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Authors are encouraged to follow their individual style, but keep the interests
of the reader in mind when presenting their subject. The inclusion of exercises and
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The GL series does not strive for systematic coverage of all of mathematics.
There are both overlaps between books and gaps. However, a systematic effort is
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ripe for GL-type treatment.

As far as the development of mathematics permits, the direction of GL remains
true to the original spirit of Courant. Many of the oldest volumes are popular to this
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mathematicians.
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Preface

Many microscopic models lead to partial differential equations with rapidly
oscillating coefficients. A particular example, which is the main focus of this book,
is the scalar, uniformly elliptic equation

—V - (a(x)Vu) = £, (0.1)

where the interest is in the behavior of the solutions on length scales much larger
than the unit scale (the microscopic scale on which the coefficients are varying).
The coefficients are assumed to be valued in the positive definite matrices, and may
be periodic, almost periodic, or stationary random fields. Such equations arise in a
variety of contexts such as heat conduction and electromagnetism in heterogeneous
materials, or through their connection with stochastic processes.

To emphasize the highly heterogeneous nature of the problem, it is customary to
introduce a parameter 0 < ¢ < 1 to represent the ratio of the microscopic and
macroscopic scales. The equation is then rescaled as

v (a() ) =1, (0:2)

with the problem reformulated as that of determining the asymptotic behavior of u?,
subject to appropriate boundary conditions, as ¢ — O.

It has been known since the early 1980s that, under very general assumptions,
the solution u* of the heterogeneous equation converges in L? to the solution u of a
constant-coefficient equation

~V - (aVu) =f. (0.3)

We call this the homogenized equation and the coefficients the homogenized or
effective coefficients. The matrix a will depend on the coefficients a(-) in a very
complicated fashion: there is no simple formula for a except in dimension d = 1
and some special situations in dimension d = 2. However, if one is willing to
perform the computational work of approximating the homogenized coefficients
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and to tolerate the error in replacing u° by u, then there is a potentially huge payoff
to be gained in terms of a reduction of the complexity of the problem. Indeed, up to
a change of variables, the homogenized equation is simply the Poisson equation,
which can be numerically computed in linear time and memory and is obviously
independent of & > 0. In contrast, the cost of computing the solution to the
heterogeneous equation explodes as ¢ becomes small, and can be considered out of
reach.

There is a vast and rich mathematical literature on homogenization developed in
the last 40 years and already many good expositions on the topic (see, for instance,
the books [5, 24, 30, 38, 39, 81, 87, 116, 123, 125]). Most of these works are
focused on qualitative results, such as proving the existence of a homogenized
equation which characterizes the limit as ¢ — O of solutions. The need to develop
efficient methods for determining a and for estimating the error in the homogeni-
zation approximation (e.g., ||u® — ul|,;.) motivates the development of a quantitative
theory of homogenization. However, until recently, nearly all of the quantitative
results were confined to the rather restrictive case of periodic coefficients. The main
reason for this is that quantitative homogenization estimates in the periodic case are
vastly simpler to prove than under essentially any other hypothesis (even the almost
periodic case). Indeed, the problem can be essentially reduced to one on the torus
and compactness arguments then yield optimal estimates. In other words, in the
periodic setting, the typical arguments of qualitative homogenization theory can be
made quantitative in a relatively straightforward way.

This book is concerned with the quantitative theory of homogenization for
nonperiodic coefficient fields, focusing on the case in which a(x) is a stationary
random field satisfying quantitative ergodicity assumptions. This is a topic which
has undergone a rapid development since its birth at the beginning of this decade,
with new results and more precise estimates coming at an ever accelerating pace.
Very recently, there has been a convergence toward a common philosophy and set
of core ideas, which has resulted in a complete and optimal theory. This book gives
a complete and self-contained presentation of this theory.

