

Hot Topics in Acute Care Surgery and Trauma

Nicola de'Angelis
Salomone Di Saverio
Francesco Brunetti *Editors*

Emergency Surgical Management of Colorectal Cancer

WORLD SOCIETY OF
EMERGENCY SURGERY

Springer

Hot Topics in Acute Care Surgery and Trauma

Series Editors

Federico Cocolini
Cesena, Italy

Raul Coimbra
San Diego, USA

Andrew W. Kirkpatrick
Calgary, Canada

Salomone Di Saverio
Cambridge, UK

Editorial Board

Luca Ansaldi (Cesena, Italy); Zsolt Balogh (Newcastle, Australia); Walt Biffl (Denver, USA); Fausto Catena (Parma, Italy); Kimberly Davis (New Haven, USA); Paula Ferrada (Richmond, USA); Gustavo Fraga (Campinas, Brazil); Rao Ivatury (Richmond, USA); Yoram Kluger (Haifa, Israel); Ari Leppaniemi (Helsinki, Finland); Ron Maier (Seattle, USA); Ernest E. Moore (Fort Collins, USA); Lena Napolitano (Ann Arbor, USA); Andrew Peitzman (Pittsburgh, USA); Patrick Rielly (Philadelphia, USA); Sandro Rizoli (Toronto, Canada); Boris Sakakushev (Plovdiv, Bulgaria); Massimo Sartelli (Macerata, Italy); Thomas Scalea (Baltimore, USA); David Spain (Stanford, USA); Philip Stahel (Denver, USA); Michael Sugrue (Letterkenny, Ireland); George Velmahos (Boston, USA); Dieter Weber (Perth, Australia)

This series covers the most debated issues in acute care and trauma surgery, from perioperative management to organizational and health policy issues. Since 2011, the founder members of the World Society of Emergency Surgery's (WSES) Acute Care and Trauma Surgeons group, who endorse the series, realized the need to provide more educational tools for young surgeons in training and for general physicians and other specialists new to this discipline: WSES is currently developing a systematic scientific and educational program founded on evidence-based medicine and objective experience. Covering the complex management of acute trauma and non-trauma surgical patients, this series makes a significant contribution to this program and is a valuable resource for both trainees and practitioners in acute care surgery.

More information about this series at <http://www.springer.com/series/15718>

Nicola de'Angelis • Salomone Di Saverio
Francesco Brunetti
Editors

Emergency Surgical Management of Colorectal Cancer

Springer

Editors

Nicola de' Angelis
Department of General Surgery
Unit of Digestive, Minimally Invasive
and Robotic Surgery,
Henri Mondor Hospital
Créteil
France

Salomone Di Saverio
Cambridge Colorectal Unit, Cambridge
Biomedical Campus
Cambridge University Hospitals NHS
Foundation Trust, Addenbrooke's Hospital
Cambridge
UK

Francesco Brunetti
Department of General Surgery
Unit of Digestive, Minimally Invasive
and Robotic Surgery,
Henri Mondor Hospital
Créteil
France

ISSN 2520-8284

ISSN 2520-8292 (electronic)

Hot Topics in Acute Care Surgery and Trauma

ISBN 978-3-030-06224-8

ISBN 978-3-030-06225-5 (eBook)

<https://doi.org/10.1007/978-3-030-06225-5>

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Géwerbestrasse 11, 6330 Cham, Switzerland

To my family, who makes my dreams real by supporting me every single day of my life.

Nicola de'Angelis

To the memory of my Dad “Paito,” to my mother Gabriella who is inspiring and missing me, and to the patience and dedication of my beloved wife Omeshnie

Salomone Di Saverio

To my mother Anna and my hometown Napoli

Francesco Brunetti

Preface

This book is part of the series “Hot Topics in Acute Care Surgery,” as a result of a successful collaboration between Springer and the World Society of Emergency Surgery (WSES). The WSES is an “open access” society funded in 2009. In less than 10 years, WSES has expanded worldwide, accounting delegates in every continent who share and endorse its aim: promoting emergency surgery training and education through scientific communications, international consensus, academic exchanges, and surgical fellowship.

In the same perspective, this book is addressed to general surgeons, emergency specialists, fellow surgeons, and residents to provide them an extensive and updated overview on the emergency surgical management of colorectal cancer. The increasing prevalence of colorectal cancer, especially in industrialized countries, makes this malignant pathology as one of the most commonly encountered in daily practice and more and more often in the emergency setting. Indeed, the whole book is dedicated to develop the multiple aspects related to the challenging management of colorectal cancer as an emergency, including imaging and interventional radiology strategies, endoscopy, and surgery for both primary tumor and metastases. Novel strategies and techniques, such as the implementation of enhanced recovery program or minimally invasive surgery, are discussed in detail. Particular interest is assigned to specific categories of patients presenting with colorectal cancer emergencies, such as elderly patients, transplanted patients, or patients with hemostatic disorders or receiving immunotherapy or chemoradiation therapy. The postoperative cares and the difficult decision-making process in emergency settings are discussed in dedicated chapters with the aim of providing the reader with detailed descriptions of these important issues. Finally, three chapters focusing on surgical training curriculum, technical aspects, and documented clinical cases have been written specifically for residents and trainees who can find a rapid source of practical and technical information to improve their knowledge and skills in the field.

As editors, we are very satisfied of this work, which emphasizes the international and multidisciplinary collaboration of more than 50 authors from all over the world. Their scientific contribution allowed treating an exhaustive range of pertinent topics and has ensured a perceptive and balanced approach to the complex field of colorectal cancer emergencies.

In this rapidly evolving medical and surgical domain, there remains a shortage of specialists specifically trained to deal with colorectal cancer emergencies.

Those learning more about this field will discover that a successful management is dependent on a consolidated multidisciplinary approach and a straightforward decision-making process in the emergency setting, which relies upon evidence-based knowledge, experience, and pragmatism.

Créteil, France
Cambridge, UK
Créteil, France

Nicola de' Angelis
Salomone Di Saverio
Francesco Brunetti

Contents

1	Colorectal Cancer Research: A State of the Art	1
	Nicola de' Angelis	
2	Epidemiology of Colorectal Cancer: Incidence, Survival, and Risk Factors	15
	Florence Canouï-Poitrine, Claudia Martinez-Tapia, Lydia Guittet, and Anne-Marie Bouvier	
3	Socioeconomic Impact of Emergency Therapies for Colorectal Cancer	31
	Aleix Martínez-Pérez, Carmen Payá-Llorente, and Arturo García-Lozano	
4	Acute Care and Surgical Risk Assessment	43
	Arezo Kanani, Hartwig Kørner, and Kjetil Soreide	
5	Complicated Colorectal Cancer: Role of Imaging	55
	Athena Galletto, Laurence Baranes, Sébastien Mulé, Edouard Herin, Mélanie Chiaradia, Marjane Djabbbari, Rym Kharrat, Benhalima Zegai, Frédéric Pigneur, and Alain Luciani	
6	Principles of Colonoscopy for Colorectal Cancer Emergency	69
	Federica Gaiani, Franca Patrizi, Iradj Sobhani, and Gian Luigi de' Angelis	
7	Management of Colonoscopy Complications	81
	Osvaldo Chiara, Stefania Cimbanassi, and Arianna Birindelli	
8	Emergencies Related to Primary Colon Cancer: Multidisciplinary Management of Colon Obstruction, Perforation and Bleeding Due to Colon Cancer in the Absence of Metastatic Disease	91
	Erika Picariello, Claudia Zaghi, Paola Fugazzola, Matteo Tomasoni, Enrico Cicuttin, Luca Ansaloni, and Federico Cocolini	
9	Emergencies Related to Primary Rectal Cancer	101
	Elisabeth Hain, Pénélope Raimbert, Magaly Zappa, and Yves Panis	

10	Peritoneal Carcinomatosis and Other Emergencies Not Related to Primary Colorectal Cancer	113
	Niccolò Petrucciani, Alexis Laurent, Francesco Brunetti, and Nicola de' Angelis	
11	Emergencies Related to Advanced Metastatic Colorectal Cancer	127
	Riccardo Memeo, Alessandro Verbo, Patrick Pessaux, and Emanuele Felli	
12	Multidisciplinary Management of Postoperative Complications	133
	Massimo Sartelli	
13	Enhanced Recovery After Emergency Colorectal Surgery	137
	Meara Dean and R. Justin Davies	
14	On the Immune Status of Patients with Colorectal Carcinoma	147
	Pim P. Edomskis, Daniël P. V. Lambrechts, and Johan F. Lange	
15	Medical and Surgical Management of Colorectal Cancer Patients Presenting with Haemostatic Disorders	163
	Valerio Celentano	
16	Medical and Surgical Management of Colorectal Cancer Emergencies in Elderly Patients	177
	Filippo Landi and Eloy Espin	
17	Colorectal Cancer Surgical Emergency in Transplanted Patients	189
	Lelde Lauka, Giulio Vitali, Thierry Berney, and Nicola de' Angelis	
18	Colorectal Cancer Surgical Emergencies in Patients with Inflammatory Bowel Disease	201
	Niccolò Petrucciani, Nicola de' Angelis, Federica Gaiani, and Francesco Brunetti	
19	Emergency Surgical Management in Rectal Cancer Patients Following Radiotherapy	217
	Hayim Gilshtein, Assaf Harbi, and Yoram Kluger	
20	Pathological Analyses of Colorectal Cancer	225
	Gregoire Arnoux, Giulio Cesare Vitali, and Giacomo Puppa	
21	Postoperative Oncologic Management of Colorectal Cancer Emergencies	233
	Emmanuelle Kempf, Isabelle Baumgaertner, and Christophe Tournigand	
22	Minimally Invasive Surgery for Colorectal Cancer in the Emergency Setting	241
	Arianna Birindelli, Valeria Tonini, Justin Davies, Massimo Chiarugi, and Salomone Di Saverio	

