophy of Mathematics (Springer,
Synthese Library 2017) and co-editor, together with Sara Negri, Deniz Sarikaya
and Peter Schuster of the volume Mathesis Universalis, Computability and Proof
(Synthese Library, 2019).

Deborah Kant is a PhD candidate in philosophy at the University of Konstanz
with a project on independence and naturalness in set theory. As a member of the
Forcing Project, led by Carolin Antos, she investigates the set-theoretic indepen-
dence problem from a practical perspective. In 2019, she visited the Department for
Logic and Philosophy of Science in Irvine, and, in 2017, the Institute for History
and Philosophy of Sciences and Technology in Paris. Before her PhD, she studied
mathematics in Berlin.

Deniz Sarikaya is a PhD candidate in philosophy at the University of Hamburg.
Before his PhD, he studied philosophy (BA: 2012, MA: 2016) and mathematics
(BSc: 2015, MSc: 2019) at the University of Hamburg with experience abroad at
the Universiteit van Amsterdam, Universitat de Barcelona, and the University of
California, Berkeley, and as a research intern at the University of British Columbia.
His project was augmented through a stay at the EHT Zurich. He is mainly focusing
on philosophy of mathematics and logic.

Literature

Brouwer, L. E. J. (1907). Over de Grondslagen der Wiskunde. Maas & van Suchtelen.
Caicedo, A., Cummings, J., Koellner, P., & Larson, P. (Eds.). (2017). Foundations of Mathematics:

Logic at Harvard: Essays in honor of Hugh Woodin’s 60th birthday, March 27–29, 2015,
Harvard University, Cambridge, MA (Contemporary mathematics, v. 690). Providence, Rhode
Island.

Cantor, G. (1872). Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen
Reihen. Mathematische Annalen, 5(1), 123–132.

Church, A. (1932). A Set of Postulates for the Foundation of Logic. Annals of Mathematics, 33(2),
346–366.

Church, A. (1940). A formulation of the simple theory of types. Journal of Symbolic Logic, 5,
56–68.

Dedekind, R. (1872). Stetigkeit und irrationale Zahlen. F. Vieweg und Sohn.
Dummett, M. (1977). Elements of Intuitionism. Oxford University Press.
Farah, I. (2011): All automorphisms of the Calkin algebra are inner. Annals of Mathematics,

173(2011), 619–661.
Frege, G. (1893/1903) Grundgesetze der Arithmetik: Begriffsschriftlich Abgeleitet I and II. Julius.

Jena: Springer.



xxvi S. Centrone et al.

Gödel, K. (1947). What is Cantor’s Continuum problem? The American Mathematical Monthly,
54(9), 515–525.

Hamkins, J. D. (2012). The set-theoretic multiverse. The Review of Symbolic Logic, 5(3), 416–449.
Heyting, A. (1930). Die formalen Regeln der intuitionistischen Logik. Deutsche Akademie der

Wissenschaften zu Berlin.
Heyting, A. (1975). Intuitionism in Mathematics. Journal of Symbolic Logic 40(3), 472–472.
Hilbert, D. (1917). Minoritätsgutachten. In: Peckhaus, V. (1990). Hilbertprogramm und Kritische

Philosophie. Das Göttinger Modell interdisziplinärer Zusammenarbeit zwischen Mathematik
und Philosophie. Vandenhoeck & Ruprecht, Göttingen.

Hilbert, D. (1935). Die logischen Grundlagen der Mathematik. In Dritter Band: Analysis·
Grundlagen der Mathematik· Physik Verschiedenes (178–191). Berlin/Heidelberg: Springer.