We have written it with several purposes and audiences in mind. Experts on the
topic will find new results as well as arguments which have been greatly simplified
compared to the previous state of the literature. Researchers interested in stochastic
homogenization will hopefully find a useful reference to the main results in the field
and a roadmap to the literature. Our approach to certain topics, such as the cons-
truction of the Gaussian free field or the relation between Sobolev norms and the
heat kernel, could be of independent interest to certain segments of the probability
and analysis communities. We have written the book with newcomers to homo-
genization in mind and, most of all, graduate students and young researchers. In
particular, we expect that readers with a basic knowledge of probability and ana-
lysis, but perhaps without expertise in elliptic regularity, the Gaussian free field,
negative and fractional Sobolev spaces, etc, should not have difficulty following the
flow of the book. These topics are introduced as they arise and are developed in a
mostly self-contained way.
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Before we give a summary of the topics we cover and the approach we take, let
us briefly recall the historical and mathematical context. In the case of stationary
random coefficients, there were very beautiful, soft arguments given independently
in the early 1980s by Kozlov [88], Papanicolaou and Varadhan [114], and Yurinski
[131] which give proofs of qualitative homogenization under very general hypo-
theses. A few years later, Dal Maso and Modica [40, 41] extended these results to
nonlinear equations using variational arguments inspired by I'-convergence. Each
of the proofs in these papers relies in some way on an application of the ergodic
theorem applied to the gradient (or energy density) of certain solutions of the
heterogeneous equation. In order to obtain a convergence rate for the limit given by
the ergodic theorem, it is necessary to verify quantitative ergodic conditions on the
underlying random sequence or field. It is therefore necessary and natural to impose
such a condition on the coefficient field a(x). However, even under the strongest of
mixing assumptions (such as the finite range of dependence assumption we work
with for most of this book), one faces the difficulty of transferring the quantitative
ergodic information contained in these strong mixing properties from the coeffi-
cients to the solutions themselves, since the ergodic theorem must be applied to the
latter. This is difficult because, of course, the solutions depend on the coefficient
field in a very complicated, nonlinear, and nonlocal way.

Gloria and Otto [72, 73] were the first to address this difficulty in a satisfactory
way in the case of coefficient fields that can be represented as functions of coun-
tably many independent random variables. They used an idea from statistical
mechanics, previously introduced in the context of homogenization by Naddaf and
Spencer [109], of viewing the solutions as functions of these independent random
variables and applying certain general concentration inequalities such as the Efron—
Stein or logarithmic Sobolev inequalities. If one can quantify the dependence of the
solutions on a resampling of each independent random variable, then these ine-
qualities immediately give bounds on the fluctuations of solutions. Gloria and Otto
used this method to derive estimates on the first-order correctors which are optimal
in terms of the ratio of length scales (although not optimal in terms of stochastic
integrability).

The point of view developed in this book is different and originates in works of
Armstrong and Smart [18], Armstrong and Mourrat [14], and the authors [11, 12].
Rather than study solutions of the equation directly, the main idea is to focus on
certain energy quantities, which allow us to implement a progressive coarsening
of the coefficient field and capture the behavior of solutions on large—but finite—
length scales. The approach can thus be compared with renormalization group
arguments in theoretical physics. The core of the argument is to establish that, as we
pass to larger and larger length scales, these energy quantities become essentially
local, additive functions of the coefficient field. It is then straightforward to opti-
mally transfer the mixing properties of the coefficients to the energy quantities and
then to the solutions. This perspective has motivated numerous subsequent
developments by many researchers and we refer to the discussions at the end of
each chapter for more precise references.
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The quantitative analysis of the energy quantities is the focus of the first part
of the book. After the first introductory chapter, the strategy naturally breaks into
several distinct steps:

e Obtaining an algebraic rate of homogenization (Chap. 2): roughly speaking, we
show that there is a positive exponent « such that the solutions #° and u of (0.2)
and (0.3), respectively, are apart by O(¢*). Here, the emphasis is on obtaining
estimates with optimal stochastic integrability, while the exponent o represen-
ting the scaling of the error is clearly suboptimal. A precise statement can be
found in Theorem 2.18, the proof of which is based on the subadditive and
convex analytic structure endowed by the variational formulation of the equa-
tion. The basic idea is that, rather than attempting to understand the solutions
directly, we should first analyze the behavior of their energy densities—or, to be
precise, local, subadditive quantities related to their energy densities—which
turn out to be better behaved. Specifically, we obtain a convergence rate for
these subadditive quantities and show that this, in turn, implies a quantitative
rate of homogenization for the Dirichlet problem.

e Establishing a large-scale regularity theory (Chap. 3): we show that solutions of
an equation with stationary random coefficients are much more regular than one
can show by naively applying deterministic elliptic regularity estimates. We
prove this by showing that the extra regularity is inherited from the homoge-
nized equation by approximation, using a Campanato-type iteration and the
quantitative homogenization results obtained in the previous chapter.

e Deriving optimal quantitative estimates for the first-order correctors (Chap. 4):
with the regularity theory in place, we can turn our attention to improving the
scaling of the homogenization error. It is both natural and convenient (and for
many purposes sufficient) to focus on the behavior of the first-order correctors
¢,. These are the functions for which x — e - x+ ¢,(x) is a global solution of
(0.1) with f = 0 which stays close to the affine function e - x. By the naive,
classical two-scale expansion, we should expect that for a general solution u® of
0.2),

d

u’(x) ~w'(x) == u(x)+¢ Z O u(x)g,, (;), (0.4)

k=1

see Fig. 1.2. Good quantitative information on the correctors therefore gives
good quantitative information about homogenization more generally. By
implementing a modification of the renormalization scheme of Chap. 2, with the
major additional ingredient of the large-scale regularity theory, we gradually
improve the exponent for convergence of the energy densities of the first-order
correctors from a very tiny o > 0 to o = %, the optimal exponent predicted by
the scaling of the central limit theorem. Roughly speaking, we show that, for
every € C*(RY) with [ =1,
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ede= [ (3(ervan(2)) -a() (e+ (1)) as

