Fatma N. Kök · Ahu Arslan Yildiz Fatih Inci *Editors*

Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization

Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization

Fatma N. Kök • Ahu Arslan Yildiz • Fatih Inci Editors

Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization

Editors Fatma N. Kök Department of Molecular Biology and Genetics Istanbul Technical University Istanbul, Turkey

Fatih Inci School of Medicine Stanford University Palo Alto, CA, USA Ahu Arslan Yildiz Department of Bioengineering Izmir Institute of Technology Urla, Izmir, Turkey

ISBN 978-3-030-11595-1 ISBN 978-3-030-11596-8 (eBook) https://doi.org/10.1007/978-3-030-11596-8

Library of Congress Control Number: 2019934721

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG. The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To my beloved mother, Nursen Kok – Dr. F. N. Kok

To Duru and Hakan, my beloved family, nothing would be possible without their support and encouragement – Dr. A. Arslan Yildiz

To my grandparents, amil - Gülizar Inci and Neşet – Şehzade Çiftci, who always believed in my ability to be successful in the academic arena. They are gone but their constant source of support and encouragement have made this journey possible. Regrettably, angels deserve to die ... – Dr. F. Inci

Preface

The cell, the smallest living unit, interacts with its surroundings via cell membrane and creates a unique biointerface that is vital for cellular processes and cell survival. Better understanding of such a tiny yet complex system is not only crucial for basic research, but also to design advanced platforms for a variety of applications. particularly in medical field. Development of less complex model systems, i.e., biomimetic lipid membranes, is highly needed, but these models need to sustain fluidity of the lipid bilayer and mimic native dynamic complexity to some extent and retain their structure for the intended duration. Over the years, different techniques have been proposed for the construction of the model systems (chapter "Structural and Mechanical Characterization of Supported Model Membranes by AFM"). In particular, atomic force microscopy (AFM), an elegant technology, has enabled not only structural but also mechanical characterization of membrane systems with different compositions at nanoscale resolution (chapter "Structural and Mechanical Characterization of Supported Model Membranes by AFM"). Biomimetic membranes also offer a platform for the reconstitution of membrane proteins in vitro milieu, and AFM imaging has further enabled to probe various membrane proteins *in situ* through their density and spatial distribution (chapter "To Image the Orientation and Spatial Distribution of Reconstituted Na+,K+-ATPase in Model Lipid Membranes"). Nevertheless, the existing biomimetic membrane models are mostly insufficient to mimic all crucial properties on a single platform and do not reflect the asymmetry present in actual biological membranes. Moreover, the lipid content and distribution are essential in the structure and function of most biological membranes. Recently, an intense effort has been focused on deploying this asymmetry into model membrane systems (chapter "Asymmetric Model Membranes: Frontiers and Challenges"). This emerging field has addressed some of the challenges associated with production of asymmetric vesicles, and thereby, more realistic biomimetic membranes could be constructed for practical applications. As aforementioned, dynamics of biomimetic membranes is pivotal in the function. The experimental techniques combined with computational tools provide essential information and help researchers interpreting the experimental data. Molecular dynamics methodology is mainly used for this purpose, and not

only the membrane itself (chapter "Modeling of Cell Membrane Systems"), but also its interactions with other structures, such as nanoparticles (chapter "Molecular Dynamics Studies of Nanoparticle Transport Through Model Lipid Membranes"). can be evaluated. In addition, model membranes are key tools to understand cell-cell and cell-surface interactions, and when functionalized with bioactive molecules, supported lipid membranes (SLBs) can be utilized to study membrane-mediated cellular processes and to investigate cell behavior on various surfaces (chapter "Investigation of Cell Interactions on Biomimetic Lipid Membranes"). For larger transmembrane proteins spanning the lipid bilayer, SLBs are not adequate as they are constructed directly on the surface and they lack of submembrane space, leading to denaturation and malfunctioning of transmembrane proteins. In this regard, tethered bilayer lipid membranes (tBLMs) offer a promising strategy to leverage the lipid bilayer from the surface and precisely fine-tune the thickness of this space, facilitating the construction of membrane proteins on the biosensor platforms (chapter "Tethered Lipid Membranes as Platforms for Biophysical Studies and Advanced Biosensors"). When integrated with immunoassays and microand nanoarray formats, SLBs, tBLMs, and liposomes have provided prominent applications for clinical use (chapter "Biomedical Applications: Liposomes and Supported Lipid Bilayers for Diagnostics, Theranostics, Imaging, Vaccine Formulation, and Tissue Engineering"). Owing to their native-like biophysical properties, liposomes, on the other hand, carry their cargo like small lipid vesicles found in cells, and when loaded with vaccines, contrast agents, or drugs, they become very effective delivery vehicles (chapter "Biomedical Applications: Liposomes and Supported Lipid Bilayers for Diagnostics, Theranostics, Imaging, Vaccine Formulation, and Tissue Engineering"). While applying them into microfluidics realm, dynamics and significant utility of SLBs and liposomes can be efficiently investigated in a confined small volume. Furthermore, integrating bioprinting tools, e.g., nozzles and spraying modules, with microfluidic-stemmed strategies creates high throughput, automation, and scale-up for the future applications (chapter "Lipid Bilayers and Liposomes on Microfluidics Realm: Techniques and Applications"). Biomimetic lipid membranes are also very powerful for designing drug screening platforms since the majority of therapeutic agents interact with either cell membranes or membrane proteins (chapter "Biomimetic Model Membranes as Drug Screening Platform"). All these instances clearly point out the potential of biomimetic lipid membranes in medical and pharmaceutical fields. Biomimetic membranes are also being used in other distinct fields, including water filtration and food and environmental pollutant monitoring. Aquaporins, membrane proteins with unique selectivity toward water, embedded in biomimetic membranes have been tested for water purification purposes (chapter "Biomimetic Membranes as an Emerging Water Filtration Technology"), while their functionalization with different biomolecules can be used in the detection of various analytes, including phenols, pesticides, heavy metals, toxins, allergens, antibiotics, microorganisms, hormones, dioxins, and genetically modified produce (chapter "Applications of Lipid Membranes-based Biosensors for the Rapid Detection of Food Toxicants and Environmental Pollutants"). In sum, the unique and admirable characteristics of biomimetic membranes have extended our fundamental knowledge on cell membranes and their organization with milieu and ultimately opened new horizons for other disciplines at the intersection of chemistry, physics, materials science, engineering, biology, and medicine. Exclusively, their applications in the field of medicine and other conjunctive realms have gained immense interest in recent years by screening diseases and therapies, therefore expediting clinical management through prevention studies. In the near future, further engineered biomimetic membranes, in combination with the existing developments, will spectacularly impact greater than their current status in the health-care system through elucidating the fundamental understanding of disease biology and mechanism, leading to synergetic medical solutions to the real-world problems.

