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Preface

The global energy system confronts huge challenges 
in the coming decades. The present‐day fossil‐fuel‐
based energy production, which dominates the energy 
scenery, needs to be replaced by clean energy options 
to meet the climate change mitigation targets set 
in Paris in December 2015. At the same time, the 
demand for energy continues to grow, mainly due to 
growing prosperity in the less developed world. One 
of the main challenges will indeed be to secure a clean 
energy path to the future in the emerging economies, 
unlike the industrialized countries in the past.

Although global carbon dioxide emissions have 
increased almost by half since the days when the 
first climate agreement, under the UN auspice, was 
established in the 1990s, positive news is starting to 
emerge. In recent years global CO

2
 emissions have 

been stabilized, but these now need to be sent on a 
declining trajectory. Much of the positive development 
can be contributed to the rapid market share of renew-
able energy sources, notably solar and wind power. 
The cost of these technologies is becoming competi-
tive with their fossil counterparts. More importantly, 
future prospects for renewable energy technologies 
are bright: there still remains potential for major tech-
nology developments, efficiency improvements, and 
cost reductions, which together could make renewable 
energy the mainstream energy solution.

Indeed, respected energy scenarios, for example 
those developed by the International Energy Agency 
(IEA), indicate that in the power (electricity) sector, 
which is of upmost importance with respect to emis-
sions, a significant share of future generation capacity 
investments will be concentrated in solar and wind 
power by the middle of this century. We are already 
witnessing that these variable renewable electricity 
forms deliver a major share of the national electricity 
supply in some countries, such as Denmark, Germany, 
Ireland, Italy, and the United Kingdom. In the long‐

term, more countries are envisioned to satisfy their 
clean energy demands through renewable energy.

Although renewable energy may play an important 
role across the entire energy system, it is particularly 
in the electricity sector where the new technologies 
will play a dominant role. Moreover, electricity 
demand is growing much faster than primary energy 
demand, due to electrification within our societies and 
everyday life, which stresses the role of electricity in 
the future energy system. Inherently, most new renew-
able power production technologies, such as solar and 
wind, but also marine power, do not rely on a supply 
of fuel, meaning that their instantaneous power pro-
duction depends on the prevailing and time‐varying 
weather conditions. Thus, when transitioning to large‐
scale deployment of renewable energy from variable 
sources, a key challenge will be matching supply of 
power against demand, on a range of time scales from 
seconds to hours, days, and weeks.

Large‐scale renewable electricity schemes in 
conjunction with existing energy systems can cause 
a range of different systemic issues, which need to be 
solved to make the best use of clean energy. Bridging 
the “new” and “old” energy is necessary, and both will 
need to coexist for some time, although the share from 
renewable sources will increase. An energy transition 
cannot be an on–off change, where we switch from 
old to new overnight! Integration of renewables into 
the energy system will thus be a critical issue, and of 
growing importance, in the coming years. We claim 
here that integration, in broad terms, will actually be 
the new hot topic in energy, if it is not already, which 
is not only linked to innovative technology solutions 
but which will also reshape energy markets, challenge 
existing business models for companies, and even 
integrate the consumer in a pivotal role.

Energy system integration of renewable energy 
is a wide field which covers themes ranging from 
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modifying existing energy systems to better match 
renewables characteristics, introducing new flexibility 
measures and the evolution of energy‐limited technol-
ogies, exploiting communications and IT advance-
ments within a smarter grid, and reforming markets, 
incentives, regulation and policy frameworks to obtain 
an operational, robust and economically viable energy 
resource portfolio.

The energy transition ahead is a huge challenge to 
all market actors. No one will be left untouched: pol-
icy makers, energy planners, businesses, developers, 
academia, and even end users need to be re‐educated 
to understand the new rules of the game. This book 
aims to provide timely guidance on how to prepare 
for the turbulence, which rushes toward us, present-
ing implementable solutions and proposing successful 
pathways moving forward.