(0.5)

For a random field /¢ with range of dependence ¢ and unit variance, the standard
deviation of the quantity [p. ¥ (x)f*(x)dx should scale the same way as a sum of

0(¢~¢) many independent random variables of unit variance, which is O(¢?) and
matches (0.5). Once we have proved this estimate for the energy densities, we
can read off a complete and optimal quantitative description of the behavior
of the correctors themselves: see Theorems 4.1 and 4.24 for the precise state-
ments. As in Chap. 2, in keeping with the spirit of the renormalization ideas, the
quantities in (0.5) are studied only indirectly and the focus is rather on more
local quantities which can be thought of as coarsenings of the coefficient field.

e We go beyond the optimal quantitative estimates to a description of the
next-order behavior of the first-order correctors (Chap. 5). That is, we charac-
terize the fluctuations of the energy densities of the first-order correctors by
proving their convergence to white noise; consequently, we obtain the scaling
limit of the first-order correctors to a generalized Gaussian free field.

e Combining the optimal estimates on the first-order correctors with classical
arguments from homogenization theory, we obtain optimal quantitative esti-
mates on the homogenization error, and the two-scale expansion, for Dirichlet
and Neumann boundary value problems (Chap. 6). What we roughly show is
that, for given sufficiently smooth data, the solutions #* and u of (0.2) and (0.3),
respectively, and w*® in (0.4) satisfy the estimates

e —ulp=0@) and |Vu — Vu|lp= ),

with an extra factor of |log s|% in dimension d =2 (which is intrinsic). See
Theorems 6.11 and 6.17 for the precise statements of these estimates, which
agree with the classical estimates in the case of periodic coefficients (up to the
logarithmic correction in two dimensions).

These six chapters represent, in our view, the essential part of the theory. The
first four chapters should be read consecutively (Sects. 3.5 and 3.6 can be skipped),
while Chaps. 5 and 6 are independent of each other.

Chapter 7 complements the regularity theory of Chap. 3 by developing local and
global gradient L’ estimates (2 <p <o) of Calderon—Zygmund-type for equations
with right-hand side. Using these estimates, in Sect. 7.3 we extend the results of
Chap. 6 by proving optimal quantitative bounds on the error of the two-scale
expansion in W!”-type norms. Except for the last section, which requires the
optimal bounds on the first-order correctors proved in Chap. 4, this chapter can be
read after Chap. 3.
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Chapter 8 extends the analysis to the time-dependent parabolic equation
Ou—V -aVu = 0.

The main focus is on obtaining a suboptimal error estimate for the Cauchy—
Dirichlet problem and a parabolic version of the large-scale regularity theory. Here
the coefficients a(x) depend only on space, and the arguments in the chapter rely on
the estimates on first-order correctors obtained in Chaps. 2 and 3 in addition to
some relatively routine deterministic arguments. In Chap. 8, we also prove decay
estimates on the elliptic and parabolic Green functions as well as on their deriva-
tives, homogenization error and two-scale expansions.

In Chap. 9, we study the decay, as t — o0, of the solution u(¢, x) of the parabolic
initial-value problem

du—YV-(aVu) =0 in(0,00) x RY,
u(0,)=V-g onR?,

where g is a bounded, stationary random field with a unit range of dependence. We
show that the solution u decays to zero at the same rate as one has in the case a = Id.
As an application, we upgrade the quantitative homogenization estimates for the
parabolic and elliptic Green functions to the optimal scaling (see Theorem 9.11
and Corollary 9.12).

In Chap. 10, we show how the variational methods in this book can be adapted
to non-self-adjoint operators, in other words, linear equations with nonsymmetric
coefficients. In Chap. 11, we give a generalization to the case of nonlinear equa-
tions. In particular, in both of these chapters we give a full generalization of the
results of Chaps. 1 and 2 to these settings, as well as the large-scale C%! estimate of
Chap. 3.

We would like to thank several of our colleagues and students for their helpful
comments, suggestions, and corrections: Alexandre Bordas, Sanchit Chaturvedi,
Paul Dario, Sam Ferguson, Chenlin Gu, Jan Kristensen, Jules Pertinand, Christophe
Prange, Armin Schikorra, Charlie Smart, Tom Spencer, Stephan Wojtowytsch, Wei
Wu, and Ofer Zeitouni. We particularly thank Antti Hannukainen for his help with
the numerical computations that generated Fig. 5.3. SA was partially supported by
NSF Grant DMS-1700329. TK was partially supported by the Academy of Finland
and he thanks Giuseppe Mingione for the invitation to give a graduate course at the
University of Parma. JCM was partially supported by the ANR grant LSD
(ANR-15-CE40-0020-03).
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We expect that, despite our best efforts, some slight inaccuracies and typos
remain in the manuscript. We encourage readers to send us any they may find by
email. We will maintain a list of typos and misprints found after publication on our
webpages.

