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Preface

The cell, the smallest living unit, interacts with its surroundings via cell membrane
and creates a unique biointerface that is vital for cellular processes and cell survival.
Better understanding of such a tiny yet complex system is not only crucial for
basic research, but also to design advanced platforms for a variety of applications,
particularly in medical field. Development of less complex model systems, i.e.,
biomimetic lipid membranes, is highly needed, but these models need to sustain
fluidity of the lipid bilayer and mimic native dynamic complexity to some extent
and retain their structure for the intended duration. Over the years, different
techniques have been proposed for the construction of the model systems (chapter
“Structural and Mechanical Characterization of Supported Model Membranes by
AFM”). In particular, atomic force microscopy (AFM), an elegant technology,
has enabled not only structural but also mechanical characterization of membrane
systems with different compositions at nanoscale resolution (chapter “Structural
and Mechanical Characterization of Supported Model Membranes by AFM”).
Biomimetic membranes also offer a platform for the reconstitution of membrane
proteins in vitro milieu, and AFM imaging has further enabled to probe various
membrane proteins in situ through their density and spatial distribution (chapter “To
Image the Orientation and Spatial Distribution of Reconstituted Na+,K+-ATPase
in Model Lipid Membranes”). Nevertheless, the existing biomimetic membrane
models are mostly insufficient to mimic all crucial properties on a single platform
and do not reflect the asymmetry present in actual biological membranes. Moreover,
the lipid content and distribution are essential in the structure and function of
most biological membranes. Recently, an intense effort has been focused on
deploying this asymmetry into model membrane systems (chapter “Asymmetric
Model Membranes: Frontiers and Challenges”). This emerging field has addressed
some of the challenges associated with production of asymmetric vesicles, and
thereby, more realistic biomimetic membranes could be constructed for practical
applications. As aforementioned, dynamics of biomimetic membranes is pivotal
in the function. The experimental techniques combined with computational tools
provide essential information and help researchers interpreting the experimental
data. Molecular dynamics methodology is mainly used for this purpose, and not
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only the membrane itself (chapter “Modeling of Cell Membrane Systems”), but
also its interactions with other structures, such as nanoparticles (chapter “Molecular
Dynamics Studies of Nanoparticle Transport Through Model Lipid Membranes”),
can be evaluated. In addition, model membranes are key tools to understand cell–cell
and cell–surface interactions, and when functionalized with bioactive molecules,
supported lipid membranes (SLBs) can be utilized to study membrane-mediated
cellular processes and to investigate cell behavior on various surfaces (chapter
“Investigation of Cell Interactions on Biomimetic Lipid Membranes”). For larger
transmembrane proteins spanning the lipid bilayer, SLBs are not adequate as they
are constructed directly on the surface and they lack of submembrane space,
leading to denaturation and malfunctioning of transmembrane proteins. In this
regard, tethered bilayer lipid membranes (tBLMs) offer a promising strategy to
leverage the lipid bilayer from the surface and precisely fine-tune the thickness
of this space, facilitating the construction of membrane proteins on the biosensor
platforms (chapter “Tethered Lipid Membranes as Platforms for Biophysical Studies
and Advanced Biosensors”). When integrated with immunoassays and micro-
and nanoarray formats, SLBs, tBLMs, and liposomes have provided prominent
applications for clinical use (chapter “Biomedical Applications: Liposomes and
Supported Lipid Bilayers for Diagnostics, Theranostics, Imaging, Vaccine Formu-
lation, and Tissue Engineering”). Owing to their native-like biophysical properties,
liposomes, on the other hand, carry their cargo like small lipid vesicles found
in cells, and when loaded with vaccines, contrast agents, or drugs, they become
very effective delivery vehicles (chapter “Biomedical Applications: Liposomes
and Supported Lipid Bilayers for Diagnostics, Theranostics, Imaging, Vaccine
Formulation, and Tissue Engineering”). While applying them into microfluidics
realm, dynamics and significant utility of SLBs and liposomes can be efficiently
investigated in a confined small volume. Furthermore, integrating bioprinting tools,
e.g., nozzles and spraying modules, with microfluidic-stemmed strategies creates
high throughput, automation, and scale-up for the future applications (chapter
“Lipid Bilayers and Liposomes on Microfluidics Realm: Techniques and Appli-
cations”). Biomimetic lipid membranes are also very powerful for designing drug
screening platforms since the majority of therapeutic agents interact with either
cell membranes or membrane proteins (chapter “Biomimetic Model Membranes
as Drug Screening Platform”). All these instances clearly point out the potential
of biomimetic lipid membranes in medical and pharmaceutical fields. Biomimetic
membranes are also being used in other distinct fields, including water filtration
and food and environmental pollutant monitoring. Aquaporins, membrane proteins
with unique selectivity toward water, embedded in biomimetic membranes have
been tested for water purification purposes (chapter “Biomimetic Membranes as
an Emerging Water Filtration Technology”), while their functionalization with
different biomolecules can be used in the detection of various analytes, including
phenols, pesticides, heavy metals, toxins, allergens, antibiotics, microorganisms,
hormones, dioxins, and genetically modified produce (chapter “Applications of
Lipid Membranes-based Biosensors for the Rapid Detection of Food Toxicants
and Environmental Pollutants”). In sum, the unique and admirable characteristics
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Preface ix