Istanbul, Turkey Urla, Izmir, Turkey Palo Alto, CA, USA Fatma N. Kök Ahu Arslan Yildiz Fatih İnci

Contents

Structural and Mechanical Characterization of Supported Model Membranes by AFM	1
Berta Gumí-Audenis and Marina I. Giannotti	
To Image the Orientation and Spatial Distribution of Reconstituted Na ⁺ ,K ⁺ -ATPase in Model Lipid Membranes Tripta Bhatia and Flemming Cornelius	29
Asymmetric Model Membranes: Frontiers and Challenges Michael H. L. Nguyen, Brett W. Rickeard, Mitchell DiPasquale, and Drew Marquardt	47
Modeling of Cell Membrane Systems Tuğba Arzu Özal İldeniz	73
Molecular Dynamics Studies of Nanoparticle Transport Through Model Lipid Membranes Cynthia J. Jameson, Priyanka Oroskar, Bo Song, Huajun Yuan, and Sohail Murad	109
Investigation of Cell Interactions on Biomimetic Lipid Membranes Abdulhalim Kılıç and Fatma Neşe Kök	167
Tethered Lipid Membranes as Platforms for Biophysical Studiesand Advanced BiosensorsJakob Andersson and Wolfgang Knoll	183
Biomedical Applications: Liposomes and Supported Lipid Bilayers for Diagnostics, Theranostics, Imaging, Vaccine Formulation, and Tissue Engineering M. Özgen Öztürk Öncel, Bora Garipcan, and Fatih Inci	193
Lipid Bilayers and Liposomes on Microfluidics Realm: Techniques and Applications Fatih Inci	213

Biomimetic Model Membranes as Drug Screening Platform Rumeysa Bilginer and Ahu Arslan Yildiz	225
Biomimetic Membranes as an Emerging Water Filtration Technology Reyhan Sengur-Tasdemir, Havva Esra Tutuncu, Nevin Gul-Karaguler, Esra Ates-Genceli, and Ismail Koyuncu	249
Applications of Lipid Membranes-based Biosensors for the Rapid Detection of Food Toxicants and Environmental Pollutants Georgia-Paraskevi Nikoleli, Dimitrios P. Nikolelis, Christina G. Siontorou, Marianna-Thalia Nikolelis, and Stephanos Karapetis	285
Index	299

List of Figures

Structural and Mechanical Characterization of Supported Model Membranes by AFM

Fig. 1	Model membranes. (a) Giant unilamellar vesicles (GUVs).	
	(b) Monolayers. (c) Supported lipid bilayers (SLBs) –	
	or supported planar bilayers (SPBs). (d) Pore spanning	
	bilayers on porous substrates. (e) Polymer-cushioned	_
	membranes. (f) Stacked bilayers (or multibilayers)	3
Fig. 2	Most commonly used methods to prepare supported lipid	
	bilayers (SLBs). (a) Liposome rupture or fusion method.	
	(b) Langmuir-Blodgett (LB) technique. (c) Hydration of	
	spin-coated films	3
Fig. 3	HS-AFM imaging of ESCRT-III polymers on supported	
	lipid membranes. Snf7 was polymerized on supported	
	lipid membranes, followed by addition of Vps2, Vps24,	
	and Vps4. Then, Mg ²⁺ and ATP were added and imaging	
	was started 5.5 min later ($t = 0$). The overlays highlight	
	pre-formed spirals (blue) or newly formed spirals (orange).	
	The bottom panels show a close-up of the nucleation of a	
	new spiral. The images represent averages of 3 consecutive	
	time frames to improve the signal-to-noise ratio. Scale bars,	
	200 nm (top panel) or 5 nm (bottom panel). (Reproduced	
	from Ref. [51] with permission form Springer Nature.	
	Copyright 2017, Springer Nature)	5
Fig. 4	Schematics of AFM-FS experiments on an SLB: (a)	
C	$F_{\rm b}$ characterization and pulling lipid tubes: a typical	
	force-separation curve, showing the discontinuity in the	
	approach curve (red) when the bilayer is punctured, from	
	which $F_{\rm b}$ and thickness (th) are calculated. The retract	
	curve (blue) displays a force plateau that corresponds to the	
	lipid tube growing, from which F_{tube} and the tube distance	
	(d) are obtained. (b) AFM-based force clamp (AFM-FC).	
	\mathbf{r}	

displaying separation-time and force-time typical curves, showing the bilayer rupture event, from which the time to breakthrough (*t*_b) and th are obtained 7 Fig. 5 (a) Correlation between $F_{\rm b}$ and $F_{\rm tube}$ values for single component SLBs. The individual phospholipids contain a constant tail length of 18 C with 1 unsaturation (DOPE, DOPG (1,2-dielaidoyl-*sn*-glycero-3-phospho-(1'-rac-glycerol)), and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine)) or 16 C and fully saturated (DPPE (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine), DPPC, and DPPG), in fluid and gel state at RT, respectively. (Adapted from Ref. [28] with permission from the Royal Society of Chemistry). (b) Plot of the measured average $F_{\rm b}$ value as a function of the number of carbons present in each phospholipid tail (red data points) and linear fit to the data (black dotted line), under 150 mM NaCl, 20 mM MgCl₂ buffer (pH 7.4), and at RT. Gray data points stand for the average $F_{\rm b}$ value for the probed phospholipids under 150 mM NaCl in the absence of Mg²⁺. (Reprinted with permission from [17]. Copyright 2010 American Chemical Society). (c) DOPE:DPPG (25:75) SLB on mica: (i) AC-mode AFM topographical image; (ii) $F_{\rm b}$ map and distribution; (iii) F_{tube} map and distribution; (iv) Two F_{tube} distributions resolved when separating F_{tube} values according to the corresponding $F_{\rm b}$. (Reproduced from Ref. [28] with permission from the Royal Society of Chemistry)..... 8 Fig. 6 PC:Chol SLBs: (a) AC-mode AFM topographical image of DPPC:Chol with 20 mol % Chol (mica-supported, 10 mM HEPES, 20 mM MgCl₂, 150 mM NaCl, pH 7.4, 27 °C). (**b**) $F_{\rm b}$ maps and histogram distributions for DPPC:Chol mica-SLBs with 20 and 40 mol % Chol, with a clear correspondence of the $F_{\rm b}$ map for 20 mol % Chol with the topography in (A). (c) Mean F_b values as a function of the Chol content for: DPPC:Chol (■), DOPC:Chol (○), DLPC (1,2-dilauroyl-*sn*-glycero-3-phosphocholine):Chol (×). DPPC:Chol and DOPC:Chol data taken from Ref. [25], DLPC:Chol data taken from Ref. [17]. (d) GIXD Q_{parallel} intensity (integrated over $Q_{perpendicular}$) patterns from DPPC:Chol silicon-SLBs of 100:0, 90:10, 80:20, 60:40, and 50:50 molar ratios in Si-SLB-Si configuration. All measurements in 10 mM HEPES, 20 mM MgCl₂, 150 mM NaCl, pH 7.4, and at RT. ((a, b) Adapted with permission from [25]. Copyright 2012 American Chemical Society. (d)