This book addresses the key areas of large‐scale 
renewable energy integration and provides an 
authoritative overview on both the challenges and 
potential solutions. The book discusses the system 
challenges associated with renewables, grids, flexibil-
ity options, and markets, which encompass the central 
“integration” themes. The book is a collection of 32 
authoritative contributions from specialists in the 

relevant disciplines. Through this collective push, our 
aim is to offer the reader a fresh and skillful insight to 
the multidisciplinary topic.

The original inspiration for the book came through 
the publisher, when John Wiley & Sons established 
the Wiley Interdisciplinary Reviews: Energy and 
Environment journal, which mainly publishes review‐
type articles in energy and environment. Mr.  Tony 
Carwardine, now retired from Wiley, suggested 
selecting collections of articles from the journal to 
create reference works in topical areas. The first 
book published in this manner was Advances in 
Bioenergy  –  The Sustainability Challenge (ISBN 
9781118957875) in 2016. Advances in Energy  
Systems  –  The Large‐scale Renewable Energy 
Integration Challenge is the second book in this series.

The editors wish to thank Sandra Grayson, Louis 
Manoharan, Adalfin Jayasingh, Shalisha Sukanya and 
Peter Mitchell from Wiley for their great help and 
assistance during the process of finalizing this book.

Peter D. Lund
John Byrne

Reinhard Haas
Damian Flynn
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ENERGY SYSTEM 
CHALLENGES

PART I





1

Concerns about global warming (greenhouse‐gas 
emissions), scarcity of fossil fuel reserves, and pri-
mary energy independence of regions or countries 
have led to a dramatic increase of renewable energy 
sources (RES) penetration in electric power systems, 
mainly wind and solar power. This has created new 
challenges associated with the variability and uncer-
tainty of these sources. Handling these two charac-
teristics is a key issue that includes technological, 
regulatory, and computational aspects. Advanced tools 
for handling RES maximize the resultant benefits 
and keep the reliability indices at the required level. 
Recent advances in forecasting and management algo-
rithms provide a means to manage RES. Forecasts of 
renewable generation for the next hours/days play a 
crucial role in the management tools and protocols of 
the system operator. These forecasts are used as input 
for setting reserve requirements and performing the 
unit commitment (UC) and economic dispatch (ED) 
processes. Probabilistic forecasts are being included in 
management tools, enabling a move from determinis-
tic to stochastic methods, which lead to robust solu-
tions. On the technological side, advances to increase 
mid‐merit and base‐load generation flexibility should 

be a priority. The use of storage devices to mitigate 
uncertainty and variability is particularly valuable for 
isolated power systems, whereas in interconnected 
systems, economic criteria might be a barrier to invest 
in new storage facilities. The possibility of sending 
active and reactive control set points to RES power 
plants offers more flexibility. Furthermore, the emer-
gence of the smart grid concept and the increasing 
share of controllable loads contribute with flexibility 
to increase RES penetration levels.

INTRODUCTION

The integration of renewable energy sources (RES) in 
a generation portfolio conveys several benefits, such 
as a reduction in greenhouse gases emissions and in 
the country’s dependency on imported energy, and 
it decreases spot prices. However, generation from 
RES (i.e. wind, solar, hydro, wave, geothermal, and 
biomass) can be variable and uncertain, in contrast 
to conventional generation (e.g. coal thermal plants, 
combined and open cycle gas turbines). Nevertheless, 
many power systems have had hydropower for a long 
time in their portfolio, and system operators (SOs) 
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already have appropriate procedures for its utilization 
regarding the need to manage its variability and uncer-
tainty. Note that hydropower is more flexible than 
other RES (such as wind and solar), in particular power 
plants with a reservoir. The installation of pumped 
storage units also facilitates water management. Con-
versely, geothermal generation is invariable, which 
might create problems because it is incapable of fol-
lowing load variations. The variability of hydropower, 
biomass, and geothermal is more apparent on yearly 
and seasonal timescales (run‐of‐river hydropower can 
also present daily variability), whereas the variabil-
ity of wind and solar covers all timescales (including 
daily, hourly, and minutes variability).

At present, the penetration of wind and solar gener-
ation in many power systems has attained a high level, 
and this has created new challenges when operating 
the power system. In order to meet these challenges, 
the state‐of‐the‐art encompasses new technological 
and computational advances for dealing with the vari-
ability and uncertainty of RES, particularly regarding 
wind and solar generation, since hydro variability has 
for a long‐time been tackled in power systems.