of biomimetic membranes have extended our fundamental knowledge on cell
membranes and their organization with milieu and ultimately opened new horizons
for other disciplines at the intersection of chemistry, physics, materials science,
engineering, biology, and medicine. Exclusively, their applications in the field of
medicine and other conjunctive realms have gained immense interest in recent
years by screening diseases and therapies, therefore expediting clinical management
through prevention studies. In the near future, further engineered biomimetic mem-
branes, in combination with the existing developments, will spectacularly impact
greater than their current status in the health-care system through elucidating the
fundamental understanding of disease biology and mechanism, leading to synergetic
medical solutions to the real-world problems.

Istanbul, Turkey Fatma N. Kök
Urla, Izmir, Turkey Ahu Arslan Yildiz
Palo Alto, CA, USA Fatih İnci
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Structural and Mechanical
Characterization of Supported Model
Membranes by AFM

Berta Gumí-Audenis and Marina I. Giannotti

Besides proteins and carbohydrates, lipids are the main component of biologi-
cal membranes. Lipids show a well-defined organization and distribution in the
membrane, including asymmetric distribution in most cases. The internal leaflet
of plasma membranes is typically composed of charged phosphatidylserines (PSs),
phosphatidylethanolamines (PEs), and a smaller number of phosphatidylcholines
(PCs), while the outer leaflet is mostly composed of PCs and sphingolipids (SLs),
including glycolipids (GLs) [1]. Cholesterol (Chol), present in both leaflets, is also
a key component of the cell membrane. The membrane is able to laterally segregate
its constituents, subcompartmentalizing them into small domains (10–200 nm) of
fluctuating nature [2, 3]. These nanoscale assemblies of lipids, enriched with Chol,
SLs, and proteins, play significant biological roles in membrane signaling and
trafficking. Several cellular processes, including adhesion, signaling and transcrip-
tion, endocytosis, and membrane resealing, among others, involve conformational
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changes such as bending, vesiculation, and tubulation [1, 4]. For instance, in
endocytosis, the endocytic system needs to generate enough force to form an
endocytic vesicle by bending the membrane bilayer [5]. For example, membrane
tubes or tethers are formed during neutrophils rolling along the endothelium
and adhesion to platelets [6, 7]. These mechanisms generally involve membrane
separation from the cytoskeleton as well as strong bending, for which the membrane
chemical composition and physicochemical properties, often highly localized and
dynamic, are key players [4].