Fig. 7	Reproduced from Ref. [43] with permission from the Royal Society of Chemistry) DOPC:egg-sphingomyelin (ESM):Ceramide:Chol in a 4:3:1:2 molar ratio SLB: (a) Adhesion force map. (b) AFM height image after the force mapping. (c) Corresponding lateral deflection image. (d) F_b map, showing that Cer-rich domains were not able to be indented for the maximum forces applied in the reported experiments (~70 nN). (e) Contour representation of the F_b . (f) Young's modulus map. (Reproduced with permission from [80]. Copyright 2009 American Chemical Society)	9
To Imag Na ⁺ ,K ⁺	e the Orientation and Spatial Distribution of Reconstituted -ATPase in Model Lipid Membranes	
Fig. 1	The reaction cycle of pump according to the classical Post-Albers scheme. Schematic shows only the forward direction. The framed species represent the crystal structure of the E2 conformation with bound K^+	31
Fig. 2	Proteoliposomes. (a) Freeze-fracture micrograph of Na^+,K^+ -ATPase in liposomes. (b) Schematic of a proteoliposomes showing lipid bilayer and pumps in the three different orientations. The native orientation is rightside-out (r/o) with cytoplasmic part inside the liposome and extracellular part outside. The i/o orientation is opposite to the r/o, and the non-oriented (n/o) is absorbed protein,	
Fig. 3	not properly inserted Immunolabelling of GUVs and imaging under confocal microscope. (a) A GUV labelled with membrane dye (cyan). (b) Same GUV immunolabelled with SAbs (red) that binds to PAbs (not shown). GUVs are first incubated with PAbs in the observation chamber that binds to reconstituted Na ⁺ ,K ⁺ ATPase in the liposomes. Afterwards, excess PAbs are washed, and GUVs are incubated with SAbs	33 34
Fig. 4	AFM imaging of complex membranes. (a) Topography image (scanned by AFM) of a ternary membrane patch displaying Lo/Ld domains. The z-height profile (green plot) along a line (red) in the patch shows relative height deflection by ~ 1 nm which is the height difference between Lo/Ld domains. The peak at 3 nm is for a white dot (encircled by red dots) in the patch which is an elevated particle. The mica surface lies under the patch and is shown in the schematic. (b) Histogram of z-height for 170 elevated particles in membrane patches showing maximum number of particles with z-height 1–2 nm and 4–6 nm. From the crystal structure of protein, it is known that α - and	

	β -subunits of Na ⁺ ,K ⁺ ATPase protrude 1–3 nm and 4–6 nm	
	out from the membrane, respectively, if properly oriented,	
	as shown in the schematic	37
Fig. 5	Quantifying number density of protein in the PLB patches.	
U U	(a) A PLB patch is observed in the epi-fluorescence	
	microscope where the membrane is doped with membrane	
	dve Rh-PE. (b) AFM topography image of the same patch.	
	Scale bar is $10 \mu\text{m}$. (c) A high-resolution topography image	
	of the region shown in "b" by a dashed square. The scale har	
	is 600 nm. The most elevated features are the brightest, and	
	colour represents different z-heights (d) Voronoi diagram	
	for the natch region shown in "c" The black dots represent	
	the centroid of the individual elevated features and the	
	white region around the black dot represents area that is	
	having a different height with reference to the background	
	(dark) The number of black dots per cell is one and directly	
	gives the number density of the elevated features in the natch	38
Fig 6	Investigation of height lateral extent and spatial distribution	50
1 15. 0	of the elevated particles in ternary patch (a) A ternary patch	
	with bright spots with non-uniform lateral extent. We select	
	few regions in the patch and plot the lateral extent (seen	
	from top) and z-height (seen from side) of features. The	
	size of particles varies in the patch, and these seem to form	
	clusters as indicated by multiple bright spots nearby. The	
	z-beight of these bright spots varies from 1 to 6 nm shown	
	by a colour scale (b) The Delaunay triangulation for the	
	same region of the patch showing bond lengths "d" between	
	different particles showing beterogeneous spatial distribution	30
Fig. 7	Statistics showing a bright distribution number density	59
11g. 7	spatial distribution and distance between elevated particles	
	(a) Histogram of z height in a ternary patch (b) Histogram	
	a) Instogram of 2-neight in a ternary paten. (b) Instogram	
	estimated from Voronoi analysis (a) Spatial distribution of	
	elevated particles in a binary patch. The model fit $f(t)$ is	
	the cumulative probability distribution which is found for	
	random distribution (d) Distribution of pagest paighbour	
	distance between eleveted particles as estimated from the	
	Delauney triangulation	40
Fig 8	Quantifying phase state in the membrane surrounding the	40
Fig. o	Quantifying phase state in the memorane surrounding the	
	protein. (a) Ap is the area of protein calculated by counting the number of pixels for maximum projection at $(z_1, z_2,, z_n)$	
	the number of pixels for maximum projection at $(z_p - z_{mem})$	
	\sim 1 mm and miding 1 = $\sqrt{(Ap/\pi)}$. Two circuial fadir K_1 - $\sqrt{2r}$ and $R_2 = \sqrt{2r}$ are shown (b , a) Histogram of the space	
	$-\sqrt{21}$ and $N_2 = \sqrt{31}$ are shown. (0, c) filstogram of the area fraction $\Lambda(\mathbf{I}, \mathbf{d})/\Lambda(\mathbf{P}_{c})$ and $\Lambda(\mathbf{I}, \mathbf{d})/\Lambda(\mathbf{P}_{c})$ is plotted where	
	A(Ld) is the area of the liquid disordered phase defined by	
	A(Lu) is the area of the inquid-disordered phase defined by	

 $(z_p - z_{mem}) \sim (-1)$ nm and $(z_{mem} - z_{mica}) \sim 3$ nm. A(R_1) and A(R_2) are the area of the respective circles with radii R_1 and R_2 . 42