New forecasting and decision‐aid algorithms, 
including stochastic information, can improve the 
ability of a power system to cope with variable and 
uncertain generation coming from RES, without 
excessive extra operational cost while maintaining 
reliability standards. On the technological side, new 
technological advances to enhance the flexibility of 
conventional power plants (namely, base‐load and 
mid‐merit units) are essential. Primary frequency con-
trol provided by new RES power plants or the use of 
storage devices are also relevant research areas.

This article describes developments in several 
interdisciplinary topics related with managing high 
penetrations of solar and wind, and points toward 
research trends for the next years. First, the challenges 
introduced by RES (in the remainder of the chapter 
only wind and solar are considered) in power system 
operation are discussed. Then, an overview of the 
advances in renewable energy forecasting is presented. 
Renewable energy forecasts are an important input 
to methods for setting reserve requirements, defining 
the commitment schedule and performing congestion 
detection, which are reviewed. Consideration is also 
given to the electricity market role and the value of 
storage devices for interconnected and isolated sys-
tems. On the technological side, the importance of 
flexibility (from conventional generators and storage 
units) in power system operation is described, and 
some challenges and technological solutions unrelated 
to resource variability are reviewed, and the capability 
of active and reactive power control is analyzed.

THE CHALLENGES OF RES IN POWER 
SYSTEM OPERATION

Main Challenges

The intrinsic variability and uncertainty of RES 
create several challenges in power system operation 
and planning[1]. At every instant, generation must 
follow load variations in order to maintain the gen-
eration‐load balance. The variable nature of RES 
(e.g. rapid generation ramps) represents a challenge, 
in particular, for systems without hydropower, as it 
introduces variations in the generation side that can 
only be smoothed within the physical constraints of 
the conventional power plants (e.g. ramping up and 
down, minimum generation limits). In general, the 
available ramping rates of flexible generation units 
and fast‐starting units (e.g. hydropower) are used for 
accommodating this variability. Technological solu-
tions such as control schemes for wind power active 
and reactive power set points smoothen the impact of 
variability. For example, a dispatch center for RES 
with the ability to control the active and reactive 
power output was created in Spain[2].

RES uncertainty also creates imbalances between 
generation and load as it is not possible to know (with 
certainty) the RES generation levels for the next hours/
days. These imbalances originating from forecast 
errors are handled with additional generation capacity 
(which is an ancillary service). Computational algo-
rithms such as forecasting algorithms and large‐scale 
stochastic optimization (instead of deterministic tools/
rules) have been developed for including information 
about uncertainty in the decision‐making processes. 
The importance of new and advanced forecasting 
algorithms for RES, not only for the SO but also for 
wind power producers (in particular when trading 
wind power in the market), is shown by the prolifera-
tion of companies that sell this service[3]. Storage units 
can also play an important role in handling RES vari-
ability and uncertainty on different timescales.

If these new solutions are not adopted, variabil-
ity and uncertainty of RES could lead to situations 
with high operational cost. For instance, curtailment 
of renewable generation during low load periods and 
the startup of expensive fast‐starting units lead to a 
cost increase. Moreover, even with a perfect forecast 
for  the next hours/days, it is necessary to schedule 
flexible generation units for accommodating the gen-
eration ramps.

Ela and O’Malley[4] presented a simulation frame-
work for assessing the impact of wind power var-
iability and uncertainty on several timescales. The 
results showed that the imbalance impacts increase 
with longer dispatch resolutions (ranging from five 
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minutes to one hour) and with installed wind power. 
Assessment of the uncertainty impacts lead to the fol-
lowing conclusions: the uncertainty impact increases 
with the forecast error, but it is not significant until 
the forecast error reaches a threshold; large forecast 
errors have a significant impact on the generation 
costs and branch congestion of day‐ahead scheduling, 
but not in the real‐time dispatch.

The next subsection discusses challenges and 
solutions for aspects unrelated to variability and 
uncertainty of the resource (e.g. wind and solar). Nev-
ertheless, situations with wind turbine tripping fol-
lowing voltage dips are a source of uncertainty and 
variability to the system, but they are essentially tech-
nological and not related with the natural resource.

