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Foreword

From coincidence to randomness. A philosophical introduction.
The problem of coincidence is virulent especially where humans are affected
concretely and existentially. This means that through an occurrence, be it positive
or negative, that throws someone out of their routine or seeming confidence, the
question gets aroused whether someone or something can be held responsible for
this occurrence.

This question arises through a beneficial coincidence. Like Aristotle said already
at the beginning of Nicomachean Ethics, all humans search for the highest good,
namely, eudaimonia (Aristot. EN 1095a). However, eudaimonia can occur in two
ways. On the one hand, one can work for one’s happiness and try to create con-
ditions for a successful life. On the other hand, luck stays unavailable. One cannot
influence it in order to force it to happen. Because not only the freedom of others,
which is not at one’s disposal, is affected by it, but also the fundamental inability to
influence all the events that have to do with one’s own life.

Luck, including bad luck, make someone feel existential concern, which people
generally cannot identify themselves as causes for. But if you believe that events
usually have causes for happening, then these causes have to be looked for beyond
the spheres of one’s own influence. At first, other people, who support or harm
those around them, are considered. These people can be held responsible for one’s
good or bad luck, because one may have been exploited for their goals and
therefore could have suffered misfortunes.

But there are also events that seem to be completely withdrawn from human
influence, because nobody can be recognized as the cause for such an event.
Religious people will hold a divine or transcendent power responsible for these
events. For them, this power is able to induce inexplicable occurrences.
Coincidence as an existentially touching experience has the character of fate, which
does not have a merely immanent cause. Nevertheless, this coincidence is attributed
a particular intention. A divine power causes something to happen to someone
because it is able to do so and additionally has a certain intention for its actions.
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According to the classical theory of the four causes, which distinguishes between
the efficient and the final cause, the divine or the transcendent according to the
outlined thesis about coincidence is the trigger of an event, as well as the origin of a
certain intention that the affected person has for its recipient. Coincidence in the
form of good or bad luck, religiously seen, hints at a supernatural authority that
intentionally causes an event that can neither be predicted nor anticipated to happen
to someone.

In this sense, the transcendent has to be regarded as an authority that on the one
hand has power over developments both in nature and in human history, and on the
other hand has its own intentions and goals, as long as it is connected to the world
or humans. If the mentioned occurrences, which are classified as coincidences, are
denied their final aspect, meaning that the transcendent power is denied its ability of
intention, then this authority is depersonalized. Behind a favorable or unfavorable
coincidence, there is no intention anymore, but an event that has befallen one
without any addressing. If coincidence is handled that way, one interprets it as fate
or kismet, an event that has not been caused by a divine power, but that, even
though it interrupted history, also the history of the individual, does not have a
purpose. While one expects addressing of an event in the case of it being caused by
the divine, a stroke of fate hits the individual unplanned and without the possibility
of seeing a higher meaning in it. A person is affected without any possible
explanation of why exactly this person is allowed to be fortunate or has to suffer
from misfortune. Fate influences history, but does not have purpose, and is without
teleology.

Modern natural sciences look for coincidence on the basis of understanding it as
fate. Doing so, they follow methodical guidelines of their own disciplines, which
hold causality as central category of scientific mode of explaining, but differentiate
strictly between effective and final causality. Intentions, purposes, and aims have
been almost completely eliminated as possibilities of explaining natural pheno-
mena. Ignoring the anthropic principle, which, in its attenuated form, serves as a
principle of explanation ex post, final causality does not apply anymore as a
legitimate way of explanation. This is based on the dictum handed down by
Pierre-Simon de Laplace, which he is said to have responded to Napoleon when he
asked why Laplace consistently did not speak of God in his “Mécanique Céleste”.
Laplace said: “Je n’avais pas besoin de cette hypothèse-là”. This denial of God as a
method of explanation for scientifically explainable nature can be set equal to the
elimination of the question of a goal or purpose of nature, which God had previ-
ously been regarded as final instance for. Charles Darwin follows this view in “On
the Origin of Species” and in “The Descent of Man” also for animate nature and
conceived evolutionary natural phenomena in this way as development without
intention.