23	Indications for Open Abdomen in Colorectal Cancer Emergency	251
	Gennaro Perrone and Fausto Catena	
24	Difficult Decisions in Colorectal Cancer in Emergency Settings	257
	Gianluca Pellino, António S. Soares, and Matteo Frasson	
25	Future Perspectives in Colorectal Cancer Treatments	267
	Mahir Gachabayov and Roberto Bergamaschi	
26	Training Curriculum for Colorectal Cancer Surgery	285
	Mickael Chevallay, Giulio C. Vitali, Nicolas C. Buchs, and Frederic Ris	
27	Emergency Colorectal Surgery Checklists and Technical Considerations	297
	Pietro Genova, Solafah Abdalla, Francesco Brunetti, and Nicola de' Angelis	
28	Clinical Cases on Colorectal Cancer Emergency	313
	Solafah Abdalla, Pietro Genova, and Christophe Penna	

Colorectal Cancer Research: A State of the Art

1

Nicola de'Angelis

1.1 Introduction

Research in colorectal cancer is vast and multitudinous, spreading from genetics to surgical techniques. The increasing amount of publications in the last two decades discloses the enormous progress made in the screening, diagnosis, and treatment of this common malignant pathology. Nowadays, colorectal cancer (CRC) is the third most commonly diagnosed cancer in males and the second in females [1]. The worldwide CRC incidence varies over a tenfold extent; in developing countries, the incidence amounts to 1–5 patients per 100,000 inhabitants, while it can increase to 20–60 patients per 100,000 inhabitants in industrialized regions, a difference that is likely attributable to lifestyle habits, socioeconomic status, and environmental exposures over distinct genetic susceptibility. Overall, CRC incidence has been steadily decreasing in the last 15 years, thanks to the improvements in diagnostic techniques and the implementation of screening programs. Conversely, the incidence rates of CRC in adolescents and young adults have been progressively increasing; this may be partially explained by a lack of routine screening and emerging lifestyle issues such as obesity, poor physical exercise, and dietary factors, but it seems to have a distinctive molecular profile in this specific young patient population, very different to late-onset CRC cases [2]. Thus, the overall global burden of CRC is expected to rise, with 2.2 million predicted new cases and 1.1 million deaths by 2030 [3], and an estimated global economic burden approaching \$100 billion [4].

Although it remains strictly dependent upon the stage of disease at diagnosis, CRC prognosis and related survival have significantly improved. An early-detected localized CRC is associated with a 90% survival at 5 years, whereas a distant metastatic cancer has a much lower chance of survival (10%) [1, 5]. Thus, despite the

N. de'Angelis (✉)

Unit of Digestive, Hepato-Pancreato-Biliary Surgery and Liver Transplantation,
Henri Mondor Hospital, AP-HP, University of Paris Est, UPEC, Créteil, France

great progress made, researchers must continue to search for enhancing the accuracy of the available screening methods and the implementation of prevention programs, as well as identifying the best treatment protocols for CRC in order to impact on cancer incidence and mortality. What should not exist in 2019 is a considerable variation in CRC prognosis that is attributable to global and regional disparities in access to diagnostic and treatment services. Unfortunately, mortality rates are still higher in countries with more limited resources and health infrastructures [6], as well as for socioeconomically deprived neighborhoods in developed countries [7–9]. Moreover, due the growth and aging of the population and the adoption of westernized lifestyle worldwide, the global burden of CRC is expecting to further increase supporting any single effort in CRC research.

1.2 Colorectal Cancer Research: A State of the Art

1.2.1 Advances in Colorectal Cancer Research

In the timeline of colorectal cancer research, several milestones can be found [10] concerning the identification of causes and risk factors, the development of diagnostic and screening tools, the discovery of effective drugs, and the advancements in surgical techniques.

Understanding the basic biology of colorectal cancer development, growth and spread, as well as the environmental risk factors and genetic alterations that contribute to CRC occurrence has been essential for the advancements in CRC prevention and treatments [11]. Indeed, it is well established nowadays that the most important risk factors are age, gender, race, and positive family history, which are related to the genetic component in CRC etiology. Other acquired risk factors include lifestyle (e.g., smoking, lack of physical exercise), dietary habits, and geographic areas [12]. Primary and tertiary preventions of CRC focus on these acquired risk factors, whose modification can contribute to lower the risk of cancer development and recurrence [13–15].

Since the first publication in 1927 by Lockhart-Mummery JP and Dukes C in surgery, gynecology, and obstetrics, research has clearly demonstrated that CRC does not arise *de novo* from the colon mucosa but from a preexisting lesion that can be early detected and treated to the benefit of the patient's cure and survival. This raised the important issue of screening tests with a high sensitivity for detecting early-stage CRC, but even more importantly, for advanced adenomas and high-grade dysplasia, which are the bridge to invasive cancers [16].

Thus, the screening paradigm has shifted; in 2017, the American Cancer Society recommends to screen for CRC in people at average risk aged between 50 and 75 years with a screening strategy that is able to identify polyps and cancer (i.e., by sigmoidoscopy every 5 years, colonoscopy every 10 years, or CT colonoscopy every 5 years). This is preferred over alternative tools that mainly find cancer (i.e., take-home gFOBT yearly, take-home FIT yearly, or a stool-DNA test every 3 years) [17]. It is noteworthy that the widespread implementation of those screening

methods that can accurately identify premalignant polyps or early-stage cancers allowing for the treatment of curable lesions led to an up to 50% reduction in cancer-related mortality [16, 18, 19].

The twenty-first century has been characterized by the introduction of new agents for CRC chemotherapy, modified therapeutic protocols (adjuvant vs. neoadjuvant chemotherapy), and targeted therapies [10, 20–23], which all contributed to improve survival outcomes also in advanced stages of disease. From the sole active agent available until the year 2000, namely, the fluorouracil, molecules such as irinotecan, oxaliplatin, and humanized monoclonal antibodies (bevacizumab, ramucirumab, cetuximab, and panitumumab) were approved for the treatment of CRC. Moreover, the introduction of an orally active drug, the capecitabine, signed another milestone in the CRC chemotherapeutic protocol.

In the era of personalized medicine and with the effort of predicting or improving drug responses in CRC patients, gene expression-based subtyping and molecular CRC classifications were developed as valuable approaches for patient stratification [24, 25]. Most of the molecular mechanisms involved in colorectal carcinogenesis have been characterized, and 16% of CRCs were found to be hypermutated: three-quarters of these had the expected high microsatellite instability, which is known as predictor of a favorable response to immunotherapy in patients with advanced-stage CRC [26, 27].

In the particular case of locally advanced rectal cancer, the administration of neoadjuvant radiotherapy in combination with total mesorectal excision was proved to decrease the local recurrence rate, and it is nowadays considered as the gold standard protocol [28–30]. Going forward, some authors suggested a true paradigm shift in 2004 in case of a complete response to neoadjuvant chemoradiation therapy: the “wait and watch” approach aiming at sparing organs and tissues and avoiding radical, invasive, and morbid surgery with a tremendous impact on the patient’s quality of life [31–35]. Although promising, the oncological safety of this treatment strategy in rectal cancer is currently under investigations.

1.2.2 Critical Issues and Research Gaps in Colorectal Cancer Research

Many critical issues remain unsolved or under investigation in the field of CRC biology, prevention, and treatment [36]. A better understanding of the molecular and cellular interplay between CRC and its macro- and microenvironment would represent a key step forward. In the near future, we expect to have deciphered the roles of gut microbiome in the regulation of the host immune-inflammatory responses and the genesis of neoplastic lesions and, consequently, the possibility of using colorectal microbiota biomarkers to improve treatment outcomes in CRC patients [37].

Definitely, we are still facing an incomplete picture in the etiology of CRC; the absolute risk attributable to inherited, environmental, or lifestyle factors and their synergic interactions remain unclear. To apply precision medicine and tailored

interventions, the risk assessment and patient stratification must become as precise as possible, and this represents the main pathway to undermine the global burden of CRC [38].