New York, USA Scott Armstrong
Helsinki, Finland Tuomo Kuusi
Paris, France Jean-Christophe Mourrat

January 2019
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Assumptions and Examples

We present the assumptions which are in force throughout (most of) the book and
give concrete examples of coefficient fields satisfying them.

Assumptions

Except where specifically indicated otherwise, the following standing assumptions
are in force throughout the book.
We fix a constant A > 1 called the ellipticity constant, and a dimension d > 2.

We let Q denote the set of all measurable maps a(-) from R? into the set of

symmetric d X d matrices, denoted by Rfyxnf, which satisfy the uniform ellipticity

and boundedness condition
EP<E - a)E<AlEf, vEeRY (0.6)
That is,
Q= {a - ais a Lebesgue measurable map from R? fo ngxmd satisfying (0.6) }
(0.7)

The entries of an element a € Q are written as ay, i,j € {1,...,d}.
We endow Q with a family of g-algebras {F ;} indexed by the family of Borel

subsets U C R?, defined by

F v := the 0 — algebra generated by the following family :

fac [wa;@ed: o e C(U)ije{L,...d}). O3

Xvii
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The largest of these o-algebras is denoted F := Jz«. For each y € RY, we let
T, : Q — Q be the action of translation by y,

(Tya)(x) :== a(x+y), (0.9)

and extend this to elements of F by defining T,E := {Tya ackE }

Except where indicated otherwise, we assume throughout the book that P is a
probability measure on the measurable space (Q,F) satisfying the following two
important assumptions:

e Stationarity with respect to 7-translations:

PoT,=P foreveryz e Z°. (0.10)

e Unit range of dependence:

¥y and Fy are P-independent for every pair U, V C R? (0.11)
of Borel subsets satisfying dist(U, V) > 1. ’

We denote the expectation with respect to P by E. That is, if X : Q — Ris an ¥ -
measurable random variable, we write

E[X] = /Q X(a)dP(a). (0.12)

While all random objects we study in this text are functions of a € Q, we do not
typically display this dependence explicitly in our notation. We rather use the
symbol a or a(x) to denote the canonical coefficient field with law P.

Examples Satisfying the Assumptions

Perhaps, the simplest way to construct explicit examples satisfying the assumptions
of uniform ellipticity (0.6), stationarity (0.10), and (0.11) is by means of a “random
checkerboard” structure: we pave the space by unit-sized cubes and color each cube
either white or black independently at random. Each color is then associated with a
particular value of the diffusivity matrix. More precisely, let (b(z)),.z« be inde-

pendent random variables such that for every z € Z,

and fix two matrices ag, a; belonging to the set

{ﬁeRdXd:V5eRd, |é|2<f-ﬁ£<A|é|2}. (0.13)

sym
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We can then define a random field x — a(x) satisfying (0.6) and with a law
satisfying (0.10) and (0.11) by setting, for every z € Z% and x € z+ [—%,%)d

a(x) = ab@ .

This example is illustrated in Fig. 1. It can be generalized as follows: we give
ourselves a family (a(z)),,« of independent and identically distributed (i.i.d.)
random variables taking values in the set (0.13), and then extend the field z — a(z)

by setting, for every z € Z¢ and x € 7+ [—%,%)d,

Another class of examples can be constructed using homogeneous Poisson point
processes. We recall that a Poisson point process on a measurable space (E, &) with
(non-atomic, o-finite) intensity measure u is a random subset I1 of E such that the
following properties hold (see also [86]):

e For every measurable set A € &, the number of points in IINA, which we
denote by N(A), follows a Poisson law of mean p(A);

¢ For every pairwise disjoint measurable sets Ay, ..., A € &, the random variables
N(Ay), ..., N(Ax) are independent.

Fig. 1 A piece of a sample of a random checkerboard. The conductivity matrix is equal to ag in
the black region, and a; in the white region
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Let IT be a Poisson point process on R? with intensity measure given by a
multiple of the Lebesgue measure. Fixing two matrices ag, a; belonging to the set
(0.13), we may define a random field x — a(x) by setting, for every x € R?,

_Jag ifdist(x, IT) <4,
a(x) = {al otherwise. (0.14)

This example is illustrated in Fig. 2. Other similar examples can be constructed
by varying the point processes or by replacing balls by different, possibly random,
shapes. For instance, choose 4 > 0 and let i denote a probability measure on [O, %]
(the law of the random radius), and let IT be a Poisson point process on R? x R
with intensity measure Adx ® u (where dx denotes the Lebesgue measure on R?).
We may then define, for every x € RY,

a(x) == ag if thereexists (z,7) € ITsuchthat |x — z| < r,
" ] a; otherwise.