With methodical exclusion of final possibilities, it becomes necessary for the
understanding of coincidence—even if its existential meaning for the human is kept
in mind—not to consult final but, exclusively, effective causality. Coincidence is
considered as a causal, but no longer as a final event. For a scientific theory, this
requirement means that one is able to explain coincidence strictly by efficient
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causality. For this it suggests itself to set an accidental event in a way that a causal
nexus, which is supposed to help explain an event, meets another one in such a way
that both cross at one point and, therefore, something coincidental happens.
A crossing like this causes an element of surprise, since, partially, two causal
conditions can be stated for the event, but it is impossible to find a causal nexus that
is sufficient for the explanation and in which all causal chains are at least indirectly
linked to one another. Two events, which can both be declared as causal for
themselves (but the coincidence of the two cannot) meet.

This view of coincidence is characterized on the one hand by the lack of final
causality and on the other hand by the attempt to discover the reason of the event
via effective causality without naming a structure of causally linked conditions,
much less a closed complex of causes. This perspective on coincidence stays
unsatisfactory in the way that the question why the involved causal chains have
overlapped exactly at this moment, will not cease to arise. Usually, one assumes
that there has to be a reason for this, because we hold the proposition of the
(sufficient) reason (nihil est sine ratione sufficiente) as true. This means that—
ontologically spoken—nothing can happen without any sufficient reason that
evokes the event. If one thinks this way, then the for coincidence assumed
unfoundedness is attempted to be cast aside. So it is tried to not hold the coinci-
dence of the event as true, but to defend the causal uniformity of all natural events.

There are two possible ways to escape this difficult situation. First, one can try to
assess the causal connection as still needing to be found. The connection is assumed
to, on principle, be able to be found, even though this approach—due to an
unknown reason—is not seen as possible in the present.

Second, one can try to justify the unfoundedness of coincidence. In this case,
reasons for the inability to find links between the causal chains are looked for. One
asks for reasons why there are no causes that connect all the events together. On a
meta level, reasons should be found that explain why there are no causes on the first
level. With this, it is attempted to keep the causal unity, even if it is attenuated. The
absence of the possibility to explain an event by means of causes on the first level is
admitted, but on the second level, it is attempted to find reasons for the fact that
causes cannot be found.

More radical than the mentioned attempts to rescue causal unity and to relativize
coincidence along with this process is the assumption that for certain events, neither
causal links nor algorithms can be found. Instead of finding reasons for the lack of
causes, one admits that the fact has to be treated ontologically, that there are
contradictions in natural events that make the principle of sufficient reason and a
causally closed nature seem questionable.

This is not the assumption that one’s inability to think or the temporary lack of
scientific explanation forces one to speak of coincidence. Rather, this concept of
coincidence assumes that reality is partially chaotic and, in this sense, not
explainable. Unlike a chaos theory, which, despite the multiplying of small dif-
ferences at the beginning to big differences in the result (after many iterations),
assumes the fundamental causality of the event, coincidence, viewed like this, is
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based on fundamental ontological chaos. This means that coincidence lacks both
final and global efficient causality. Coincidence has become randomness.

For a scientific concept of coincidence, such a theory signifies getting to the
limits of causal thought in general. Extending beyond the methodical guidelines of
Laplace and Darwin to eliminate final causes as possibilities of explanation as a
whole, one arrives at the limits of the explicable if randomness is focused on.
Because apart from the only for a thing-ontology relevant types of causation
(namely the material and the formal cause in the Aristotelian sense) with the ces-
sation of teleology only efficient causation stays scientifically relevant. If this is
questioned, too, then the venture of explaining nature or reality causally has come
to its own limit. The methodic possibilities of causation seem to be exhausted by
coincidence in the sense of randomness. Such coincidences are only discovered
without having the possibility of being explained. Natural sciences, in consequence,
are set back to reflect their own preconditions.

Maybe this is the reason why the question of coincidence and randomness is
highly attractive even, or especially to, natural sciences.