Asymmetric Model Membranes: Frontiers and Challenges

Fig. 1	Illustration of lipid asymmetry present in biological membranes. In mammalian plasma membranes, the outer	
	leaflet is mainly composed of sphingomyelin (red) and	
	phosphatidylcholine (blue) The inner leaflet is primarily	
	comprised of phosphatidylethanolamine (green) and	
	phosphatidylserine (vellow). Cholesterol (purple) is	
	distributed throughout the entire lipid bilayer. The relative	
	abundance of the verious lipide species in this figure are not	
	to be taken as absolute.	10
E o	to be taken as absolute	48
F1g. 2	A graph representing the percentage of total lipid that is	
	located in the inner leanet with respect to vesicle size.	40
F ' 0	Taken from a study on a model PC lipid at 20°C [65]	49
F1g. 3	Diagram showing how floppases (a), flippases (b), and	
	scramblases (c) manipulate transverse organization of lipids	50
Fig. 4	An illustration of how various lipids lie on the outer leaflet	
	(a) and inner leaflet (b, c) based on their shape, resulting in	
	specific curvature patterns	50
Fig. 5	Shown are morphological representations which vesicles	
	can undertake. Multilamellar vesicles are displayed with	
	multiple lipid bilayers, separated by an aqueous phase	
	(a). Below shows a unilamellar vesicle with a single lipid	
	bilayer, typically ideal for biologically relevant studies (b)	51
Fig. 6	An illustration of the incubation of unilamellar PC	
	vesicles with the protein phospholipase D (PLD) to yield	
	asymmetric vesicles composed of phosphatidic acid in the	
	outer leaflet and PC lipids in the inner leaflet	53
Fig. 7	(a) The chemical structure of M β CD. (b) A simplified	
	space-filling model of M β CD displaying the hydrophilic	
	outer region and the hydrophobic inner cavity	55
Fig. 8	A schematic of London and co-worker's asymmetric vesicle	
	preparation method	56
Fig. 9	An illustration of a typical phase-transfer setup. (a) An	
	initial w/o emulsion is produced and transferred to a new oil	
	phase, embedded with other lipids. (b) Centrifugation pulls	
	these water microdroplets down and through the interfacial	
	region, lined with lipids, to yield asymmetric vesicles. (c)	
	Asymmetric vesicle with residual oil contamination	59
Fig. 10	Formation of an asymmetric droplet interface bilayer from	
0	the joining of two lipid-enveloped w/o emulsions. After	
	the establishment of the DIB, subsequent studies can then	
	occur, such as the probing of ion-channel formation or	
	anti-microbial peptide insertion and function	60
	Pepude mortan und function	55

Fig. 11	 (a) Generation of w/o emulsions using a flow-focusing step. (b) The general mechanism of the triangular-post shunting often used in microfluidics. W/o droplets in one flow stream is redirected by the post, picking up an extra monolayer through the interfacial layer, forming asymmetric vesicles. Also seen is the draining of the unwanted oil phase 	61
Fig. 12	A schematic of a simple pulsed jetting setup. Two separate droplets are stabilized in wells with oil by the formation of lipid monolayers. A droplet interface bilayer, typically planar in shape, forms and pulsed jet flows then invaginate the membrane eventually forming asymmetric vesicles	63
Fig. 13	 Visual comparison of biological membrane (a) and synthetic membrane mimics (b). (a) Displays the complexity of biological membranes, including various proteins, the cytoskeleton, and a variety of lipid species. (b) Synthetic membrane mimics contain only a few lipid species and lack the intricacy of biomembranes 	65
Modeling	of Cell Membrane Systems	
Fig. 1	Various binding positions of peptide, TN3, designed by T. Kocagöz and N. Unubol [48] to glycosyltransferase of <i>S. aureus</i> . Each binding peptide is shown in a different color (red, green, purple, orange, light blue, lime, yellow). Glycosyltransferases are in dark blue; lipids gray; phosphetes of lipids brown	80
Fig. 2	Two different graphical representations depicted in VMD for POPE membrane lipid bilayer, Cl ions, and TIP3W water system, equilibrated for 0.5 ns at 310 K and 1 atm by NAMD. (a) Water molecules are shown using a CPK model, where oxygens are red and hydrogens are white. Phosphors of lipids are in green with van der Waals (VDW) representation, and lipid tails are denoted by a line representation against a black background. (b) Water molecules are denoted by a line representation, where a lipid bilayer is shown with van der Waals (VDW) representation; phosphors are in green, oxygens are red, hydrogens are white, carbons are light blue, and nitrogens are dark blue against a white background.	94
Fig. 3	CHARMM PDB ID code 1UYN in DPPC translocator domain of autotransporter NalP. Lipids are depicted in a CPK representation as transparent, waters are shown as lines, and the protein is represented in a new cartoon-type secondary structure where the beta strands are vallow.	74
	against a black background	100

Fig. 4	Sensory rhodopsin II with PDB ID code 1H2S in POPC	
	provided by CHARMM. Lipids are depicted as transparent	
	lines in gray, waters are also shown as lines, with red for	
	oxygen and white for hydrogens; protein is shown in a	
	VDW representation against a blue background	101

Molecular Dynamics Studies of Nanoparticle Transport Through Model Lipid Membranes

Fig. 1	Coarse-grain mapping strategy for a DMPC molecule	
	(blue = choline group, yellow = phospho group,	
	red = glycol group, green = acyl chain). (Figure	
	reproduced from Ref. [14])	116
Fig. 2	The structure of the nanoparticles with ligands of 4, 8, and	
U	12 carbons, respectively, from left to right, represented	
	by snapshots from MD simulations in water. (Figure	
	reproduced from Ref. [83])	119
Fig. 3	Self-assembly observed for DPPC lipid molecules from	
U	an isotropic solution in water to form a lipid bilayer	
	membrane. (blue = choline group, red = phosphate group,	
	yellow = glycol group, green = acyl chain, white = water)	122
Fig. 4	Comparison of simulated electron density (ρ^* in	
U	electrons/Å ³) with X-ray experimental measurements and	
	atomistic simulations from the compilation of Nagle et al.	
	[12] (Nagle). (Figure reproduced from Ref. [11])	123
Fig. 5	Comparison of tail segment order parameter with	
-	experimental measurements from deuteron NMR [16].	
	(Figure reproduced from Ref. [11])	124
Fig. 6	Schematic of the simulation system to examine the	
	compressibility of DPPC lipid membranes under pressure.	
	Blue dots represent the choline group, red the phosphate	
	group, yellow the glycerol group, and cyan the acyl chain	
	tail. The wall atoms are in orange	126
Fig. 7	Lipid density profiles at the beginning (red) and the end of	
	compression (blue) at $P = 45$ kbar; NC ₃ = choline group,	
	PO_4 = phosphate group, GL = glycerol group, Tail = acyl	
	chain group	127
Fig. 8	The thickness of the lipid bilayer membrane changes with	
	applied pressure	128
Fig. 9	Snapshots of PEG6 Au NP (left) and PEG12 Au NP (right)	
	at low coverage, respectively 1.66 and 1.06 ligands/nm ² , in	
	water. The gold nanoparticle core is pictured in white with	
	the sulfur beads (blue) and PEGn ligands (red). For clarity,	
	the solvent molecules are not shown. (Figure reproduced	
	from Ref. [34])	129