Improvements are awaited at any step of CRC cares: in the prevention and screening processes, at the diagnostic level, in the prognostic evaluation, and finally in the application of curative treatments. In general, research advancement should aim to optimize current strategies, fill the gaps, and correct inadequacy while searching for new treatments and novel technologies. Most importantly, there is a real need for more studies focusing on strategies to improve health-related quality of life in patients living with and beyond CRC [36]. Prolonging patient's survival could not be the only objective of modern CRC therapies; research must find a way to weight and counteract the psychological, emotional, and social impact of CRC treatment sequelae, which may include disabling and embarrassing symptoms such as fecal incontinence or sexual dysfunction (observed in up to 35% of patients with rectal cancer) [39–41].

Finally, CRC research in the last decades emphasized the importance of a multidisciplinary team approach to CRC cares, which promoted the creation of national and international networks of colorectal cancer centers of excellence that apply evidenced-based medicine for the standardization of best practices [42]. However, this must be implemented involving not only clinicians and surgeons but also biologists and physical scientists whose expertise is highly required to further advance in CRC research. Moreover, the widespread formation of CRC research networks will assure effective communications between healthcare professionals and optimal knowledge transfer toward healthcare policy-makers, research funders, and CRC patients [36].

1.3 Colorectal Cancer Surgery

1.3.1 Milestones in Colorectal Cancer Surgery

Among all therapeutic options, surgery remains the best chance of cure for CRC when a curative-intent surgery is still possible.

Colon cancer can be safely and efficacy treated by surgery. During the last two centuries, extensive debates have followed about the best technique of colon cancer resection. These concerned the critical issue of high ligation of the lymphovascular pedicle before or after manipulating the tumor, wide or restricted excisions, and the interest of no-touch isolation technique (i.e., early isolation of the lymphovascular pedicle with minimal manipulation).

In general, the type of colectomy is based on tumor location and vascular lymphatic drainage. Although it remains controversial, the high ligation of the lymphovascular pedicle and the no-touch technique seem to confer no additional oncological benefit; however, recent evidence supports the principle of complete mesocolic excision (CME) as the optimal approach that should be applied to all colon cancer. CME includes three essential components: firstly, the dissection between the

mesenteric plane and parietal fascia and the removal of the mesentery within a complete envelope of mesenteric fascia and visceral peritoneum that contains all lymph nodes draining the tumor area. The second component is the central vascular ligation that potentially removes lymph node metastases, vascular and neural invasion in the whole regional draining area. Then, the third component is represented by the resection of an adequate length of bowel to remove all the involved pericolic lymph nodes [43, 44].

Supported by several randomized clinical trials and in order to preserve at best patient's quality of life, the general tendency today is to opt for more conservative and organ-sparing surgical techniques rather than extended resection. Indeed, segmental resections appear as safe as extended ones in case of colon cancer, even located in the transverse colon or at the splenic flexure [45–47].

Rectal cancer was considered incurable until the eighteenth century, when surgery was applied to remove the rectum. However, prior to the introduction of anesthesia, asepsis, and blood transfusions, rectal surgery was highly invasive, aggressive, disabling, and associated with extremely high mortality rates [48]. Early in the twentieth century, Sir Miles described the radical abdominoperineal resection (APR) with permanent colostomy recommending an extensive mesenteric lymphadenectomy to prevent recurrence. To counteract the extreme invasiveness of the radical APR, some surgeons proposed an anastomosis between the rectum and sigmoid colon, which, however, was associated with poor oncological outcomes at that time. The introduction of the Hartmann's procedure with the construction of an end colostomy leaving the distal rectum in place signed a real milestone in rectal cancer management. Since then, the tendency has shifted toward less radical and more sphincter-sparing surgical procedures including anterior resection, low anterior resection (LAR), and pouch reconstructions. The cornerstone in rectal cancer surgery is definitely represented by the concept of total mesorectal excision (TME), proposed by Richard Heald in 1982 [49]. Heald's TME was based on the embryologic development of the hindgut, and it included the excision of the rectal cancer together with the en bloc excision of the mesorectum. By applying this technique, he decreased the rates of positive lateral margins and local recurrence as low as 3.6% and improved the disease-free survival up to 80% at 5 years and 78% at 10 years [49]. Over the years, TME was proved to improve oncologic outcomes and patients' survival over non-TME approaches, and thus, it is currently considered as the gold standard approach in rectal cancer surgery [50, 51].

Parallel to the evolution of surgical principles and surgical techniques, the introduction of new surgical materials and devices allowed for fatal advancements. Particularly, the routine use of mechanical staplers since the 1970s has revolutionized colorectal surgery and made many challenging or tedious procedures much easier and expeditious [48].

The current debate in CRC surgery concerns the application of minimally invasive approaches, such as laparoscopy, robotics, and transanal endoscopic microsurgery [52]. Laparoscopy in general has refashioned surgery of the last three decades transforming completely the operative and postoperative courses of the operated patients.

Laparoscopic colectomy was first introduced in 1991, and it becomes successively the gold standard approach. Indeed, patients operated on by laparoscopy show faster recovery, shorter hospital stay, lesser pain, and improved cosmetic outcomes compared to open surgery [53–55]. The short-term advantages of laparoscopy are doubtless in both colon and rectal cancer resection, but its oncological safety in case of rectal cancer has been recently questioned [56–59]. Indeed, the adaption of laparoscopy for colon cancer has improved recovery outcomes and patient's acceptance of surgery at no expense to survival [55, 60], whereas laparoscopic rectal cancer surgery has been associated with significantly lower rates of complete mesorectal excision with free resection margins, threatening the oncological principles of TME [57]. However, long-term results are lacking, and they will be necessary to finally assess the role of laparoscopy in rectal cancer treatment.

Despite the widespread enthusiasm toward laparoscopy and the encouraging results of randomized controlled trials, especially for colon cancer, it must be noted that the adaption of laparoscopy for CRC surgery remains relatively low. In the USA, a bit more than one patient over two with colon cancer undergoes elective laparoscopic colectomy, whereas only 10% of rectal cancer surgeries are performed by laparoscopy, with significant disparity between urban and rural areas and in high-volume compared with low-volume centers [61, 62]. In France, up to 29% of patients with CRC receive an elective laparoscopic resection [63], with higher rates in high-volume, tertiary, referral hospitals. The hesitation toward laparoscopy, which after more than 20 years from its introduction is still reserved to a minority of patients, may be explained by its complex use in CRC surgery compared to other abdominal operations, leading to long operative times, high conversion rates, steep learning curve, and thus necessary specialized training periods.

To overcome laparoscopic pitfalls, robotic surgery was proposed as high technological approach that allows for a three-dimensional view of the operating field, a 7-degree-of-freedom motion with wristed instruments, and a great surgical ergonomics. The literature is expanding, and several studies have been published on the comparison between robotic and laparoscopic colorectal surgery [45, 64–66]. Despite good surgical outcomes that are most of time comparable to those obtained by laparoscopy, the main drawback of robotic surgery appears to be the costs/benefits ratio that is still unfavorable limiting the indications and spreading of robotics at approximately 1–3% of CRC surgeries [67, 68].

Alternative techniques include natural-orifice transluminal endoscopic surgery (NOTES) and transanal TME (TaTME), which are seen as promising approaches to treat rectal especially located in the low rectum, or in male patients, narrow pelvis or in case of obesity. Still, there is a need for well-designed and executed randomized, controlled trials to define the safety and indications of NOTES or TaTME, as well as their superiority over laparoscopy [52].

Overall, the evolution of CRC surgery is characterized by the progressive shift from radical to organ-sparing procedures and from aggressive to minimally invasive approaches. The pattern of this evolutionary process has definitely accelerated in the last decades reflecting the accelerated rate of technology development in general as

in the medical fields. The development and application of minimally invasive surgical techniques in CRC management must continue because it is supported by a huge clinical impact on patient-centered outcomes as well as on the healthcare systems. In the modern era, it is imperative to optimize the standard of cares in order to reduce the costs of colorectal surgery; this may be pursued by applying the surgical approach with the highest efficiency, the less morbidity rate, and the best oncological outcomes.

1.3.2 The Body of Evidence in Emergency Colorectal Cancer Surgery

Despite increased screening efforts, it is estimated that up to 33% of patients with CRC will present with symptoms requiring acute or emergent surgical interventions. While treating in an emergency setting, the rate of associated morbidity, mortality, and stoma formation is significantly higher compared to elective CRC management. Thus, specific considerations should be made for emergency CRC management and particularly emergency CRC surgery.