Other Challenges and Technological Solutions

Specific technological characteristics of RES 
conversion systems, which do not depend on resource 
variability, bring also new operational challenges as 
integration levels increase. There are many impor-
tant ancillary services traditionally provided by con-
ventional thermal or hydro‐based generation units, 
such as voltage and frequency control. Addition-
ally, conventional generation units intrinsically pro-
vide inertia to the system, which is a fundamental 
characteristic in order to ensure its stability. The 
large‐scale integration of RES naturally displaces 
conventional generation units, thus strongly affecting 
ancillary services provision and global system secu-
rity as a result of a general degradation of adequate 
frequency response[5].

This has led SOs to define very restrictive rules and 
conditions for allowing increasing RES integration, 
which are referred to as grid codes[6]. In general, exist-
ing grid codes require wind farms to withstand several 
disturbances and to support network stability through 
the provision of ancillary services similar to those 
provided by conventional synchronous units. Focus-
sing on international grid code requirements for wind 
power integration, they can be generally organized 
in five main categories: (i) fault ride‐through (FRT) 
requirements, (ii) active and reactive power responses 
following disturbances, (iii) extended variation range 
for voltage‐frequency, (iv) active power control or 
frequency regulation support, and (v) reactive power 
control or voltage regulation capability.

From a technological point of view, energy con-
verter manufacturers have been actively responding 
to SO operational requests through the development 
of innovative conversion systems, where the control-
lability and flexibility of power electronic interfaces 
have been assuming an increasing role[7, 8].

The large‐scale penetration of non‐FRT‐compliant 
units may lead to significant amounts of generation 
tripping, thus compromising system security. In  or-
der to overcome these difficulties, system opera-
tors defined specific requirements that all generators 
should fulfill in order to be connected to the grid[9]. 
These requirements are generally specified in a 
voltage‐time curve that defines the region in which 
generators are not allowed to trip. As an illustrative 
example, Figure  1.1 depicts a general shape of the 
voltage‐time curve where the points A−H define key 
time‐voltage values delineating the region in which 
wind generators should remain connected to the grid 
during low‐voltage periods. The values shown in 
Table 1.1 illustrate different parameterizations of the 
voltage‐time curve for different SOs, which reflect 
specific grid characteristics in terms of generation 
units and protection philosophies.

More recently, interest in large photovoltaic 
(PV) plants has gaining additional attention. There-
fore, specific control requirements for photovoltaic 
inverters regarding FRT capabilities and voltage 
control are beginning to become a research topic, 
which will be developed in the near future[10].
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Figure 1.1  Generic FRT voltage versus time characteristic 
curve.

Table 1.1  FRT voltage and time values for European grid 
codes.

Grid Code BC BD AF FE AH HG

Denmark 25% 0.1 s 0.75 s 25% 10 s N.A.
Germany 0% 0.15 s 0.15 s 30% 0.7 s 10%
Ireland 15% 0.625 s 3 s 10% N.A. N.A.
Spain 20% 0.5 s 1 s 20% 15 s 5%
Spain (Canary 

Islands)
0% 0.5 s 1 s 20% 15 s 5%

United Kingdom 0% 0.14 s 1.2 s 20% 2.5 s 15%
Portugal 20% 0.5 s 1.5 s 20% 10 s N.A.
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The consequent displacement of synchronous gener-
ators affects power system inertia and primary frequency 
control capabilities, limiting further integration of 
RES. In order to overcome such limitations, the pos-
sibility of endowing wind energy converters with 
additional control loops in order to provide either inertia 
emulation capabilities and primary frequency regula-
tion has been discussed[8, 11]. The general approach is to 
operate RES with a certain reserve margin through 
the appropriate use of deloading mechanisms. Thus, 
the reserve margin can be autonomously deployed in 
case of frequency deviations through the use of a power 
reference‐frequency droop control.