Fig. 10	Distribution of R_{ee} of ligands on (a) PEG12-Au NP	
	$(1.06 \text{ ligands/nm}^2), \langle R_{ee} \rangle = 1.56 \pm 0.66 \text{ nm and } (\mathbf{b})$	
	PEG12-Au NP (2.49 ligands/nm ²), $\langle R_{ee} \rangle = 1.89 \pm 0.67$	
	nm equilibrated in water. Snapshots of typical PEG12-SH	
	from each distribution are included with blue representing	
	the thiol atom and red the beads of PEG12. These are	
	averages taken over 1 ns of simulations after equilibration	
	is complete. (Figure reproduced from Ref. [34])	132
Fig. 11	Snapshot of the gold nanoparticle on approaching the	
	top leaflet of the membrane, (top) and the top view of	
	the choline head groups of the top membrane leaflet	
	(bottom). On the left is the PEGylated Au NP, and on	
	the right, the alkyl thiolated NP. Here, orange $=$ choline,	
	blue = phosphate, red = glycerol, yellow = gold	
	nanoparticle core, pink = PEG ligands, magenta = alkyl	
	ligands. Other atoms/groups are omitted for clarity. (Figure	
	reproduced from Ref. [112])	133
F1g. 12	Snapshots of the gold nanoparticle within the top leaflet of	
	the lipid bilayer membrane. On the left is the PEGylated	
	Au NP, on the right is the alkyl-thiolated Au NP. As in Fig.	
	11, many atoms/groups are omitted for clarity. (Figure	10.1
F ' 10	reproduced from Ref. [112])	134
F1g. 13	Snapshots of the gold nanoparticle within the center of the	
	membrane. On the left is the PEGylated Au NP, on the right	
	is the alkyl-thiolated Au NP. Here the phosphate groups	
	have also been omitted for clarity. (Figure reproduced from	125
F ' 14	Ref. [112]) II II III III III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	135
F1g. 14	Free energy profile for the arkyltmolated Au NP permeating	
	line denotes the a coordinate at the interface between the	
	the denotes the z coordinate at the interface between the	
	aqueous phase and the memorane, the dotted line on the	
	for various ligand lengths $(S - Short, M - Medium)$	
	For various figure compared with the bare Au core. (Figure	
	L = Long) are compared with the bare Au core. (Figure	136
Fig. 15	Snapshots of the gold nanoparticle exiting the membrane	150
11g. 15	On the left is the PEGylated Au NP on the right is the	
	alkyl-thiol bonded Au NP. All components are shown: only	
	the water molecules have been omitted. (Figure reproduced	
	from Ref [112])	138
Fig 16	Typical lipid flip-flop event trajectories for a 3.0 nm	150
115.10	diameter Au NP with butane-thiol ligands at coverage of	
	6.28 ligand nm ⁻² and unequal ion concentrations in the two	
	compartments. Each of the linid molecules being observed	
	likewise translated along the z direction, but to save space	
	and anong the Careenon, out to but o bruce	

	we suppress the z translation in this and the figure below.	
	(Figure reproduced from Ref. [32])	139
Fig. 17	Snapshots of lipid flip-flop events from the top leaflet (a, b)	
	and bottom leaflet (c, d) of the membrane with a PEGylated	
	Au NP with PEG12 ligands at high coverage. (Figure	
	reproduced from Ref. [34])	140
Fig. 18	Entanglement of lipid molecules with the alkyl ligands,	
C	leading to lipid displacement from the membrane. For	
	clarity, the other ligands on the nanoparticle are not shown.	
	The red dots represent the position of the nanoparticle in	
	the simulation box at each snapshot. (Figure reproduced	
	from Ref. [33])	141
Fig 19	Number of coarse-grained water molecules present in the	
1.18.17	hydrophobic membrane interior during permeation of a	
	have nanocrystal an alkylthiolated gold nanoparticle and	
	a PEGylated gold nanoparticle with the same permeation	
	velocity. The green dashed lines represent the equilibrated	
	positions of the phosphate head groups at the top and	
	bottom membrane leaflets. Each data point has error hars	
	included based on three independent simulations. (Figure	
	reproduced from Ref. [112])	1/13
Fig 20	Molecular snapshots of permettion of a PEG18 paperod in	175
1 lg. 20	the linid hilaver membrane starting from an entry angle of	
	Ω° where pink — choline green — phosphate vellow — Au	
	NR core white $-$ PEG18 ligands. For emphasis we use	
	blue for those PEG18 heads within 1.0 nm of choline and	
	phosphate groups. For clarity water and the lipid tails are	
	omitted in the images (Figure reproduced from Ref. [143])	147
Fig. 21	Cartoon representation of permeation of PEG18 NP in the	17/
11g. 21	lipid bilayer membrane corresponding to the molecular	
	spanshots of Fig. 20 The arrow carries the information of	
	which and of the rod was originally at the top just prior	
	to entry (in this case, at an angle of 0°). The green planes	
	correspond to the plane of the phosphete groups of the top	
	and better leaflets of the bulk lipid bilever. The second	
	and bottom leanets of the burk lipid blayer. The second	
	$c_{\text{construct}} = c_{\text{construct}} = c_{constr$	1 / 0
Eia 22	Total interaction anarry between all DEC baseds and	140
Fig. 22	Total Interaction energy between all PEO beads and	
	phosphate and choline lipid head gloups at several	
	shapshots along the course of hanorou permeation. PEG	
	beau of the PEO18 Au NR at various shapshots along the	
	of 109. The minil decked lines reconcile the time has the	
	of 10°. The pink dashed lines represent the time when the	
	center-of-mass of the PEGylated hanorod is 2.0 nm above	
	the top membrane leaflet and later, when it is 2.0 nm below	

Fig. 23	the bottom membrane leaflet. Each data point has error bars incorporated based on three independent simulations. All trajectories give very similar plots, regardless of initial entry angle. (Figure reproduced from Ref. [143]) Number of water molecules that permeate into the hydrophobic membrane interior during PEGylated NR permeation at an entry angle of 10° (black) and 90° (blue). The green dashed lines represent the equilibrated positions of the phosphate head groups in the top and bottom membrane leaflets of the DPPC lipid bilayer membrane. Each data point has error bars based on three independent simulations. (Figure reproduced from Ref. [143])	150
Investigati	on of Cell Interactions on Biomimetic Lipid Membranes	
Fig. 1 Fig. 2	 (a) Chemical structures of the peptide amphiphiles. (b) Representation of the construction of peptide-functionalized surfaces to study neural stem cell adhesion (not to scale). (c) Phase-contrast images of NSCs after incubation for 5 days. Scale bar: 100 μm. (Reprinted from [23], Copyright (2010), with permission from Elsevier)	170
Fig 3	permission from Elsevier) Top: Insertion of chimeric EA5–Ec protein into SLB	172
115. 5	by vesicle fusion. Bottom: cortical neurons interacting with functional SLB through their ephrin A5 receptors. (Reprinted with permission from [15]. Copyright (2016)	175
Fig. 4	American Chemical Society)	173
	with permission from John Wiley and Sons)	178

Tethered Lipid Membranes as Platforms for Biophysical Studies and Advanced Biosensors

Fig. 1	Schematic and chemical structure of a tethered bilayer lipid membrane. The inner (or proximal) leaflet is comprised	
	of a lipid analogue (black) functionalised with a tethering	
	moiety suspending the membrane above the support surface.	
	The distal leaflet (blue) is comprised of a phospholipid such	
	as 1,2-diphytanoyl- <i>sn</i> -glycero phosphocholine (DPhyPC)	
	whose composition can be varied as required depending on	
	the application of the model system	184
Fig. 2	A fully tethered tBLM (left) and a sparsely tethered	
	membrane (right). Sparsely tethered membranes provide	
	additional space underneath the membrane to accommodate	
	incorporated membrane proteins	185