The present book is entirely dedicated to the current knowledge and actual issues in the emergency surgical management of colorectal cancer. Each chapter has been written by clinicians and surgeons highly expert in the field with the objective of summarizing the up-to-date literature and merging it with their personal experience. This is one of the fundamental principles of evidence-based medicine, for which any therapeutic choice should be based upon the best available scientific evidence combined with the surgeon's clinical experience and the patient's demand. However, it must be noted that in the specific domain of emergency colorectal cancer surgery, the amount and quality of evidence is limited and mainly supported by retrospective studies. Obviously, practical and ethical issues curtail the feasibility of randomized controlled trials (RCTs), and due to the heterogeneous presentation of CRC in emergency, this latter type of cancer has often represented an exclusion criterion.

It is worth noting that the surgical field in general is not awarded by a high amount of well-conducted RCTs. Indeed, RCTs account for less than 4% of all publications in the leading surgical journals, and their number showed a tendency to decline over time. Hence, most of the available evidence surgery, in both elective and emergency settings, may be considered of poor quality on the evidence-based medicine scale whether it comes from non-RCTs (case-control or cohort studies), retrospective case series, or qualitative reviews [69].

Despite this, systematic reviews and meta-analyses were conducted to summarize the results of emergency vs. elective surgery in CRC patients and compare the outcomes of different surgical approaches [70–73].

In general, a worse prognosis is associated with CRC presenting as a surgical emergency; worse outcomes are related on one side to the patient's specific conditions when admitted in emergency settings (e.g., dehydration, poor nutrition, neglected comorbidities) and, on the other side, to the characteristics of tumors

resected emergently. Indeed, CRC requiring an emergency surgery is typically of a more advanced T stage, of higher histologic grade, or already involving regional lymph nodes or adjacent organs.

Laparoscopy for the emergency surgical management of CRC is gaining popularity, although there is little guidance in the literature about the preoperative evaluation and risk stratification upon which select the type of the operative approach. Moreover, the surgeon's experience and proficiency in laparoscopy play a major role in the adoption of this minimally invasive technique into emergency clinical practice [71].

Finally, in the emergency setting, the individualization of surgical management is even of a greater importance than in elective surgery. However, the emergency colorectal surgeon will face several problems, such as incomplete or unavailable information about diagnosis and staging, complex risk assessment and stratification, and sometimes even the impossibility to gather the patient's consent for surgery. Thus, the decision-making process may be challenging. The available international guidelines and consensus agree that the literature concerning the emergency surgical management of CRC is relatively poor and the existing RCTs are often not sufficiently robust in design and sample size to the point that only few recommendations may be considered as having a strong evidence base (i.e., Grade A). Despite this, the oncologic principles that should be met even in case of CRC requiring an emergency surgery are clear. The Clinical Practice Guidelines Committee of the American Society of Colon and Rectal Surgeons listed the following goals in the treatment of CRC-related emergencies: (1) avert the immediate negative impact of the complication, (2) achieve the best possible tumor control, and (3) ensure timely recovery to permit initiation of appropriate adjuvant or systemic treatment [73]. Surgical principles include wide radial, proximal, and distal margins and a high ligation of the lymphovascular pedicle to obtain an extended lymphadenectomy (>12 lymph nodes) as for CRC resection performed in elective settings.

1.4 Conclusion: Being an Emergency Colorectal Surgeon

With wide disparities among countries and regions, most of colorectal emergencies are still managed by general surgeons, but a greater body of evidence highlights the impact of specialization to reduce morbidity and mortality [74, 75]. Indeed, being a specialized colorectal surgeon seems to be associated with improved surgical outcomes and increased chances for the patient of receiving the best treatment option. Thus, Chap. 26 of this book will discuss the importance of advanced surgical training, revised curriculum, and specialization in colorectal surgery. In parallel, there is a need to progressively shift, especially in tertiary referral hospitals, toward clinical and surgical units that are organized on specialized clinical interest or professional activity to the benefit of the patients' cares and management.

References

1. Global Burden of Disease Cancer, C, Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, Brenner H, Dicker DJ, Chimed-Orchir O, Dandona R, Dandona L, Fleming T, Forouzanfar MH, Hancock J, Hay RJ, Hunter-Merrill R, Huynh C, Hosgood HD, Johnson CO, Jonas JB, Khubchandani J, Kumar GA, Kutz M, Lan Q, Larson HJ, Liang X, Lim SS, Lopez AD, MF MI, Marczak L, Marquez N, Mokdad AH, Pinho C, Pourmalek F, Salomon JA, Sanabria JR, Sandar L, Sartorius B, Schwartz SM, Shackelford KA, Shibuya K, Stanaway J, Steiner C, Sun J, Takahashi K, Vollset SE, Vos T, Wagner JA, Wang H, Westerman R, Zeeb H, Zockler L, Abd-Allah F, Ahmed MB, Alabed S, Alam NK, Aldhahri SF, Alem G, Alemayohu MA, Ali R, Al-Raddadi R, Amare A, Amoako Y, Artaman A, Asayesh H, Atnafu N, Awasthi A, Saleem HB, Barac A, Bedi N, Bensenor I, Berhane A, Bernabe E, Betsu B, Binagwaho A, Boneya D, Campos-Nonato I, Castaneda-Orjuela C, Catala-Lopez F, Chiang P, Chibueze C, Chittheer A, Choi JY, Cowie B, Damtew S, das Neves J, Dey S, Dharmaratne S, Dhillon P, Ding E, Driscoll T, Ekwueme D, Endries AY, Farvid M, Farzadfar F, Fernandes J, Fischer F, GH TT, Gebru A, Gopalani S, Hailu A, Horino M, Horita N, Husseini A, Huybrechts I, Inoue M, Islami F, Jakovljevic M, James S, Javanbakht M, Jee SH, Kasaeian A, Kadir MS, Khader YS, Khang YH, Kim D, Leigh J, Linn S, Lunevicius R, HMA ER, Malekzadeh R, Malta DC, Marques W, Markos D, Melaku YA, Meles KG, Mendoza W, Mengiste DT, Meretoja TJ, Miller TR, Mohammad KA, Mohammadi A, Mohammed S, Moradi-Lakeh M, Nagel G, Nand D, Le Nguyen Q, Nolte S, Ogbo FA, Oladimeji KE, Oren E, Pa M, Park EK, Pereira DM, Plass D, Qorbani M, Radfar A, Rafay A, Rahman M, Rana SM, Soreide K, Satpathy M, Sawhney M, Sepanlou SG, Shaikh MA, She J, Shiue I, Shore HR, Shrime MG, So S, Soneji S, Stathopoulou V, Stroumpoulis K, Sufyan MB, Sykes BL, Tabares-Seisdedos R, Tadese F, Tedla BA, Tessema GA, Thakur JS, Tran BX, Ukwaja KN, BSC U, Vlassov VV, Weiderpass E, Wubshet Terefe M, Yebyo HG, Yimam HH, Yonemoto N, Younis MZ, Yu C, Zaidi Z, MES Z, Zenebe ZM, CJL M, Naghavi M. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. *JAMA Oncol.* 2017;3(4):524–48.
2. Connell LC, Mota JM, Braggioli MI, Hoff PM. The rising incidence of younger patients with colorectal cancer: questions about screening, biology, and treatment. *Curr Treat Options Oncol.* 2017;18(4):23.
3. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. *Gut.* 2017;66(4):683–91.
4. TAC Society. Global cancer control work. 2018. Accessed 8 May, 2018.
5. Heinemann V, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran SE, Heintges T, Lerchenmuller C, Kahl C, Seipelt G, Kullmann F, Stauch M, Scheithauer W, Hielscher J, Scholz M, Muller S, Link H, Niederle N, Rost A, Hoffkes HG, Moehler M, Lindig RU, Modest DP, Rossius L, Kirchner T, Jung A, Stintzing S. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. *Lancet Oncol.* 2014;15(10):1065–75.
6. Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. *CA Cancer J Clin.* 2009;59(6):366–78.
7. Henry KA, Niu X, Boscoe FP. Geographic disparities in colorectal cancer survival. *Int J Health Geogr.* 2009;8:48.
8. Lian M, Schootman M, Doubeni CA, Park Y, Major JM, Stone RA, Laiyemo AO, Hollenbeck AR, Graubard BI, Schatzkin A. Geographic variation in colorectal cancer survival and the role of small-area socioeconomic deprivation: a multilevel survival analysis of the NIH-AARP diet and health study cohort. *Am J Epidemiol.* 2011;174(7):828–38.
9. Favoriti P, Carbone G, Greco M, Pirozzi F, Pirozzi RE, Corcione F. Worldwide burden of colorectal cancer: a review. *Updates Surg.* 2016;68(1):7–11.