It becomes clear that the mechanical role of the lipid membrane in force triggered
(or sensing) mechanisms in cells is also significant, in addition to more established
role of the mechanosensitive proteins [8]. Understanding the lipid bilayers’ physical
and mechanical properties becomes essential to comprehend their contribution
to the overall membrane. Atomic force microscopy (AFM)-based experimental
approaches have been to date very valuable to deepen into these aspects. In this
chapter, we introduce the different AFM-based methods to assess topological
and nanomechanical information on model membranes, specifically to supported
lipid bilayers (SLBs), including several examples ranging from pure phospholipid
homogeneous bilayers to multicomponent phase separated ones, increasing the
bilayer complexity, in the direction of mimicking biological membranes.

1 Model Lipid Membranes

Models are often required to be used as a simpler way to mimic the original complex
system. Considering the high complexity and chemical diversity of biological
membranes, model bilayer systems are widely used when studying membrane
properties and biological processes at the cellular and subcellular level. One of the
most essential models to represent biological membranes are the giant unilamellar
vesicles (GUVs), since they offer a perfect stage to study the dynamics of membrane
domains and how compositional changes affect the physical properties of the
overall GUV [9–11]. In addition, GUVs allow investigating the interactions within
the vesicle and proteins or DNA [12, 13]. Nevertheless, GUVs are limited to
a simple composition and cannot comprise the complex one defining the cell
membrane. Recently, giant plasma membrane vesicles (GPMVs) have attracted
special attention since they are directly obtained from cell membranes, maintaining
the membrane composition comprising the lipid complexity and the large amount
of transmembrane proteins [14, 15].

However, due to the heterogeneity and dynamics of biological membranes,
with domains at the micro and nanoscales, and the consequent need of local
techniques to explore biological membranes at the nanometric level, supported
membranes are within the most adequate models. These are very manageable
platforms that retain two-dimensional order and lateral mobility, and they offer an
excellent environment for inserting membrane proteins. Nowadays, a wide range of
supported bilayer systems are suitable approaches for biological studies, like self-
assembled monolayer-monolayer systems or bilayer coated microfluidics, within
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others. Nevertheless, supported lipid bilayers (SLBs) – or supported planar bilayers
(SPBs) – are relatively simple to obtain and facilitate the use of surface analytical
techniques. SLBs are ideal to study lipid lateral interactions, growth of lipid
domains, as well as interactions between the lipid membrane and proteins, peptides
and drugs, cell signaling, etc. [16–23]. Still, it is important to have in consideration
the contribution of the underlying rigid substrate on the membrane order, structure,
and mechanical properties [24–28], some of which are yet to be fully characterized.
Besides, the membrane being confined to two dimensions prevents from evaluating
the intrinsic curvature of the membrane. Alternative models like the pore spanning
bilayers on porous substrates [29], the polymer-cushioned membranes [30], and the
stacked bilayers (or multibilayers) [24, 31–33] have been then proposed and used
[34], minimizing the contribution from the stiff support. Some of the mostly used
membrane models are schematized in Fig. 1.

Among the several methods to obtain SLBs, the most widely used are the
Langmuir-Blodgett (LB) technique, the hydration of spin-coated films, and the
liposome rupture or fusion method (Fig. 2). In the LB technique, a phospholipid
monolayer is transferred to the solid substrate by immersing the substrate at a

Fig. 1 Model membranes. (a) Giant unilamellar vesicles (GUVs). (b) Monolayers. (c) Supported
lipid bilayers (SLBs) – or supported planar bilayers (SPBs). (d) Pore spanning bilayers on porous
substrates. (e) Polymer-cushioned membranes. (f) Stacked bilayers (or multibilayers)

Fig. 2 Most commonly used methods to prepare supported lipid bilayers (SLBs). (a) Liposome
rupture or fusion method. (b) Langmuir-Blodgett (LB) technique. (c) Hydration of spin-coated
films