Additionally, a supplementary control‐loop based 
on the rate of change of the frequency deviation 
enables RES to emulate an inertial response. Simi-
lar operational characteristics are being envisioned 
for large offshore wind farms connected to a main-
land grid through multiterminal high‐voltage direct 
current grids[12]. Energy storage systems can also pro-
vide an important contribution to primary frequency 
control, namely, in island systems[13], but also in 
interconnected systems[14].

ADVANCES IN RENEWABLE 
ENERGY FORECASTING

During the last 15 years, research work has been con-
ducted on developing forecasting algorithms which 
achieve a forecast error reduction and an expansion 
of forecasting products[3]. Furthermore, the number of 
companies selling forecasting services for RES has 
proliferated, and the reliability and availability of their 
service has improved. Presently, SOs use forecasts in 
their daily operation, embedded in decision‐making 
processes[15]. Research on wave energy forecasting is 
also being conducted[16], although this technology is 
not at the maturity levels of wind and solar technol-
ogies.

At a regional/national level, wind power fore-
casting (WPF) literature reports a normalized mean 
absolute error (NMAE) of around 6–10% and a nor-
malized root mean square error (NRMSE) of around 
8–12% of the installed capacity for 24 hours ahead, 
rising to 11–14% and 14–17% for 48 hours ahead[3]. 
For solar power forecasting (SPF), the NRMSE is 
around 4.3–4.9% for day‐ahead forecasts[17]. The 
load forecast error is generally measured as a mean 
absolute percentage error and its value is around 
1–2% for 24‐hours ahead forecasts[18]. Note that the 
real impact of the RES forecast errors can only be 
measured by an increase in power system operating 
costs (e.g. increased use of reserves for balancing 
forecast errors).

Wind Power Forecasting

In general, SOs only need WPFs for a horizon up to 
3 days ahead. This time horizon can be divided into 
two classes[3]: (i) very short term, for a maximum of 
6 hours ahead with different time steps (10, 15, 30, 
and 60 minutes), (ii) short term, for a maximum of 
72 hours ahead in 30 and 60 minute time steps. The 
algorithms used to produce a WPF for these two hori-
zons can differ in type and input data.

Forecasting algorithms for very short‐term hori-
zons use as input past values of the time series. Clas-
sic examples are models based on the autoregressive 
integrated moving average[19], but recently, regime‐
switching models[20], such as Markov‐switching 
autoregressive, are being used for capturing the 
influence of some complex meteorological variables 
on the power fluctuations. Furthermore, the combination 
of dispersed meteorological on‐site and off‐site obser-
vations and mesocale numerical weather predictions 
(NWP)[21] can lead to significant improvements in 
very‐short‐term horizons[22].

Forecasting algorithms for a short‐term hori-
zon require NWP data. Several statistical and 
machine learning algorithms have been applied for 
converting the forecasted meteorological variables 
into wind power generation forecasts[3]. The use of 
cost functions for fitting prediction models under 
non‐Gaussian errors[23], as well as the combination of 
different statistical and NWP models[24], can improve 
accuracy.

In addition to research work seeking a forecast error 
reduction, different forecasting products have been 
developed: regional forecasts, uncertainty forecasts, 
and ramp forecasts. These forecasts are inputs to the 
power system management algorithms reviewed in 
the following sections.

Regional (or aggregated) forecasts, resulting from 
a process called upscaling, consists of estimating the 
total wind power, using information from forecasts 
of representative wind farms, for which NWP and/
or online observations are available[25]. This process 
is justified when the observations from some wind 
farms are unavailable or the data quality is poor. From 
the literature, it is known that the aggregation of wind 
farms reduces the forecast error because of spatial 
smoothing effects[26].

A point forecast does not give any information 
about the errors associated with the forecasted 
value. This motivated the development of advanced 
physical and statistical methods for estimating and 
communicating wind power uncertainty. This uncer-
tainty can have different representations: probabilis-
tic, statistical, and meteorological‐based scenarios.
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In the literature, a broad set of statistical methods 
for producing probabilistic WPF can be found, such 
as local quantile regression[27] or conditional kernel 
density estimators[28]. The probabilistic forecasts can 
be expressed as a set of quantiles or interval forecasts 
(as depicted in Figure 1.2a), or a probability density 
function (pdf), or moments from the distribution. 
However, the forecasts produced by these methods 
do not include the temporal and spatial dependency 
of the forecast errors. The dependency of the errors 
is valuable information for time‐dependent decision‐
making problems, such as storage management[29] or 
UC[30]. The state‐of‐the‐art in WPF represents this time 
dependency by scenarios that are time/spatial trajec-
tories or random vectors (as depicted in Figure 1.2b).