By varying the construction above, one may replace balls by random shapes,
allow the conductivity matrix to take more than two values, and so forth. See Fig. 3
for an example.

A further class of examples can be obtained by defining the coefficient field
x +— a(x) as a local function of a white noise field (we refer to Definition 5.1 and
Proposition 5.14 for the definition and construction of white noise). Given a scalar
white noise W and a smooth function ¢ € C>*(R?) with support in B /2> @ smooth

function F from R into the set (0.13), we may define

) °
» 28° o o9° <
_a $00 -Q!.o.! *P e ¢

Fig. 2 A sample of the coefficient field defined in (0.14) by the Poisson point cloud. The matrix
a is equal to ag in the black region and to a; in the white region
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Fig. 3 This coefficient field is sampled from the same distribution as in Fig. 2, except that the balls
have been replaced by random shapes

a(x) = F((W * ¢)(x)). (0.15)

See Fig. 4 for a representation of the scalar field x+— (W * ¢)(x).
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Fig. 4 The figure represents the convolution of white noise with a smooth function of compact
support, using a color scale. This scalar field can be used to construct a matrix field x — a(x)
satisfying our assumptions, see (0.15)



Frequently Asked Questions

Where is the Independence Assumption Used?

The unit range of dependence assumption (0.11) is obviously very important, and to
avoid diluting its power we use it sparingly. We list here all the places in the book
where it is invoked:

The proof of Proposition 1.7 (which is made redundant by the following one).
The proof of Lemma 2.13 (and the generalizations of this lemma appearing in
Chaps. 10 and 11). This lemma lies at the heart of the iteration argument in
Chap. 2, as it is here that we obtain our first estimate on the correspondence
between spatial averages of gradients and fluxes of solutions. Notice that the
proof does not use the full strength of the independence assumption; it actually
requires only a very weak assumption of correlation decay.

The last step of the proof of Theorem 2.4 (and the generalizations of this
theorem appearing in Chaps. 10 and 11). Here independence is used very
strongly to obtain homogenization estimates with optimal stochastic
integrability.

The proof of Proposition 4.12 in Sect. 4.5, where we control the fluctuations
of the quantity J, inside the bootstrap argument.

The proof of Proposition 4.27 in Sect. 4.7, where we prove sharp,
pointwise-type bounds on the first-order correctors in dimension d = 2 (with the
correct power of the logarithm).

In Sect. 5.4, where we prove the central limit theorem for the quantity J;. This
can be considered a refinement of Proposition 4.12.

In Sect. 9.1, in the proofs of Lemmas 9.7 and 9.10.

In particular, all of the results of Chaps. 2 and 3 are obtained with only two very

straightforward applications of independence.

XXiii
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Can the Independence Assumption Be Relaxed?

Yes. One of the advantages of the approach presented here is that the independence
assumption is applied only to sums of local random variables. Any reasonable
decorrelation condition or mixing-type assumption will give estimates regarding the
stochastic cancellations of sums of local random variables (indeed, this is essenti-
ally a tautology). Therefore, while the statements of the theorems may need to be
modified for weaker assumptions (for instance, the strong stochastic integrability
results we obtain under a finite range of dependence assumption may have to be
weakened), the proofs will only require straightforward adaptations. Since we have
only used independence in a handful of places in the text, enumerated above, it is
not a daunting task to perform these adaptations. In particular, when the law of the
coefficient field satisfies a spectral gap or log-Sobolev assumption (as considered in
the series of recent works of Gloria, Otto, and their collaborators), one can easily
adapt the arguments presented in this book using concentration inequalities such as
[29, Theorem 6.7].

The reason for formalizing the results under the strongest possible mixing
assumption (finite range of dependence) rather than attempting to write a very
general result is, therefore, not due to a limitation of the arguments. It is simply
because we favor clarity of exposition over generality.

Can the Uniform Ellipticity Assumption be Relaxed?

One of the principles of this book is that one should avoid using small-scale or
pointwise properties of the solutions or of the equation and focus rather on
large-scale, averaged information. We concentrate, especially in the first part of the
book, on the energy quantities u, u* , and J; which can be thought of as “coarsened
coefficients” in analogy to a renormalization scheme (see Remark 2.3). The argu-
ments we use adhere to this philosophy rather strictly. As a result, they are adap-
table to situations in which the matrix a(x) is not necessarily uniformly positive
definite, provided we have some quantitative information, for instance, regarding
the law of its condition number. This is because such assumptions can be translated
into quantitative information about J; which suffices to run the renormalization
arguments of Chap. 2. Indeed, a demonstration of the robustness of these methods
can also be found in [9], which adapted Chaps. 2 and 3 of this manuscript to obtain
the first quantitative homogenization results on supercritical percolation clusters (a
particularly extreme example of a degenerate environment).