10. ASoC Oncology. Cancer progress timeline. 2018.
11. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL. Genetic alterations during colorectal-tumor development. *N Engl J Med.* 1988;319(9):525–32.
12. Huxley RR, Ansary-Moghaddam A, Clifton P, Czernichow S, Parr CL, Woodward M. The impact of dietary and lifestyle risk factors on risk of colorectal cancer: a quantitative overview of the epidemiological evidence. *Int J Cancer.* 2009;125(1):171–80.
13. Crosara Teixeira M, Braghiroli MI, Sabbaga J, Hoff PM. Primary prevention of colorectal cancer: myth or reality? *World J Gastroenterol.* 2014;20(41):15060–9.
14. Massat NJ, Moss SM, Halloran SP, Duffy SW. Screening and primary prevention of colorectal cancer: a review of sex-specific and site-specific differences. *J Med Screen.* 2013;20(3):125–48.
15. Schoenberg MH. Physical activity and nutrition in primary and tertiary prevention of colorectal cancer. *Visc Med.* 2016;32(3):199–204.
16. Winawer SJ. The history of colorectal cancer screening: a personal perspective. *Dig Dis Sci.* 2015;60(3):596–608.
17. ACS Reccomendations. Colorectal cancer early detection 2017.
18. Mandel JS, Bond JH, Church TR, Snover DC, Bradley GM, Schuman LM, Ederer F. Reducing mortality from colorectal cancer by screening for fecal occult blood. Minnesota Colon Cancer Control Study. *N Engl J Med.* 1993;328(19):1365–71.
19. Yang DX, Gross CP, Soulos PR, Yu JB. Estimating the magnitude of colorectal cancers prevented during the era of screening: 1976 to 2009. *Cancer.* 2014;120(18):2893–901.
20. Andre T, Boni C, Navarro M, Tabernero J, Hickish T, Topham C, Bonetti A, Clingan P, Bridgewater J, Rivera F, de Gramont A. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. *J Clin Oncol.* 2009;27(19):3109–16.
21. Grothey A, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M, Humblet Y, Bouche O, Mineur L, Barone C, Adenis A, Tabernero J, Yoshino T, Lenz HJ, Goldberg RM, Sargent DJ, Cihon F, Cupit L, Wagner A, Laurent D, Group, CS. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. *Lancet.* 2013;381(9863):303–12.
22. Karapetis CS, Khambata-Ford S, Jonker DJ, O'Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD, Robitaille S, Price TJ, Shepherd L, Au HJ, Langer C, Moore MJ, Zalcbberg JR. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. *N Engl J Med.* 2008;359(17):1757–65.
23. G Foxtrot Collaborative. Feasibility of preoperative chemotherapy for locally advanced, operable colon cancer: the pilot phase of a randomised controlled trial. *Lancet Oncol.* 2012;13(11):1152–60.
24. Dragani TA, Castells A, Kulasingam V, Diamandis EP, Earl H, Iams WT, Lovly CM, Sedelaar JP, Schalken JA. Major milestones in translational oncology. *BMC Med.* 2016;14(1):110.
25. Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, Bot BM, Morris JS, Simon IM, Gerster S, Fessler E, De Sousa EMF, Missiaglia E, Ramay H, Barraza D, Homicsko K, Maru D, Manyam GC, Broom B, Boige V, Perez-Villamil B, Laderas T, Salazar R, Gray JW, Hanahan D, Tabernero J, Bernards R, Friend SH, Laurent-Puig P, Medema JP, Sadanandam A, Wessels L, Delorenzi M, Kopetz S, Vermeulen L, Tejpar S. The consensus molecular subtypes of colorectal cancer. *Nat Med.* 2015;21(11):1350–6.
26. N Cancer Genome Atlas. Comprehensive molecular characterization of human colon and rectal cancer. *Nature.* 2012;487(7407):330–7.
27. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, Biedrzycki B, Donehower RC, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Duffy SM, Goldberg RM, de la Chapelle A, Koshiji M, Bhajee F, Huebner T, Hruban RH, Wood LD, Cuka N, Pardoll DM, Papadopoulos N, Kinzler KW, Zhou S, Cornish TC, Taube JM, Anders RA, Eshleman JR, Vogelstein B, Diaz LA Jr. PD-1 blockade in tumors with mismatch-repair deficiency. *N Engl J Med.* 2015;372(26):2509–20.

28. Initial report from a Swedish multicentre study examining the role of preoperative irradiation in the treatment of patients with resectable rectal carcinoma. Swedish Rectal Cancer Trial. *Br J Surg.* 1993;80(10):1333–6.

29. Kye BH, Cho HM. Overview of radiation therapy for treating rectal cancer. *Ann Coloproctol.* 2014;30(4):165–74.

30. Dahlberg M, Glimelius B, Graf W, Pahlman L. Preoperative irradiation affects functional results after surgery for rectal cancer: results from a randomized study. *Dis Colon Rectum.* 1998;41(5):543–9. discussion 549–551.

31. Kong JC, Guerra GR, Warrier SK, Ramsay RG, Heriot AG. Outcome and salvage surgery following “watch and wait” for rectal cancer after neoadjuvant therapy: a systematic review. *Dis Colon Rectum.* 2017;60(3):335–45.

32. Nakagawa WT, Rossi BM, de OFF, Ferrigno R, David Filho WJ, Nishimoto IN, Vieira RA, Lopes A. Chemoradiation instead of surgery to treat mid and low rectal tumors: is it safe? *Ann Surg Oncol.* 2002;9(6):568–73.

33. Habr-Gama A, Perez RO, Nadalin W, Sabbaga J, Ribeiro U Jr, Silva e Sousa AH Jr, Campos FG, Kiss DR, Gama-Rodrigues J. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. *Ann Surg.* 2004;240(4):711–7. discussion 717–718.

34. Hendren SK, O’Connor BI, Liu M, Asano T, Cohen Z, Swallow CJ, Macrae HM, Gryfe R, McLeod RS. Prevalence of male and female sexual dysfunction is high following surgery for rectal cancer. *Ann Surg.* 2005;242(2):212–23.

35. Chen TY, Wiltink LM, Nout RA, Meershoek-Klein Kranenborg E, Laurberg S, Marijnen CA, van de Velde CJ. Bowel function 14 years after preoperative short-course radiotherapy and total mesorectal excision for rectal cancer: report of a multicenter randomized trial. *Clin Colorectal Cancer.* 2015;14(2):106–14.

36. Lawler M, Alsina D, Adams RA, Anderson AS, Brown G, Fearhead NS, Fenwick SW, Halloran SP, Hochhauser D, Hull MA, Koelzer VH, McNair AGK, Monahan KJ, Nathke I, Norton C, Novelli MR, Steele RJC, Thomas AL, Wilde LM, Wilson RH, Tomlinson I, Bowel Cancer, UKCRGiCCI. Critical research gaps and recommendations to inform research prioritisation for more effective prevention and improved outcomes in colorectal cancer. *Gut.* 2018;67(1):179–93.

37. Raskov H, Burcharth J, Pommergaard HC. Linking gut microbiota to colorectal cancer. *J Cancer.* 2017;8(17):3378–95.

38. Weinberg DS, Myers RE, Keenan E, Ruth K, Sifri R, Ziring B, Ross E, Manne SL. Genetic and environmental risk assessment and colorectal cancer screening in an average-risk population: a randomized trial. *Ann Intern Med.* 2014;161(8):537–45.

39. Andreyev J. Gastrointestinal symptoms after pelvic radiotherapy: a new understanding to improve management of symptomatic patients. *Lancet Oncol.* 2007;8(11):1007–17.

40. Battersby NJ, Juul T, Christensen P, Janjua AZ, Branagan G, Emmertsen KJ, Norton C, Hughes R, Laurberg S, Moran BJ, United Kingdom Low Anterior Resection Syndrome Study, G. Predicting the risk of bowel-related quality-of-life impairment after restorative resection for rectal cancer: a multicenter cross-sectional study. *Dis Colon Rectum.* 2016;59(4):270–80.

41. Scheer AS, Boushey RP, Liang S, Doucette S, O’Connor AM, Moher D. The long-term gastrointestinal functional outcomes following curative anterior resection in adults with rectal cancer: a systematic review and meta-analysis. *Dis Colon Rectum.* 2011;54(12):1589–97.

42. Dietz DW, Consortium for Optimizing Surgical Treatment of Rectal, C. Multidisciplinary management of rectal cancer: the OSTRICH. *J Gastrointest Surg.* 2013;17(10):1863–8.

43. Sondenaa K, Quirke P, Hohenberger W, Sugihara K, Kobayashi H, Kessler H, Brown G, Tudyka V, D’Hoore A, Kennedy RH, West NP, Kim SH, Heald R, Storli KE, Nesbakken A, Moran B. The rationale behind complete mesocolic excision (CME) and a central vascular ligation for colon cancer in open and laparoscopic surgery: proceedings of a consensus conference. *Int J Colorectal Dis.* 2014;29(4):419–28.

44. West NP, Hohenberger W, Weber K, Perrakis A, Finan PJ, Quirke P. Complete mesocolic excision with central vascular ligation produces an oncologically superior specimen compared with standard surgery for carcinoma of the colon. *J Clin Oncol.* 2010;28(2):272–8.