Hilbert, D. (1926). Über das Unendliche. Mathematische Annalen, 95(1), 161–190.
Hofmann, M. & Streicher, T. (1998). The groupoid interpretation of type theory. Twenty-five years

of constructive type theory (Venice, 1995), 36, 83–111.
Incurvati, L. (2017). Maximality principles in set theory. Philosophia Mathematica, 25(2), 159–

193.
Kleene, S., & Rosser, J. (1935). The inconsistency of certain formal logics. Annals of Mathematics,

36(3), 630–636.
Kline, M (1990). Mathematical thought from ancient to modern times (Vol. 3). New York: Oxford

University Press.
Martin-Löf, P. (1975). An intuitionistic theory of types: Predicative part. In Studies in logic and

the foundations of mathematics (Vol. 80, pp. 73–118). Amsterdam: Elsevier.
Moerdijk, I. (2011), Fiber bundles and univalence, Based on a talk given at the conference: Algo-

rithms and Proofs 2011, see: https://www.andrew.cmu.edu/user/awodey/hott/papers/moerdijk_
univalence.pdf.

Russell, B. & Whitehead, A. N. (1910–1927). Principia Mathematica (3 Volumes). Cambridge:
Cambridge University Press.

Schönfinkel, M. (1924). Über die Bausteine der mathematischen Logik. Mathematische Annalen,
92(3), 305–316.

Voevodsky, V. (2009). Notes on type systems, Unpublished notes.
Zermelo, E (1908). Untersuchungen über die Grundlagen der Mengenlehre. I Mathematische

Annalen, 261–281.

https://www.andrew.cmu.edu/user/awodey/hott/papers/moerdijk_univalence.pdf
https://www.andrew.cmu.edu/user/awodey/hott/papers/moerdijk_univalence.pdf


Contents

Part I Current Challenges for the Set-Theoretic Foundations

1 Interview With a Set Theorist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Mirna Džamonja and Deborah Kant

2 How to Choose New Axioms for Set Theory? . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Laura Fontanella

3 Maddy On The Multiverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Claudio Ternullo

Reply to Ternullo on the Multiverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Penelope Maddy

4 Proving Theorems from Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Philip D. Welch

Part II What Are Homotopy Type Theory
and the Univalent Foundations?

5 Naïve Type Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Thorsten Altenkirch

6 Univalent Foundations and the Equivalence Principle . . . . . . . . . . . . . . . . . 137
Benedikt Ahrens and Paige Randall North

7 Higher Structures in Homotopy Type Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Ulrik Buchholtz

8 Univalent Foundations and the UniMath Library . . . . . . . . . . . . . . . . . . . . . . 173
Anthony Bordg

9 Models of HoTT and the Constructive View of Theories . . . . . . . . . . . . . . 191
Andrei Rodin

xxvii



xxviii Contents

Part III Comparing Set Theory, Category Theory, and Type
Theory

10 Set Theory and Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Neil Barton and Sy-David Friedman

11 A New Foundational Crisis in Mathematics, Is It
Really Happening? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Mirna Džamonja

12 A Comparison of Type Theory with Set Theory . . . . . . . . . . . . . . . . . . . . . . . . 271
Ansten Klev

13 What Do We Want a Foundation to Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Penelope Maddy

Part IV Philosophical Thoughts on the Foundations of
Mathematics

14 Formal and Natural Proof: A Phenomenological Approach . . . . . . . . . . . 315
Merlin Carl

15 Varieties of Pluralism and Objectivity in Mathematics . . . . . . . . . . . . . . . . 345
Michèle Friend

16 From the Foundations of Mathematics to Mathematical Pluralism . . 363
Graham Priest

17 Does Mathematics Need Foundations? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Roy Wagner

Part V Foundations in Mathematical Practice

18 Foundations for the Working Mathematician, and for Their
Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
Nathan Bowler

19 How to Frame a Mathematician . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
Bernhard Fisseni, Deniz Sarikaya, Martin Schmitt,
and Bernhard Schröder

20 Formalising Mathematics in Simple Type Theory . . . . . . . . . . . . . . . . . . . . . . 437
Lawrence C. Paulson

21 Dynamics in Foundations: What Does It Mean in the Practice
of Mathematics? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Giovanni Sambin

Correction to: Formal and Natural Proof:
A Phenomenological Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C1



Part I
Current Challenges for the Set-Theoretic

Foundations