The scenarios can be statistical or physical based. 
Statistical‐based scenarios are generated with simu-
lation techniques that sample random vectors using a 
dependency structure (e.g. covariance matrix) captur-
ing the temporal/spatial dependencies of the forecast 
errors. Pinson et  al.[31] described a method for sam-
pling random vectors from the forecasted marginal 
cumulative probability functions. The method uses a 
multivariate Gaussian distribution where the covari-
ance matrix represents the temporal dependency bet-
ween the forecast errors. This method can also be 
extended to include spatial dependency[32].

Physical‐based scenarios (or meteorological 
ensemble) capture two different sources of error: 
initial conditions and the model (i.e. representation of 
the dynamics and physics of the atmosphere). These 
scenarios are obtained with three approaches: (i) dif-
ferent initial conditions or numerical representations 
of the atmosphere are used in each run of the NWP 
system[33]; (ii) outputs of different NWP forecast 
models or from the same NWP model with different 
parameterizations; (iii) different forecasts made at 
different times with the same NWP model[34]. These 
NWP ensembles can be converted to wind power 
scenarios[35].

Recently proposed, a different type of scenario is 
associated with spatial fields[36], which are statisti-
cally transformed NWP points from a grid covering 
the wind farm to an equivalent value representing 
the surface roughness and terrain at a chosen refer-
ence point for the wind farm location. Compared with 
other uncertainty representations, NWP spatial fields 
capture phase errors in NWP and sampling errors[37].

Finally, although the scenarios already capture 
ramps and extreme weather events, another forecast 
product is ramp forecasting[38]. A ramp forecast pro-
vides information (point and probabilistic) about the 
magnitude and timing (i.e. phase error) of future 
wind  power rapid variations. Bossavy et  al.[38] used 

a filtering/thresholding approach for detecting and 
forecasting ramps using, as input, forecasts produced 
with meteorological ensembles. The forecast gives the 
probability of observing a ramp within a set of time 
intervals. Ferreira et al.[39] presented a different meth-
odology also based on a high‐pass filter and using 
statistical scenarios as inputs.

Solar Power Forecasting

Although research on WPF has reached a maturity 
level, research on SPF could be classified as “under 
development.” In contrast to WPF, SPF requires 
specific forecast models for the different technol-
ogies, such as concentrated photovoltaic and concen-
trated solar thermal. Nevertheless, current research is 
more concentrated on the weather forecasting side.

Differently from WPF, pure statistical models 
with past observations can produce SPF with an 
acceptable quality for hours/day‐ahead horizons 
with hourly time steps[40]. The main reason is that 
the serial dependency presents a strong daily and 
weekly seasonal pattern. In fact, the daily cycle of 
solar irradiation is rather easy to predict. Neverthe-
less, as ‘shown’ by Ahlstrom and Kankiewicz[41] and 
depicted in Figure 1.3, intrahourly forecasts present 
a high variability caused by clouds. In fact, clouds 
are the main cause of short‐term variation, and clouds 
of different types, speed, and size represent different 
impacts in solar power generation.

Heinemann et  al.[42] identified different input data 
sources for the various time horizons of interest. For 
very short‐term horizons (between 30 minutes and 
6 hours), the authors suggest the use of satellite‐based 
cloud motion vector fields. For short‐term horizons 
(up to 2 days ahead), the forecasts should be based 
on NWP data.