45. de'Angelis N, Alghamdi S, Renda A, Azoulay D, Brunetti F. Initial experience of robotic versus laparoscopic colectomy for transverse colon cancer: a matched case-control study. *World J Surg Oncol.* 2015;13:295.
46. de'Angelis N, Hain E, Disabato M, Cordun C, Carra MC, Azoulay D, Brunetti F. Laparoscopic extended right colectomy versus laparoscopic left colectomy for carcinoma of the splenic flexure: a matched case-control study. *Int J Colorectal Dis.* 2016;31(3):623–30.
47. Martinez-Perez A, Brunetti F, Vitali GC, Abdalla S, Ris F, de'Angelis N. Surgical treatment of colon cancer of the splenic flexure: a systematic review and meta-analysis. *Surg Laparosc Endosc Percutan Tech.* 2017;27(5):318–27.
48. Galler AS, Petrelli NJ, Shakamuri SP. Rectal cancer surgery: a brief history. *Surg Oncol.* 2011;20(4):223–30.
49. Heald RJ, Moran BJ, Ryall RD, Sexton R, MacFarlane JK. Rectal cancer: the Basingstoke experience of total mesorectal excision, 1978–1997. *Arch Surg.* 1998;133(8):894–9.
50. Carlsen E, Schlichting E, Guldvog I, Johnson E, Heald RJ. Effect of the introduction of total mesorectal excision for the treatment of rectal cancer. *Br J Surg.* 1998;85(4):526–9.
51. Stewart DB, Dietz DW. Total mesorectal excision: what are we doing? *Clin Colon Rectal Surg.* 2007;20(3):190–202.
52. Abu Gazala M, Wexner SD. Re-appraisal and consideration of minimally invasive surgery in colorectal cancer. *Gastroenterol Rep (Oxf).* 2017;5(1):1–10.
53. Martinez-Perez A, Carra MC, Brunetti F, de'Angelis N. Short-term clinical outcomes of laparoscopic vs open rectal excision for rectal cancer: a systematic review and meta-analysis. *World J Gastroenterol.* 2017;23(44):7906–16.
54. Vennix S, Pelzers L, Bouvy N, Beets GL, Pierie JP, Wiggers T, Breukink S. Laparoscopic versus open total mesorectal excision for rectal cancer. *Cochrane Database Syst Rev.* 2014;(4):CD005200.
55. Veldkamp R, Kuhry E, Hop WC, Jeekel J, Kazemier G, Bonjer HJ, Haglind E, Pahlman L, Cuesta MA, Msika S, Morino M, Lacy AM, Group, COCoLoORS. Laparoscopic surgery versus open surgery for colon cancer: short-term outcomes of a randomised trial. *Lancet Oncol.* 2005;6(7):477–84.
56. Fleshman J, Branda M, Sargent DJ, Boller AM, George V, Abbas M, Peters WR Jr, Maun D, Chang G, Herline A, Fichera A, Mutch M, Wexner S, Whiteford M, Marks J, Birnbaum E, Margolin D, Larson D, Marcello P, Posner M, Read T, Monson J, Wren SM, Pisters PW, Nelson H. Effect of laparoscopic-assisted resection vs open resection of stage II or III rectal cancer on pathologic outcomes: the ACOSOG Z6051 randomized clinical trial. *JAMA.* 2015;314(13):1346–55.
57. Martinez-Perez A, Carra MC, Brunetti F, de'Angelis N. Pathologic outcomes of laparoscopic vs open mesorectal excision for rectal cancer: a systematic review and meta-analysis. *JAMA Surg.* 2017;152(4):e165665.
58. Petrucciani N, Martinez-Perez A, Bianchi G, Memeo R, Brunetti F, De' Angelis N. The use of laparoscopy for locally advanced rectal cancer. *Minerva Chir.* 2018;73(1):77–92.
59. Stevenson AR, Solomon MJ, Lumley JW, Hewett P, Clouston AD, Gebski VJ, Davies L, Wilson K, Hague W, Simes J, Investigators AL. Effect of laparoscopic-assisted resection vs open resection on pathological outcomes in rectal cancer: the ALaCaRT randomized clinical trial. *JAMA.* 2015;314(13):1356–63.
60. Guillou PJ, Quirke P, Thorpe H, Walker J, Jayne DG, Smith AM, Heath RM, Brown JM, Group, MCT. Short-term endpoints of conventional versus laparoscopic-assisted surgery in patients with colorectal cancer (MRC CLASICC trial): multicentre, randomised controlled trial. *Lancet.* 2005;365(9472):1718–26.
61. Carmichael JC, Masoomi H, Mills S, Stamos MJ, Nguyen NT. Utilization of laparoscopy in colorectal surgery for cancer at academic medical centers: does site of surgery affect rate of laparoscopy? *Am Surg.* 2011;77(10):1300–4.
62. Moghadamyeganeh Z, Carmichael JC, Mills S, Pigazzi A, Nguyen NT, Stamos MJ. Variations in laparoscopic colectomy utilization in the united states. *Dis Colon Rectum.* 2015;58(10):950–6.

63. Panis Y, Maggiori L, Caranhac G, Bretagnol F, Vicaut E. Mortality after colorectal cancer surgery: a French survey of more than 84,000 patients. *Ann Surg.* 2011;254(5):738–43. discussion 743–734.
64. de'Angelis N, Felli E, Azoulay D, Brunetti F. Robotic-assisted reversal of Hartmann's procedure for diverticulitis. *J Robot Surg.* 2014;8(4):381–3.
65. de'Angelis N, Lizzi V, Azoulay D, Brunetti F. Robotic versus laparoscopic right colectomy for colon cancer: analysis of the initial simultaneous learning curve of a surgical fellow. *J Laparoendosc Adv Surg Tech A.* 2016;26(11):882–92.
66. Jayne D, Pigazzi A, Marshall H, Croft J, Corrigan N, Copeland J, Quirke P, West N, Rautio T, Thomassen N, Tilney H, Gudgeon M, Bianchi PP, Edlin R, Hulme C, Brown J. Effect of robotic-assisted vs conventional laparoscopic surgery on risk of conversion to open laparotomy among patients undergoing resection for rectal cancer: the ROLARR randomized clinical trial. *JAMA.* 2017;318(16):1569–80.
67. de'Angelis N, Portigliotti L, Azoulay D, Brunetti F. Robotic surgery: a step forward in the wide spread of minimally invasive colorectal surgery. *J Minim Access Surg.* 2015;11(4):285–6.
68. Yeo HL, Isaacs AJ, Abelson JS, Milsom JW, Sedrakyan A. Comparison of open, laparoscopic, and robotic colectomies using a large national database: outcomes and trends related to surgery center volume. *Dis Colon Rectum.* 2016;59(6):535–42.
69. Meshikhes AW. Evidence-based surgery: the obstacles and solutions. *Int J Surg.* 2015;18:159–62.
70. Felli E, Brunetti F, Disabato M, Salloum C, Azoulay D, De'angelis N. Robotic right colectomy for hemorrhagic right colon cancer: a case report and review of the literature of minimally invasive urgent colectomy. *World J Emerg Surg.* 2014;9:32.
71. Harji DP, Griffiths B, Burke D, Sagar PM. Systematic review of emergency laparoscopic colorectal resection. *Br J Surg.* 2014;101(1):e126–33.
72. Ansaloni L, Andersson RE, Bazzoli F, Catena F, Cennamo V, Di Saverio S, Fuccio L, Jeekel H, Leppaniemi A, Moore E, Pinna AD, Pisano M, Repici A, Sugarbaker PH, Tuech JJ. Guidelines in the management of obstructing cancer of the left colon: consensus conference of the world society of emergency surgery (WSES) and peritoneum and surgery (PnS) society. *World J Emerg Surg.* 2010;5:29.
73. Chang GJ, Kaiser AM, Mills S, Rafferty JF, Buie WD, Standards Practice Task Force of the American Society of, C, and Rectal, S. Practice parameters for the management of colon cancer. *Dis Colon Rectum.* 2012;55(8):831–43.
74. Biondo S, Kreisler E, Millan M, Fraccalvieri D, Golda T, Frago R, Miguel B. Impact of surgical specialization on emergency colorectal surgery outcomes. *Arch Surg.* 2010;145(1):79–86.
75. Zorcolo L, Covotta L, Carlomagno N, Bartolo DC. Toward lowering morbidity, mortality, and stoma formation in emergency colorectal surgery: the role of specialization. *Dis Colon Rectum.* 2003;46(11):1461–7. discussion 1467–1468.