Do the Results in This Book Apply to Elliptic Systems?

Since the notation for elliptic systems is a bit distracting, we have decided to use
scalar notation. However, throughout most of the book, we use exclusively argu-
ments which also work for systems of equations (satisfying the uniform ellipticity
assumption). The only exceptions are the last two sections of Chaps. 8 and 9, where
we do use some scalar estimates (the De Giorgi—Nash L* bound and variations)
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which make it easier to work with Green functions. In particular, we claim that all
of the statements and proofs appearing in this book, with the exception of those
appearing in those two chapters, can be adapted to the case of elliptic systems with
easy and straightforward modifications to the notation.

This Book is Written for Equations in the Continuum. Do the Arguments
Apply to Finite Difference Equations on Z?

The techniques developed in the book are robust to the underlying structure of the
environment on the microscopic scale. What is important is that the “geometry”
of the macroscopic medium is like that of R? in the sense that certain functional
inequalities (such as the Sobolev inequality) are valid, at least on sufficiently large
scales. In the case where R? is replaced by Z¢, the modifications are relatively
straightforward: besides changes to the notation, there is just the slight detail that
the boundary of a large cube has a nonzero volume, which creates an additional
error term in Chap. 2, causing no harm. If one has a more complicated micro-
structure like a random graph, such as a supercritical Bernoulli percolation cluster,
it is necessary to first establish the “geometric regularity" of the graph in the sense
that Sobolev-type inequalities are valid on large scales. The techniques described in
this book can then be readily applied: see [9, 42].

Is There a Simple Proof of Qualitative Homogenization Somewhere Here?

The arguments in Chap. 1 only need to be slightly modified in order to obtain a
more general qualitative homogenization result valid in the case where the unit
range of dependence assumption is relaxed to mere ergodicity. In other words, in
place of (0.11), we assume instead that

if A € F satisfies T,A = Aforallz € Z, then P[A] € {0, 1}. (0.16)

In fact, the only argument that needs to be modified is the proof of Proposition 1.
7, since it is the only place in the chapter where independence is used. Moreover,
that argument is essentially a proof of the subadditive ergodic theorem in the special
case of the unit range of dependence assumption (0.11). In the general ergodic case
(0.16), one can simply directly apply the subadditive ergodic theorem (see for
instance [3]) to obtain, in place of (1.30), the estimate

P|limsupla(0,) —a| =0| = 1.

n—oo

The other arguments in that chapter are deterministic and imply that the random
variable & (&) in Theorem 1.17 satisfies P[limsup,_, & (¢) = 0] = 1.
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What Do We Learn About Reversible Diffusions in Random Environments
From the Results in This Book?

A great amount of information about a Markov process can be obtained by studying
its infinitesimal generator. Therefore, just as we learn about Brownian motion from
properties of harmonic functions (and conversely), the study of divergence-form
operators gives us information about the associated diffusion processes.

In fact, any divergence-form elliptic operator is the infinitesimal generator of a
reversible diffusion process. Indeed, the De Giorgi—-Nash—Aronson estimates
recalled in (E.7) and Proposition E.3 can be used together with the classical
Kolmogorov extension and continuity theorems (see [25, Theorem 36.2] and
[119, Theorem 1.2.1]) to define the corresponding stochastic process. Denoting by
P2 the probability law of the diffusion process starting from x € R?, and by
(X(1)),> the canonical process, we have by construction that, for every a € Q,

Borel measurable set A CRY and (z,x) € (0,00) x R?,
PiX, € A] = /P(t,x, y)dy, (0.17)
A

where P(t,x,y) is the parabolic Green function defined in Proposition E.1. The
statement

foreveryx € RY, £ P(,0, t%x)g P(1,0,x),
1—00

where P is the parabolic Green function for the homogenized operator, can thus be
interpreted as a (quenched) local central limit theorem for the diffusion process.
(Note that this also implies convergence in law of the rescaled stochastic process to
the Brownian motion with covariance matrix given by 2a.) Seen in this light,
Theorem 8.20 gives us a first quantitative version of this local central limit theorem.
The much more precise Theorem 9.11 gives an optimal rate of convergence for this
statement, and can thus be interpreted as analogous to the classical Berry—Esseen
theorem on the rate of convergence in the central limit theorem for sums of inde-
pendent random variables (see [117, Theorem 5.5]).

Do the Assumptions Allow for Deterministic, Periodic Coefficient Fields?