Graz, Austria
November 2019

Reinhold Esterbauer
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Preface

When speaking about randomness, people tend to think toward statistics, like distri-
butions and likelihoods for certain outcomes, and—especially in cryptography—un-
predictability. Somewhat ironically, statistics defines a random variable as a measurable
mapping, which in no way alludes to matters of unpredictability (the term is not even
used in any of the common definitions). So, randomness in statistics and randomness in
cryptography are inherently different things, albeit the latter clearly relies on the former.
In cryptography, we are primarily interested in independence, uniform distributions,
and unpredictability. None of these is necessarily implied by good statistical properties
if we think about distributions only: consider the infinite bit-sequence 0101010101….
Obviously, the distribution of 0 and 1 within that string is perfectly uniform, but it is
equally obvious to predict; even worse, it is clearly periodic. Sequences that are
nonperiodic are easy to find (like the mantissa of any irrational number such as
e; p;

ffiffiffi
2

p
) but are usually not useful for cryptography. Spigot algorithms for many

such numbers allow the computation of individual digits without having to compute
the whole mantissa up to the sought digit, and we could use a secretly chosen
irrational1 to seed the pseudorandom generator that just computes digits in the
mantissa. But such numbers may have bad statistical properties that make them easy
to predict from a record of past values. Are there sequences that are easy to
compute, have good statistical properties, and never become periodic? Yes, there
are, such as the famous Champernowne constant, which is defined by concatenating
all naturals into the mantissa in increasing order, i.e.,

C :¼ 0:1234567891011121314151617. . .

This number is clearly irrational, since it will eventually contain sequences of
zeroes (or other digits) of arbitrary length, so there cannot be a fixed period. Even
better, it can be shown that it is a normal number, meaning the following: Let a

1Picking such numbers from integer parameters is easy, since, for example, the polynomial
ax2 þ bxþ c has all irrational roots whenever a; b; c are odd numbers; likewise,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þða=bÞnn

p
is

necessarily irrational by the Fermat–Wiles theorem for positive integers a; b.
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random string w over the alphabet R be given, say R ¼ 0; 1; 2; . . .; 9f g. Assume
that the symbols (digits) in w occur independently and uniformly distributed over R,
i.e., we create w by drawing its symbols with replacement from R. Then, w has a

“natural” probability of PrðwÞ ¼ Rj j� wj j, when wj j denotes the length of w (in
digits). A normal number, such as the Champernowne constant, is characterized by
the fact that every random string w will occur throughout the mantissa with its
natural probability (just as defined before). So, C, as well as any other normal
number, would have the perfect statistical properties: In computing digits from it
and concatenating them into strings toward our random output, we get an output
with perfect statistical properties. A celebrated theorem of E. Borel even states that
almost all numbers are normal in that sense. Though very many of them exist,
however, only a few are explicitly known, and the Champernowne constant is one
of them. Though it is very easy to compute and has the perfect properties regarding
the distribution of substrings over the mantissa, its trivial predictability makes them
useless for cryptographic purposes.

For these (among other) reasons, cryptographic random number generators typi-
cally use a transformation function f to compute fresh random values from past
random values. Different constructions such as pseudorandom number generators
(PRNGs) or pseudorandom functions (PRFs) exist [1], all of which have their
predictability properties tightly tied to computational intractability hypotheses (see
[3] for an overview). Let us look at a typical way of how a PRNG based on
iterations can be constructed: we have a function f and pick a random value x0 from
which we iterate a sequence xnþ 1 :¼ f ðxnÞ for n ¼ 0; 1; . . .. If f is a mapping
between finite sets, any such sequence necessarily becomes periodic, and estimates
about when this happens are known [2]. Can we escape the issue by letting f work
on infinite domains? More explicitly, can we use a function f that evaluates
deterministically but acts stochastically? Again, the answer is positive, since every
chaotic function does so. Why not use one of the two most famous examples, which
are the logistic map f ðxÞ ¼ k � xð1� xÞ or the tent map f ðxÞ :¼ l �min x; 1� xf g,
where the actual behavior is governed by the choice of k[ 0 or l[ 0. The two are
closely related (in fact, they are topological conjugates), but the tent map has some
very appealing properties:

• If the iteration starts from an irrational value x0, the resulting sequence never
becomes periodic.

• It has sensitive dependence on initial conditions, intuitively meaning that any
arbitrarily close but incorrect guess of x00 6¼ x0 will make the resulting sequence
diverge arbitrarily far from the true sequence originating from x0. This is
sometimes understood as “loss of information” upon every step, since the tent
map is non-injective, meaning that for every image, there are at least two
pre-images possible. Effectively, this means that we could never infer the seed
from just observing the sequence, which at first glance sounds like a perfect
property to go for. Unfortunately, we will see that although this is true, the effect
is nonetheless devastating.
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• Given an irrational number x0 to start from and using l ¼ 2, the tent map’s
action on an irrational number in binary with bits b1b2b3. . . is simply this:

– shift the decimal point one place to the right.
– If a 1 is left to the decimal point, invert all upcoming bits.