Epidemiology of Colorectal Cancer: Incidence, Survival, and Risk Factors

2

Florence Canouï-Poitrine, Claudia Martinez-Tapia,
Lydia Guittet, and Anne-Marie Bouvier

2.1 Introduction

Colorectal cancer is still a major challenge in oncology. Population-based studies, which accurately record all cases diagnosed in a well-defined population and thus provide unbiased measurements, are the best way to assess changes in colorectal cancer frequency or survival. Worldwide incidence data are available from cancer registries, in particular through the successive volumes of Cancer Incidence in Five Continents covering registration up to 2012 [1–3]. For meaningful survival

F. Canouï-Poitrine (✉)

Public Health Department, University Henri-Mondor Hospital, Créteil, France

Paris Est Creteil University (UPEC), A-TVB DHU, CEpiA (Clinical Epidemiology And Ageing) Unit EA4393, Créteil, France

e-mail: florence.canoui-poitrine@aphp.fr

C. Martinez-Tapia

Paris Est Creteil University (UPEC), A-TVB DHU, CEpiA (Clinical Epidemiology And Ageing) Unit EA4393, Créteil, France

e-mail: claudia.tapia@aphp.fr

L. Guittet

U1086 INSERM-UCBN, ANTICIPE, Caen, France

University Hospital of Caen, Caen, France

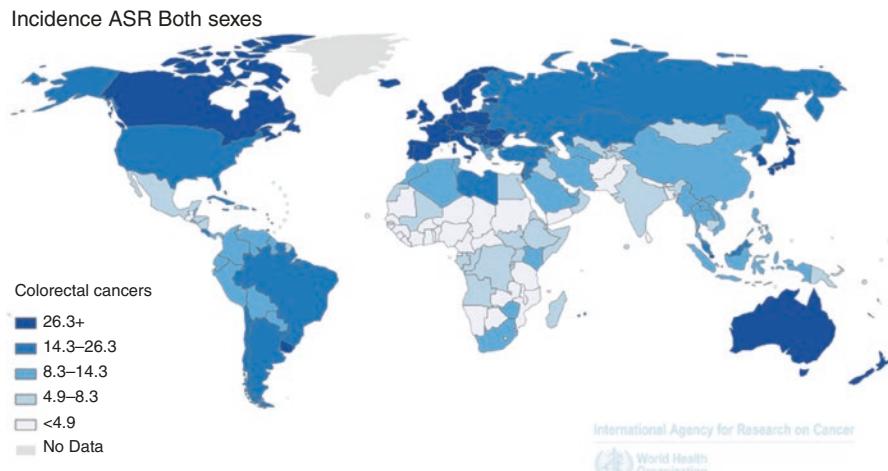
e-mail: guittet-l@chu-caen.fr

A.-M. Bouvier

Digestive Cancer Registry of Burgundy, Dijon, France

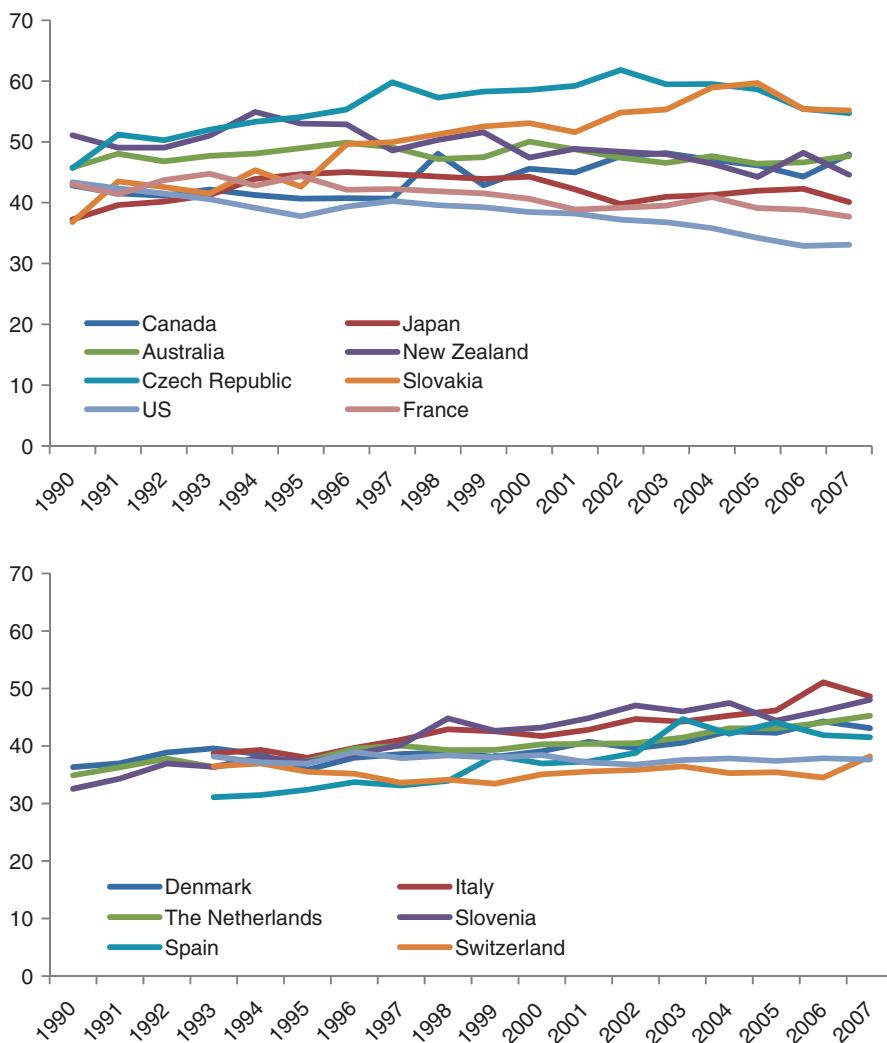
EPICAD INSERM LNC-UMR 1231, Dijon, France

University Bourgogne Franche-Comté, Dijon, France


Dijon University Hospital, Dijon, France

e-mail: anne-marie.bouvier@u-bourgogne.fr

comparisons between countries or time periods, net survival is used. Net survival from cancer is the survival that would be observed if cancer were the only cause of death. This major epidemiological indicator allows thus comparisons without interference from other causes of death. Reliable survival rates are regularly published through international (CONCORD) [4–6] and European (EUROCARE) [7, 8] programs and using the French population-based cancer registries network (FRANCIM) [9–11] data. The aim of the present study was to provide updated temporal trends in colorectal cancer incidence and prognosis over the past decades.


2.2 Incidence

Last available worldwide data showed that colorectal cancer was the third most common cancer in men (746,000 cases, 10.0% of the total) and the second in women (614,000 cases, 9.2% of the total) in 2012 [12]. Differences in the incidence of colorectal cancers over the world are striking, with a tenfold variation between highest and lowest area, and geographical patterns are very similar in men and women (Fig. 2.1). Historically, the highest incidence rates have been reported in more developed countries. North America; Australia; New Zealand; Western Europe, including France; and Japan were considered high-risk incidence countries. Colorectal cancer was scarce in South America, China, or Africa. Other countries, mainly Northern, Southern, and Eastern Europe, were considered as middle-risk area. Starting from the mid-1990s, incidence rates declined for both sexes (Fig. 2.2) in the high-risk countries whereas slightly increased in most middle-risk ones (Denmark, Italy, Spain, or the Netherlands) and remained relatively stable in