Heinemann et al.[42] describe very short‐term fore-
casting algorithms based on cloud‐index images that 
are predicted with motion vector fields[43] derived from 
two consecutive images. For short‐term horizons, the 
authors forecast surface solar irradiance with a NWP 
mesoscale model. The results showed a good accu-
racy for clear sky situations, but with broken clouds 
and overcast conditions, the error increased signifi-
cantly. A second approach described by the authors 
is to use a mesoscale NWP model to predict variables 
describing cloudiness, and this information is con-
verted to solar irradiance. Wittmann et al.[44] examined 
the importance of combining NWP and aerosol‐based 
forecasts for day‐ahead horizons. According to the 
authors, aerosol information is of great relevance for 
clear sky situations, which are the most frequent situ-
ations at solar farm locations.
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Figure 1.2  (a) Forecast intervals, centered in the median, and limited by their lower and upper bounds, which are 
forecasted quantiles. (b) Twenty statistical‐based scenarios with temporal dependency of errors that respect the marginal 
distribution of the probabilistic forecasts (i.e. plot in (a)).
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Lorenz et  al.[45] showed that, as with wind farms, 
the aggregation of photovoltaic (PV) panels and farms 
decreases the forecast error, by smoothing the cloud 
effect. A forecast model for a regional forecast is also 
described[17].

Finally, note that most statistical‐based uncertainty 
forecasts techniques from WPF can be applied to this 
problem. Furthermore, meteorological ensembles also 
have a potential application in SPF.

THE IMPORTANCE OF GENERATION 
FLEXIBILITY

In the past, flexible power plants were mainly used for 
handling load variability and uncertainty. RES intro-
duces variability and uncertainty in the supply side, 
and with a higher magnitude in a scenario with high 
RES penetration. The wide regional distribution of 
multiple RES power plants decreases the variability 
and uncertainty of RES‐based generation[1, 26].

The flexibility of the power plants can be defined 
as the ability to react (i.e. modify generation levels in 
response to a command from the SO) quickly enough 
to rapid generation/load ramps and to deviations 
between scheduled and realized values. Generation 
flexibility is characterized by several parameters, 
such as ramp rate (% of MW per minute), technical 
and economic minimum generation level, start‐up and 
shut‐down time. Lannoye et al.[46] propose a method-
ology to compute the Insufficient Ramping Resource 
Expectation index, which is a metric that measures 
power system flexibility for long‐term planning 
studies.

The following separation between power plants can 
be made[47]:

•	 Peak units are able to start, shutdown, or change 
their generation level very quickly in response to 
a command from the SO. Units of this type can 
handle minute‐to‐minute variations and uncer-
tainty, and some examples are open‐cycle gas tur-
bines and hydropower plants.

•	 Mid‐merit units have the ability to ramp up to their 
maximum power and down to their minimum, but 
are slower than the peak units. Examples of these 
units are combined cycle gas turbines (CCGT) and 
biomass, and they cover interhour variations and 
uncertainty.

•	 Base‐load units have slower response times and 
normally operate across the entire day or during 
predefined periods. Units such as coal‐fired plants, 
nuclear, and geothermal might require around six 
hours to start or provide a flexible response. These 
units can provide some flexibility for daily variability.

In addition to these three categories, there are also 
must‐run units that ensure the dynamic stability of 
the power system (e.g. minimum online inertia in the 
system). The minimum generation level of these units 
may be a critical factor during periods with high pen-
etration of RES.

In some cases, such as France and Germany, nuclear 
power plants can also provide load‐following capa-
bilities[48]. However, this has economic costs, mainly 
related with the load factor, as it is only profitable if 
operating at high load factors (i.e. above 90% of rated 
power). Furthermore, coal‐ and gas‐fired power plants 
are becoming more flexible with recent technology. 
For instance, in Germany, older coal power plants 
have ramp rates of 2%/minute, whereas new plants 
have rates of 4–6%/minute[49].
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Figure 1.3  Generation variability of solar power due to clouds: (a) hourly average; (b) 15 minute average.
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A critical limitation is the minimum load limit of 
conventional generation units (both technical and 
economic), which, in general, is around 40–50% of 
the rated power. Nicolosi[50] reported a lower flexibil-
ity in the German power system for the period between 
October 2008 and December 2009. In situations with 
generation surplus, all the generation sides together 
were unable to reduce the generation below 46%, in 
particular the base‐load technology, which showed 
high minimum generation levels (due to technical and 
economic constraints). Soder et al.[51] reported that the 
Portuguese power system was able to accommodate 
a very high wind power penetration level (maximum 
of 81% at 6:45 a.m.) by stopping several hydropower 
plants between 0 and 4 a.m., and only one gas‐fired 
plant was kept in operation at 25% of rated power. The 
flexibility of hydropower units and its pump storage 
was used to balance wind power fluctuations, and the 
interconnection with Spain allowed exporting gener-
ation surplus.