The tent map’s action can be described by a simple Mealy-automaton: let the
state transition “a/b” mean that whenever the automaton reads a symbol “a” it
outputs the symbol “b”. According to the above, we need an “inverting state”
(INV) and a “non-inverting” state (NI) to compute the tent map from an irrational
starting point x0 by the automaton:

0/0 NI

1/1

INV 1/0

0/1

Let us analyze the intuition of combining a starting point like C with a chaotic
map to unify the benefits of both: perfect statistical properties (from the normality
of C) with unpredictability based on deterministic chaos (from the tent map). It is
indeed a nice exercise to verify that the automaton will eventually “burn” all
information contained in the seed (as we would expect from the sensitive depen-
dence on initial conditions and the non-injectivity of the tent map), but two
sequences may nonetheless converge into the same pseudorandom sequence sooner
or later. More precisely, let x0 6¼ x00 be two starting values that differ from C only in
a finite number of digits. Then, both starting points will eventually end up in the
same output, meaning that whatever seed we use together with a fixed normal
number (our choice of C was arbitrary here), the so-constructed pseudorandom
generator is not even remotely useful for cryptographic purposes. Intuitively, this
becomes evident when looking at the Mealy-automaton to evaluate the tent map:
the machinery to compute the random outputs is finite, but for unpredictability, we
need new information in each output that cannot be obtained from past observa-
tions. Since the irrational value C is part of the algorithm, with only the deviation
from it being the secret, a deterministic (finite) machinery can obviously not be
expected to “create” the necessary lot of information to ultimately gain unpre-
dictability. This is what J. von Neumann expresses in his famous quote:

Anyone who considers arithmetical methods of producing random digits is, of course, in a
state of sin.
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What is the lesson from all this? It tells us that we cannot naively assemble
primitives with good statistical properties into a cryptographically useful random
number generator (RNG); such intuitions can easily be misleading. The above ideas
were chosen only for illustration but in general demonstrate that even perfect sta-
tistical properties, or seeming unconditional unpredictability (that we hoped to get
from chaos theory, which is—unlike much of cryptography—not based on com-
putational intractability) may together fail to deliver good results for cryptography.
It ends up being that, at least for pseudorandom number sequences (whose repro-
ducibility is often the only reason to prefer them over true randomness), seem to
require more complex constructions and computational intractability remains an
unavoidable fundament up to today. A working construction that is simple and has
maximal periodicity is, for example, an AES-encryption of a secret counter, which
could be implemented in one line of C++-like pseudocode: letting i be initialized to
some secret value i0, we get the next random number as

AES(++i,k)

where k is another secret stored within the PRNG.
This is indeed a working construction, and the standard quality assessments for

PRNG that we will later (in the book) see that the output meets the requirements of
cryptographic applications.

The security of such a construction lies in the secrecy of the initial value i0 and the
secret k. Let us adopt a more general view, calling s the secret random seed, which is
sampled from a random variable S. How would we quantify the “goodness” of the
random seed? Shannon-entropy is commonly proposed as a measure, but this is only
half-correct: “entropy” is the right direction, but not of Shannon’s type! Indeed, since
we cannot prevent guessing a secret, how difficult would guessing s be?

Let the distribution of S be ðsi; pi ¼ PrðS ¼ siÞÞf gni¼1 with si 2 0; 1f g‘ and pi � 0
so that p1 þ p2 þ . . .þ pn ¼ 1. The min-entropy of S is defined as

H1ðSÞ ¼ � log max
i

PrðS ¼ siÞf g
� �

:

By this definition, we have for all s : PrðS ¼ sÞ� 2�H1ðSÞ. Now, let’s turn to the
experiment of guessing the unknown seed s0, which occurs with probability p0: the
average number N of trials until we succeed follows a geometric distribution with
parameter p0, whose mean is

N ¼ 1
p0

� 2H1ðSÞ:

So, H1ðSÞ obviously provides a lower bound for the average number of guesses
until a success, so H1ðSÞ can be taken as a measure of the difficulty! Can the
Shannon-entropy be such a measure too? The answer is negative in general, due to
the following example:
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