Biomedical Applications: Liposomes and Supported Lipid Bilayers for Diagnostics, Theranostics, Imaging, Vaccine Formulation, and Tissue Engineering

Immunoassay approaches. (a) Schematic illustration for Fig. 1 colorimetric detection of PLA₂. Briefly, gold nanoparticles are modified with a synthetic polypeptide whereas liposomes encapsulate a bifunctional complementary polypeptide, which interacts with the peptide on gold nanoparticles. By application of PLA₂, liposomes release the complementary polypeptide and lead to nanoparticle aggregation through a four-helix bundle. Reprinted with permission. (Copyright 2011, American Chemical Society [6].) (b) Similar mechanism i adapted to a lateral flow assay. Here, biotinylated PEG linkers loaded liposomes are cleaved with PLA₂, therefore releasing PEG linker. The biotinylated PEG linkers and polystreptavidin-coated gold nanoparticles (pStrept-AuNPs) form multivalent nanoparticle networks, generating a second signal line (positive signal). (Reprinted with permission. Copyright 2015, American Chemical Society [7].) (c) Further adaptation of this strategy is implemented into a glucose meter. (Copyright 2016, American Chemical Society [8].) (d) Schematic illustration depicts the biomimetic assay strategy on a plasmonic chip. Briefly, a planar lipid bilayer represents tumor-specific pMHC receptors on the surface. T cells interact with the lipid bilayer through their receptors (TCR). (Reprinted with permission. Copyright 2018, American Chemical Society [9]) 194

Fig. 2	Micro-arrays formation and dip-pen lithography techniques	
	for liposomes and lipid bilayers. (a) The illustration	
	depicts the substrate-directed surface modification	
	strategy enabling patterning, functionalization, and surface	
	passivation. Through streptavidin and biotin-terminated	
	oligonucleotides, liposomes are captured on the surface.	
	indicating a fluorescent signal (inset). (Reprinted with	
	permission, Copyright 2003, WILEY-VCH Verlag GmbH	
	& Co. [22]) (b) Molecular Assembly Patterning by	
	Lift_off (MAPL) technique is demonstrated. Homogenous	
	arrays are imaged on confocal images. Further, cells are	
	nation and an the surface. Reprinted with permission	
	Converse to 2004 WILEY VCH Verlag Crable & Co	
	Copyright 2004, WILE I-VCH Verlag Glilbh & Co.	
	[23]. (c) Schematic illustration demonstrates the	
	writing process. The lipids used in this study are	
	1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC),	
	fluorescently labelled Liss Rhodamine-PE, biotinylated	
	Biotinyl Cap PE, and negatively charged DOPA. (Copyright	
	2013, Springer Nature Group [24])	198
Fig. 3	Naked-eye detection via liposome-based systems. (a)	
	Schematic demonstrates the strategy of protein detection	
	on PDA sensors containing three different sets of DNA	
	aptamers (BOCK, TASSET, and combination). Color	
	changes of PDA sensors after interaction with thrombin	
	is imaged (inset photos). Despite minimal color transition	
	on the type I and type II sensors, the type III sensor	
	presents a distinct color change that is detectable by	
	the naked eye. (Reprinted with permission. Copyright	
	2010, WILEY-VCH Verlag GmbH & Co. [31].) (b) The	
	illustration depicts the target size effects on the signaling	
	of liposome assay. Fluorescent microscope images of the	
	assay are demonstrated in the presence of H1N2 virus	
	Reprinted with permission (Convright 2013 WILEY-VCH	
	Verlag GmbH & Co [32])	200
Fig 4	Schematic diagram showing multivalent hinding and	200
1 ig. +	internalization of targeted protocalls. Briefly, the protocalls	
	(1) hind to cellular membrane through specific recentors	
	(1) bind to central memorane through specific receptors, (2) are internalized via recentor mediated and ocutosis, and	
	(2) are internatized via receptor-intenated endocytosis, and (3) release the aerge into the external (4) Cargos corruing	
	(5) release the cargo into the cytosol. (4) Cargos carrying	
	an INLS unit are transported through the nuclear pore	
	complex. The cryogenic Transmission Electron Microscope	
	(1 EM) image of the protocell is demonstrated in the inset	
	figure. The image depicts the nanoporous core and the	
	SLB (~4 nm thick). Reprinted with permission. (Copyright	
	2011, Springer Nature Group [39])	201

List of Figures

Fig. 5	Vaccine strategies. (a) Liposomal entities are employed	
	in vaccine formulation via different strategies. (Copyright	
	2012, Future Medicine [51].) (b) Altered liposome	
	sizes induce specific, high-affinity antibodies against	
	the carbohydrate antigen with characteristics of T	
	cell-dependent immunity, which is evaluated on a	
	microarray scan. (Reprinted with permission. Reprinted	
	with permission. Copyright 2018, American Chemical	
	Society [52])	203
Fig. 6	Summary of SLB characteristics on cellular behavior.	
-	Tissue engineering-stemmed approaches have largely	
	benefited from SLB structures to analyze (i) physiochemical	
	composition, (ii) cellular adhesion, (iii) cellular	
	functionality, and (iv) cellular differentiation by changing	
	biochemical compositions and physical properties	205

Lipid Bilayers and Liposomes on Microfluidics Realm: Techniques and Applications

Fig. 1	Electroformation strategy. Schematic illustration depicts (a) the experimental setup and strategy for the electroformation on a silicon surface. (b) The schematic demonstrates the microstructures with 170 nm height and different pitch sizes, and the reflection microscopy images (in false colors) of the phospholipid film formed on various microstructured surfaces with a pitch size of 7, 15, and 60 μ m are presented. (c) Further integration of an insulating patterned mask of SiO ₂ on the silicon substrate is depicted. The schematic demonstrates the phospholipid film on the	
	substrate. Reflection microscopy images (in false colors) of the phospholipid film organization are presented for hole sizes of 7, 12, and 24 μ m, respectively. (Reprinted with permission, Copyright 2006, American Chemical Society [8])	214
Fig. 2	Flow focusing strategy. (a) Illustration represents the combined version of well and flow-based bilayer formation platform. (b) A cross-section of the well is depicted. The lipid bilayer formation occurs in three distinct formats. It either follows the counter, spans the well, or stops at the edge of the well forming a pore in the lipid bilayer. (Reprinted with permission. Copyright 2010, American Chemical Society [17]). (c) Another flow focusing strategy is illustrated as a microchamber array. The lipid bilayers are generated perpendicular to an imaging plane. Fluorescent intensity is employed as a quantitative data to evaluate the translocation of confined fluorescent, non-charged molecules across the bilayer. Time-lapse images of the	