Yes, but it would be crazy to use this book as a way to learn about the periodic case,
because it is in many ways simpler than the random case. Most of the analysis
presented in the first half of the book can be skipped and replaced by the trivial
statement that the first-order correctors are periodic functions. The rest of the
arguments in the book can be drastically simplified. Readers interested in the
quantitative theory for periodic homogenization would be better off with the recent
book of Shen [123].
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Are the Methods Presented Here Useful for the Study of Homogenization of
Other Types of Partial Differential Equations?

Homogenization is closely related to the concept of averaging and both are terms
which may be used in descriptions of a wide variety of mathematical and physical
phenomena. It is impossible to develop a theory of homogenization that would
apply to all possible situations or equations, just as it is impossible to develop a
regularity theory that would apply to general equations. In this book, we focus
solely on the homogenization of elliptic and parabolic equations in divergence
form, which is the simplest and most physically relevant class of PDEs which
generalize the Laplace equation. The reader should expect that the methods and
results presented here are useful for equations which are closely related to
divergence-form elliptic or parabolic equations. There are, of course, multitudes of
important works concerning homogenization for other classes of equations
describing a variety of multiscale phenomena which are not described in this book.

For instance, there is a rather mature theory of stochastic homogenization for
another class of equations generalizing the Laplace and heat equations, namely,
elliptic and parabolic equations in nondivergence form (see [115, 89, 132, 34, 33,
17] and the references therein for the qualitative theory and [16, 92, 13] for the
more recent quantitative theory). A typical example may take the form

d
—tr(a(x)VZu) = — Za,;,-(x)@xi&gu =f(x) inUCR?

ij=1

Whereas equations in divergence form characterize reversible diffusions, equa-
tions in nondivergence form describe balanced diffusions. While the theory of
homogenization for nondivergence form equations shares some high-level ideas
and philosophy with the one developed in this book, the two theories are neces-
sarily quite distinct and in particular have no direct implication on each other—even
if the coefficients are assumed to be smooth! In fact, the scaling of the optimal
quantitative estimates as well as the large-scale regularity theory is quite different.
This is to be expected, since the classical regularity theories for equations in
divergence and nondivergence form (with rapidly oscillating coefficients) are also
distinct.

What About Equations with Locally Stationary Coefficients or with
Lower-Order Terms?

More general equations can be considered, such as
-V (a (x,%c) Vu8> + b(x,g) -Vu'® + c(x, ;) u® = 0. (0.18)

In addition to allowing for lower-order terms, the equation above is only “locally
stationary” because it allows the coefficients to depend as well on the macroscopic
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variable x. One could assume, for instance, that, for each x, the field
(a(x,-),b(x,-),c(x,-)) satisfies our usual assumptions of stationarity and finite
range dependence, and that the dependence in x is sufficiently regular.

We do not present results for the homogenization of such equations in this book,
in an effort to keep things simple and because, in fact, it is relatively routine to
handle an equation like (0.18) once one has good control of the first-order cor-
rectors ¢, (x, -) for the coefficient field a(x, -)—that is, for each frozen x and with the
lower order terms ignored. Indeed, once the correctors are under control, what is
needed is “just” a two-scale expansion computation, similar to what is found in
several places in this book and which is essentially no more difficult than in the
periodic setting.



Notation

Sets and Euclidean Space

The set of nonnegative integers is denoted by N := {0, 1,2,3,...}, the set of inte-
gers by Z, the set of natural numbers by N, := N'\{0}, the set of rational numbers
by Q, and the set of real numbers by R. When we write R™ , we implicitly assume
that m € N. For each x, y € R™, the scalar product of x and y is denoted by x - y, their
tensor product by x ® y and the Euclidean norm on R™ is | - |. The canonical basis of
R™ is written as {ey, . . ., &, }. We let B denote the Borel g-algebra on R™. A domain
is an open connected subset of R”. The notions of C** domain and Lipschitz domain
are defined in Definition B.1. The boundary of U CR™ is denoted by OU and its
closure by U. The open ball of radius r >0 centered at x € R" is
B,(x) :={y € R": |x — y| < r}. The distance from a point to a set VCR" is
written dist(x, V) := inf{|x — y| : y € V}. For r > 0 and U CR", we define

U, :={x e U:dist(x,0U) >r} and U :={x e R":dist(x,U)<r}. (0.19)

For 2 >0, we set AU := {Ax:x € U}. If m,n € N, the set of m x n matrices
with real entries is denoted by R"*". We typically denote an element of R"*" by a
boldfaced latin letter, such as m, and its entries by (mU) The subset of R™*" of
symmetric matrices is written R”*” | and the set of n-by-n skew-symmetric matrices

sym
is Ry The identity matrix is denoted Id. If r,s € R then we write rV s :=
max{r,s} and r A s := min{r, s}. We also define r :=rVO0andr_ := —(r AO).