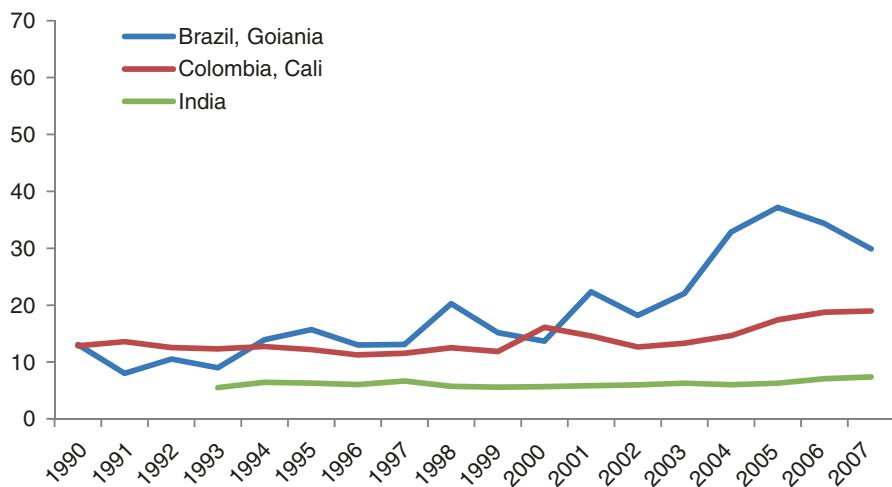
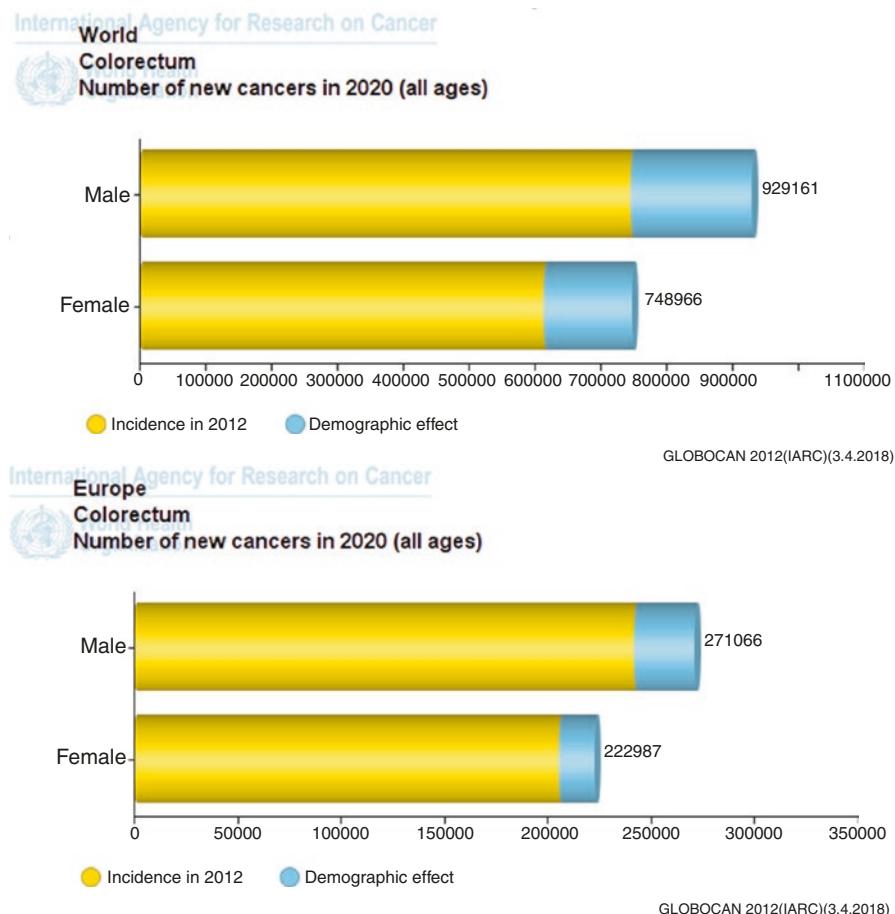


Fig. 2.1 Worldwide colorectal cancer incidence—GLOBOCAN 2012, International Agency for Research on Cancer IARC

Switzerland and the UK. In contrast, increasing trends have been seen in developing countries. In the last worldwide published monography covering the 2008–2012 time period, European countries exhibited similar incidence rates as the USA and North America, whereas Eastern Europe and Japan had the highest rates. In France, incidence slightly decreased from the early 2000s with a mean annual decreased of -0.3% in men and in women between 2005 and 2012. The cumulative risk decreased from 2.0% for men born around 1920 to 0.9% for those born around 1950, a more than twofold increase. The corresponding values in women were 0.1% and 0.2%.

Fig. 2.2 Time trends in incidence of colorectal cancer (International Agency for Research on Cancer (IARC). *Cancer Incidence in Five Continents* monographies)


Fig. 2.2 (continued)

Estimated world standardized incidence rates in 2015 are 37.0 per 100,000 inhabitants in men 23.6 per 100,000 in women. Through the GLOBOCAN database, the effects of demographic changes on the expected number of new cancer cases in different regions can be estimated (Fig. 2.3). Overall, nearly 1,700,000 new cases are predicted worldwide in 2020.

In contrast to this overall decreasing trend, the incidence of colorectal cancer has appeared to be increasing in male and female young adults under age 50 years in the USA, Canada, Australia, and New Zealand [13–16]. This trend is not described in European data. Reasons for explaining this trend are unclear or speculative. The measure of the role of established risk factors such as smoking, sedentary lifestyle, and diet in this population required dedicated epidemiologic research.

2.3 Survival

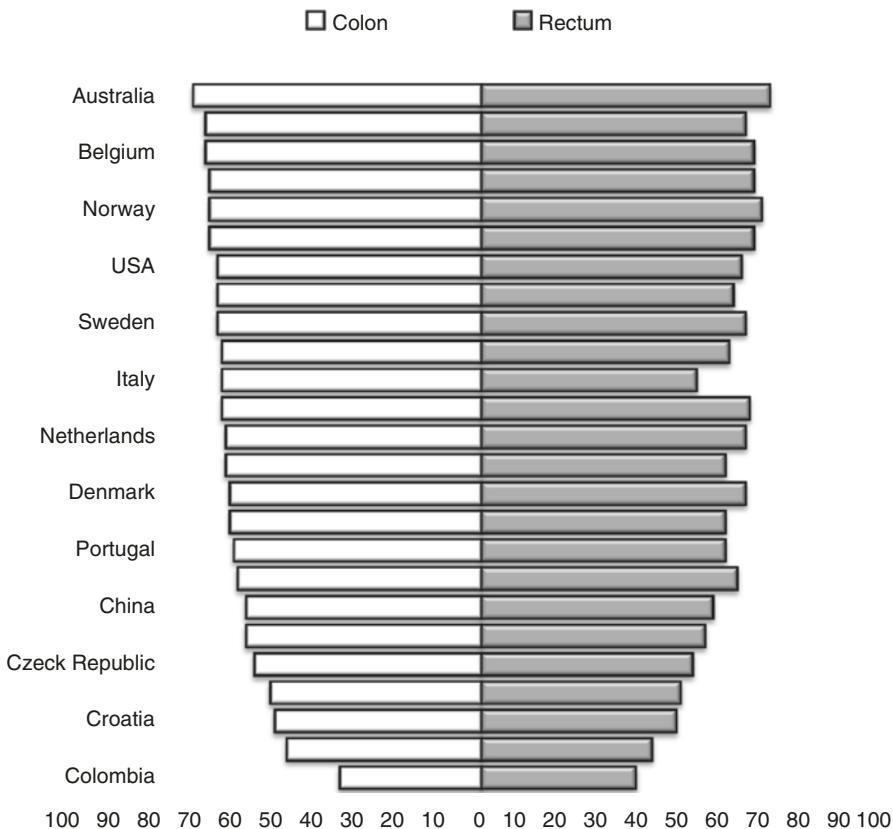

Results from the 65 countries involved in the CONCORD program comparing data from population-based registries show wide variations in survival from colorectal cancer (Fig. 2.4). For patients diagnosed with colon or rectal cancer during 2010–2014, 5-year net survival was higher than 60% in Australia, Canada, the USA, Japan, and New Zealand. In Europe, survival was as high in Northern (Denmark, Finland, Iceland, Ireland, Norway, Sweden, the UK), Southern (Italy, Portugal, Slovenia, Spain), and Western countries (Belgium, France, Germany, the Netherlands, Switzerland). For colon cancer, survival ranged from 50% to 60% in Central and South America, in China, and in Eastern Europe such as Estonia, Lithuania, the Czech Republic, Poland, and Slovakia. Survival was less than 50% in Colombia and India. For rectal cancer, survival ranged from 50% to 60% in Central

Fig. 2.3 Expected changes in incidence of colorectal cancer between 2012 and 2020, due to demographic changes in Europe and in the World. *GLOBOCAN 2012, International Agency for Research on Cancer IARC*. Numbers are computed using age-specific rates and corresponding populations for ten age-groups

and South America, in China, in Estonia, and in the Czech Republic and was less than 50% in Slovakia, Poland, Croatia, and India.

Through the CONCORD program, a high-resolution study was set up among colorectal cancer cases diagnosed during 1996–1998, in order to explain the difference in 5-year net survival observed between the USA and Europe [4]. Age-standardized survival was quite similar in the USA and Northern and Western Europe (around 54–58%) while lowest in Southern Europe (49%) and in Eastern Europe (42%). The transatlantic difference in survival was attributed to an earlier stage at diagnosis, a higher frequency of surgery, and use of adjuvant treatments in the USA.

Fig. 2.4 Five-year net survival of colorectal cancer. *Cancer survival 2000–2014, CONCORD-3 program*

Taking into account bowel location, European mean age-standardized 5-year relative survival was 57% after colon cancer and 56% after rectal cancer [8]. There were negligible differences between the sexes for colon cancer, but survival was higher for women than for men for rectal cancer. In all European regions, survival was best for patients aged 15–44 years, roughly constant for those aged 45–64 years, and decreased thereafter for colon cancer, whereas there were smooth age differences up to 74 years with a substantial drop thereafter in rectal cancer.

According to time period, survival varied little between 1995 and 1999 and 2000–2014 [6]. For colon cancer, it mostly flattened, with an increase less than 10% in Canada, Australia, Japan, Estonia, Finland, Lithuania, Sweden, Italy, France, and the Netherlands. It was more than 10% in China, Denmark, Norway, the UK, Portugal, Slovenia, Spain, the Czech Republic, Poland, and Switzerland. For rectal