	process are represented. (Reprinted with permission. Copyright 2011, The Royal Society of Chemistry [20])	216
Fig. 3	Pulsed jetting strategy. The lipid microtubule is formed from the planar bilayer through the jet-flow method. The microtubule is then deformed and subsequently generates asymmetric vesicles from the unstable break-up	
	of the deformed microtubule. As a result, two different sizes of vesicles are formed. Via this technique, lipid flip-flop and lipid–membrane protein interaction are easily investigated on the experimentatic size of the provided of the second secon	
	with permission. Copyright 2016, Springer Nature Group [24])	218
Fig. 4	Array strategies. (a) Schematic illustration represents the converging flow configuration for creating gradient-based array system with two types of vesicles in solution. (Reprinted with permission. Copyright 2000, American Chemical Society [28]). (b) Vesicle deposition on a microfluidic device is demonstrated. Three distinct inputs are introduced into the lanes to create lipid vesicle tethering and bilayer formation in the microchannels. (Reprinted with permission. Copyright 2007, National Academy of Sciences, U.S.A. [29]). (c) The entire process of 'lab on a biomembrane' approach is depicted as a schematic.	
	The platform enables multitude processes, such as 2-D writing/erasing, dynamic control of the composition, and functionalization. (Reprinted with permission. Copyright	221
Biomimo	2013, Springer Nature Group [50])	221
Eig 1	Schemetic representation of complex hielogical membrane	
1'ig. 1	structure. Drug-physicochemical properties and membrane properties influence drug–membrane interactions	226
Fig. 2	Schematic of biomimetic lipid membrane models: (a) Lipid monolayer, (b) lipid vesicle, (c) supported lipid bilayer, (d) tethered lipid bilayer	233
Fig. 3	 (a) A microfluidic chip is used to supply buffer and tetracycline molecule through a microchannel to vesicles immobilized on a glass slide at the bottom layer. Upon permeation of the lipid membrane, a fluorescent europium tetracycline complex is formed. Reprinted with permission[12]. (b) Membrane protein (Cyt-bo3) expression and insertion is detected by Surface Plasmon Enhanced Fluorescence spectroscopy (SPFS) technique. Reprinted with permission[19]. (c) Step-by-step formation of the SsI M followed by incorporation of the VDAC 	233
	protein. (Reprinted with permission[17])	235

List of Figures

Fig. 4	(a) Schematic illustration of the nanodisc model. Scaffold	
	proteins(red) wrap the lipid(blue) molecules to form	
	nanodisc platforms. (Reprinted with permission[60]).	
	(b) A model of the nanodisc platform. (Reprinted with	
	permission[61]). (c) A microfluidic device for nanodisc	
	formation. (Reprinted with permission[26])	238
Fig. 5	(a) Schematic of conventional patch-clamp setup showing	
	the patch-clamp pipette attached to the cell membrane. The	
	cell is attached to the bottom of the dish and is viewed	
	using a microscope. (b) Illustration of hERG ion channel	
	insertion into both lipid vesicle and tBML platforms. (c-d)	
	iSPR characterization for hERG ion channel insertion into	
	tBLM platform; thickness map of tBLM, in the absence	
	(c) and in the presence (d) of hERG. (e) Drug screening	
	and IC50 analysis for astemizole, E4031, haloperidol, and	
	thioridazine. (Reprinted with permission[14])	239

Biomimetic Membranes as an Emerging Water Filtration Technology

Fig. 1	The 2D structure of valinomycin [29, 30]	253
Fig. 2	Schematic representation of some water channels. (a)	
	Aquaporin water channel, (b) Carrier protein, (c) Dentritic	
	peptides, (d) I-quartet, (e) Hydrazide functionalized pillar	
	[5] arene, (f) Carbon nanotube porins	256
Fig. 3	Some of the routes used for AqpZ embedding into	
	membrane matrix. (a) Vesicle fusion, (b) Interfacial	
	polymerization polyamide layer, (c) Self-assembly of	
	polyelectrolytes ruptured vesicle, (d) Imprinting	259
Fig. 4	Effects of using different lipid/polymer and PLR ratios on	
	water permeability (a) AqpZ system, (b) PAP[5] system.	
	(Reprinted with permission from Ren et al. [86]. Copyright	
	(2018) Wiley)	261
Fig. 5	(a) 0.1 mg/mL, (b) 0.5 mg/mL liposome concentration	
	at a PLR of 1:100. (Reprinted with permission from	
	Sengur-Tasdemir [72])	262
Fig. 6	(a) 2D sheets of PAP[5] channels assembled into composite	
	membranes. (b) The permeability of membranes is	
	approximately one order of magnitude higher than that	
	of commercial nanofiltration membrane with a similar	
	molecular weight cutoff (MWCO). (c) The molecular	
	weight cutoff (MWCO) was \sim 450 Da, 370 Da, and 360	
	Da for the modified PES membrane, commercial N30F,	
	and NDX membranes, respectively. (d) A comparison of	
	PAP[5] channel-based membrane to other commercial NF	
	membranes is shown within the cutoff range (400-500 Da).	

(e) Photographs of feed (F) and permeate (P) containing	
different dye molecules for modified PC membranes.	
(Reprinted with permission from Shen et al. [52]. Copyright	
(2018) Springer Nature)	263

Applications of Lipid Membranes-based Biosensors for the Rapid Detection of Food Toxicants and Environmental Pollutants

Fig. 1	Schematic of the sensor, measurement setup, and lipid	
	self-assembly process (not drawn to scale): (a) the	
	sensing electrode is tipped with a scalpel and immediately	
	immersed in lipid solution before being dipped in the	
	electrolyte solution. (b) The electrochemical setup consists	
	of a 20 mL cell and a two-electrode configuration, i.e.,	
	the sensing electrode and a Ag/AgCl reference electrode,	
	placed in a grounded Faraday cage; an external DC	
	potential of 25 mV is applied between the electrodes, and	
	the ionic current through the BLM is measured with a	
	digital electrometer; the cell is stirred using a magnetic	
	stirrer. (c) Upon immersion, the lipid droplet attached to	
	the wire is self-assembled into a bilayer that has one layer	
	adsorbed on the metal surface and the other facing the	
	aqueous solution. (d) Recording of the ion current decrease	
	during the self-assembly process; recording started at	
	the immersion of the sensing electrode in the electrolyte	
	solution. (Reprinted from Ref. [3])	288
Fig. 2	Schematic of the experimental setup; the micromachined	
-	chambers are separated by a thin (12.5 μ m thick)	
	polyvinylidene chloride wrap and enclose the microfiber	
	disk. For more details, see text. (From Ref. [3])	289
Fig. 3	Schematic of a lipid membrane-based biosensor on	
C	graphene electrode. This device was used for the	
	potentiometric determination of urea.	
	(Reprinted from Ref. [22])	292