We use triadic cubes throughout the book. For each m € Ny, we define
O i (= s3m L dc R4 (0.20)
m = 2 72 = . .

Observe that, for each n € Ny with n < m, the cube 0,, can be partitioned (up to
a set of zero Lebesgue measure) into exactly 390"~ subcubes which are Z9-
translations of 0,, namely {z+0, : z € 3"Z‘ N0, }.

XXIX
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XXX Notation

Calculus

If UCR? and f : U — R, we denote the partial derivatives of f by Oy.f or simply
0;f, which unless otherwise indicated, is to be understood in the sense of distri-
butions. A vector field on U CR? is a mapf: U — R?. The divergence of a vector
field fis V-f = Z?:l 0,fi» where the (f;) are the entries of f, i.e., f = (fi,.. fa).
The gradient of a function f: U — R is denoted by Vf = (0:f,...,0.f). The
Hessian of f is denoted by V2f := (9,0, f )” c(1...q) and, more generally, VF¥f is the
tensor of kth partial derivatives of f, defined by

Vi = (9, 0 )iy et ay

,,,,,

A d-dimensional multi-index is an element of Ng. If o= (oy,...,000) i a
multi-index, then we define

d d
o] := E o; and ol = Hoc,-!,
i=1 i1

the higher-order partial derivative 0* by
O =00
and the multinomial x* by
d

— %
—”xi.

=1

We think of V*f as a tensor indexed by multi-indices o € Nd with || = &, that
is, we may write V*f = {(0%f),: 2 € N{, |o| = k}. For each k € Ny, we also
denote by x®F the tensor indexed by multi-indices « € N¢ with |« = k with entries
(x@@k)“:x . This gives us a compact notation for writing a Taylor series: for
instance, we may express

Z Z —8“ f(xo0)(x — x0)*
k=0

aeNG, |o|=k o

as

Zm:kl )(x — x0) %%, (0.21)

k=0
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Holder and Lebesgue Spaces

For k € NU{o0}, the set of functions f : U — R which are & times continuously
differentiable in the classical sense is denoted by C*(U). We denote by C¥(U) the
collections of C¥(U) functions with compact support in U. For k € N and
a € (0,1], we denote the classical Holder spaces by C**(U), which are the func-
tions u € C¥(U) for which the norm

k
(]| crn 17y = Z sgB|V"u(x)| + [Vku] con(v)
n=0*

is finite, where [ - Jcos(p) is the seminorm defined by

|u(x) — u(y)|
[u] wirni= S 1
O lvan ol

For every Borel set U € B, we denote by |U| the Lebesgue measure of U. For an
integrable function f: U — R, we may denote the integral of f in a compact

notation by
/f = /f(x)dx.
U U

For U CR? and p € [1, 00], we denote by I”(U) the Lebesgue space on U with
exponent p, that is, the set of measurable functions f : U — R satisfying

|ﬂww:(4mﬁ!wa

The vector space of functions on U which belong to (V) whenever V is
bounded and V C U is denoted by LV (U).1f |U|<oo and f € L'(U), then we write

fr=mh

The average of a function f € L'(U) on U is also sometimes denoted by

(o=, 1.

To make it easier to keep track of scalings, we very often work with normalized
versions of L” norms: for every p € [1,00) and f € LP(U), we set

1
r 1
1fllr @) = (f Iflp) =07 I fller @) -
U
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For convenience, we may also use the notation | f{|z~(yy:= || f|l <) If X is a

Banach space, then LP(U;X) denotes the set of measurable functions f : U — X
such that x — ||f(x)[|y€ L”(U). We denote the corresponding norm by || f||,(y.x)-

By abuse of notation, we will sometimes write f € L”(U) if f : U — R™ is a vector
field such that |f| € L(U) and define ||f[|,»):= £l em= | [Ell| (1) For f €
I7(R?) and g € LV (R?) with | + % = 1, the convolution of f and g is defined as

(f*g)(x) == /Rdf(x —y)g(y)dy.

The (essential) support of a function f : U — R is

suppf = U\U{B,(x) x€RYr>0,{z€ U:f(z) #0}NB,(x)| = O}.

Special Functions

For p € RY, we denote the affine function with slope p passing through the origin
by

ly(x):==p-x.

Unless otherwise indicated, { € C°(R?) denotes the standard mollifier

2\—1 .

(e J (== )) it <1, 022)
0 if |x|>1,
with the multiplicative constant c¢; chosen so that fRd { = 1. We define, for 6 > 0,
_sdg(¥
G0 =07 (3) (0.23)
The standard heat kernel is denoted by

_d |x|?

D(¢t,x) := (4nr) 2 exp 4 (0.24)

and we define, for each z € R and r > 0,
O, (x):=®(*x—z) and @, :=d,.

We also denote by Py the set of real polynomials on R? of order at most k.