List of Tables

Modeling of Cell Membrane Systems

Table 1	Classification of lipids and number of lipid types in CHARMM Membrane Builder	85
Table 2	Classification and the abbreviated names of the currently	
	available structures in lipid subsection of CHARMM	
	Membrane Builder	85
Molecul	ar Dynamics Studies of Nanoparticle Transport Through	
Model L	ipid Membranes	
Table 1	Force field for nanoparticle with hydrophobic ligands	
	$(R_0 \text{ in nm}, K_{\text{bond}} \text{ in kJ mol}^{-1} \text{ nm}^{-2}, \Theta_0 \text{ in deg},$	
	K_{angle} in kJ mol ⁻¹ rad ⁻²)	118
Table 2	Properties of Au NP with two types of ligands: 8 and 12	
	carbons long. Our CGMD simulations of these nanoparticles	
	in nexane or CDCl ₃ solvent in Ref. [83] are compared with coarse grained simulations from Ref. [81] and with	
	experimental observations from Ref [110]	130
		150
Biomim	etic Model Membranes as Drug Screening Platform	
Table 1	List of drug studies that utilize model lipid membranes or	
	membrane receptors as a therapeutic target	227
Biomim	etic Membranes as an Emerging Water Filtration	
Technol	ogy	
Table 1	The overview of water channels performance	257
Table 2	The studies of biomimetic membrane fabrication	265
Table 3	Summary of commercial AqpZ inside biomimetic FO	
	membrane studies	273

Structural and Mechanical Characterization of Supported Model Membranes by AFM

Berta Gumí-Audenis and Marina I. Giannotti

Besides proteins and carbohydrates, lipids are the main component of biological membranes. Lipids show a well-defined organization and distribution in the membrane, including asymmetric distribution in most cases. The internal leaflet of plasma membranes is typically composed of charged phosphatidylserines (PSs), phosphatidylethanolamines (PEs), and a smaller number of phosphatidylcholines (PCs), while the outer leaflet is mostly composed of PCs and sphingolipids (SLs), including glycolipids (GLs) [1]. Cholesterol (Chol), present in both leaflets, is also a key component of the cell membrane. The membrane is able to laterally segregate its constituents, subcompartmentalizing them into small domains (10–200 nm) of fluctuating nature [2, 3]. These nanoscale assemblies of lipids, enriched with Chol, SLs, and proteins, play significant biological roles in membrane signaling and trafficking. Several cellular processes, including adhesion, signaling and transcription, endocytosis, and membrane resealing, among others, involve conformational

B. Gumí-Audenis

M. I. Giannotti (🖂)

Centro de Investigación Biomédica en Red (CIBER), Instituto de Salud Carlos III, Madrid, Spain

Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain

Department of Material Science and Physical Chemistry, University of Barcelona, Barcelona, Spain

e-mail: migiannotti@ibecbarcelona.eu

Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain

Department of Material Science and Physical Chemistry, University of Barcelona, Barcelona, Spain

Laboratory of Self-Organizing Soft Matter and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands

[©] Springer Nature Switzerland AG 2019

F. N. Kök et al. (eds.), Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization, https://doi.org/10.1007/978-3-030-11596-8_1

2

changes such as bending, vesiculation, and tubulation [1, 4]. For instance, in endocytosis, the endocytic system needs to generate enough force to form an endocytic vesicle by bending the membrane bilayer [5]. For example, membrane tubes or tethers are formed during neutrophils rolling along the endothelium and adhesion to platelets [6, 7]. These mechanisms generally involve membrane separation from the cytoskeleton as well as strong bending, for which the membrane chemical composition and physicochemical properties, often highly localized and dynamic, are key players [4].

It becomes clear that the mechanical role of the lipid membrane in force triggered (or sensing) mechanisms in cells is also significant, in addition to more established role of the mechanosensitive proteins [8]. Understanding the lipid bilayers' physical and mechanical properties becomes essential to comprehend their contribution to the overall membrane. Atomic force microscopy (AFM)-based experimental approaches have been to date very valuable to deepen into these aspects. In this chapter, we introduce the different AFM-based methods to assess topological and nanomechanical information on model membranes, specifically to supported lipid bilayers (SLBs), including several examples ranging from pure phospholipid homogeneous bilayers to multicomponent phase separated ones, increasing the bilayer complexity, in the direction of mimicking biological membranes.

1 Model Lipid Membranes

Models are often required to be used as a simpler way to mimic the original complex system. Considering the high complexity and chemical diversity of biological membranes, model bilayer systems are widely used when studying membrane properties and biological processes at the cellular and subcellular level. One of the most essential models to represent biological membranes are the giant unilamellar vesicles (GUVs), since they offer a perfect stage to study the dynamics of membrane domains and how compositional changes affect the physical properties of the overall GUV [9–11]. In addition, GUVs allow investigating the interactions within the vesicle and proteins or DNA [12, 13]. Nevertheless, GUVs are limited to a simple composition and cannot comprise the complex one defining the cell membrane. Recently, giant plasma membrane vesicles (GPMVs) have attracted special attention since they are directly obtained from cell membranes, maintaining the membrane composition comprising the lipid complexity and the large amount of transmembrane proteins [14, 15].

However, due to the heterogeneity and dynamics of biological membranes, with domains at the micro and nanoscales, and the consequent need of local techniques to explore biological membranes at the nanometric level, supported membranes are within the most adequate models. These are very manageable platforms that retain two-dimensional order and lateral mobility, and they offer an excellent environment for inserting membrane proteins. Nowadays, a wide range of supported bilayer systems are suitable approaches for biological studies, like selfassembled monolayer-monolayer systems or bilayer coated microfluidics, within others. Nevertheless, supported lipid bilayers (SLBs) – or supported planar bilayers (SPBs) – are relatively simple to obtain and facilitate the use of surface analytical techniques. SLBs are ideal to study lipid lateral interactions, growth of lipid domains, as well as interactions between the lipid membrane and proteins, peptides and drugs, cell signaling, etc. [16–23]. Still, it is important to have in consideration the contribution of the underlying rigid substrate on the membrane order, structure, and mechanical properties [24–28], some of which are yet to be fully characterized. Besides, the membrane being confined to two dimensions prevents from evaluating the intrinsic curvature of the membrane. Alternative models like the pore spanning bilayers on porous substrates [29], the polymer-cushioned membranes [30], and the stacked bilayers (or multibilayers) [24, 31–33] have been then proposed and used [34], minimizing the contribution from the stiff support. Some of the mostly used membrane models are schematized in Fig. 1.

Among the several methods to obtain SLBs, the most widely used are the Langmuir-Blodgett (LB) technique, the hydration of spin-coated films, and the liposome rupture or fusion method (Fig. 2). In the LB technique, a phospholipid monolayer is transferred to the solid substrate by immersing the substrate at a

Fig. 1 Model membranes. (**a**) Giant unilamellar vesicles (GUVs). (**b**) Monolayers. (**c**) Supported lipid bilayers (SLBs) – or supported planar bilayers (SPBs). (**d**) Pore spanning bilayers on porous substrates. (**e**) Polymer-cushioned membranes. (**f**) Stacked bilayers (or multibilayers)

Fig. 2 Most commonly used methods to prepare supported lipid bilayers (SLBs). (a) Liposome rupture or fusion method. (b) Langmuir-Blodgett (LB) technique. (c) Hydration of spin-coated films