The cross‐border interconnections also play an 
important role in increasing the flexibility. It facil-
itates the use of more flexible power plants where 
they are needed to balance RES. For example, a high 
penetration of wind power generation is feasible in 
Denmark because of the good interconnections with 
Sweden, Norway, and Germany. The interconnection 
with Norway provides access to its fast starting hydro-
power plants, which can be used as reserve capacity 
contracted in the NordPool electricity market[52]. 
However, a higher transfer capacity between countries 
may also create overload problems in situations with 
high RES‐based generation in one control area[53]. 
Therefore, cross‐border interconnections should be 
combined with suitable operational procedures (e.g. 
forecasting, stochastic power flows) and investment in 
flexible AC transmission system (FACTS).

The SO can use this flexible generation as reserve 
capacity, and methods reviewed in the following sec-
tion optimize the use of this available flexibility.

METHODS FOR HANDLING 
THE VARIABILITY AND UNCERTAINTY 
FOR STEADY‐STATE OPERATION

In the operational domain, the SO has a limited time 
for conducting studies and examining alternatives. 
The uncertainty in this domain is relatively small 
when compared with the planning domain, which 
leads the SO to analyze the current conditions by a 
series of deterministic methods or rules. The main 
problem with deterministic approaches is that the 
user does not know the level of risk associated with 

future operating conditions. This normally leads to a 
conservative operation with high operating costs or 
to unanticipated high risk during operations. As the 
penetration of renewable generation increases, new 
management procedures and algorithms emerge for 
handling generation variability and uncertainty. The 
use of uncertainty forecasts for renewable generation 
becomes a relevant input for decision‐aid algorithms. 
It is important to stress that modeling forecast uncer-
tainty in decision‐making algorithms with the average 
historical forecast errors (a priori estimation) is not 
the same as using uncertainty forecasts (a posteriori 
estimation) directly in the methods, and might lead to 
conservative and expensive operating strategies.

This section presents an overview of new 
management algorithms for supporting power 
system operation in steady‐state conditions with a 
significant penetration of renewable generation. The 
majority of the methods in the literature only consider 
the presence of wind power in the system. Neverthe-
less, a generalization to other RES (such as solar) is 
in general possible and straightforward if forecasts for 
solar power generation are available.

Methods for Setting the Reserve Requirements 
in the Operational Domain

In each time instant, the SO is responsible for main-
taining the balance between generation and load in 
the power system. This leads to the need for a reserve 
capacity composed of loads and generation units able 
to respond to possible problems. Upward and down-
ward reserves are normally necessary. The upward 
reserve consists of generation units (or loads) online 
or offline able to, in a short period, increase their gen-
eration levels (or decrease their consumption levels). 
The downward reserve consists of online generation 
units able to decrease their generation levels or loads 
able to start consuming (or increase consumption) in 
a short period.

The classical categories of reserves[54] are: primary 
(or frequency response), secondary (or regulation 
reserve), and tertiary (or replacement reserve). Primary 
reserve is used for stabilizing the system frequency at 
a stationary value after a disturbance or incident in 
the time frame of seconds. Secondary reserve is dis-
patched via automatic generation control for restoring 
the frequency and interarea power exchanges to their 
nominal values in a time frame of 15 minutes. The SO 
restores or supplements secondary reserve levels by 
manually activating tertiary reserve, in a time frame 
between 15 minutes and 1 hour.

High penetration levels of renewable energy (mainly 
wind and solar) in the system require a revision of these 
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reserve categories. Large shares of renewable genera-
tion do not create problems (discounting the sudden 
disconnection due to voltage dips), in interconnected 
systems, for the timescale of primary reserve[55].

Holttinen et al.[56] divided the reserve categories in: 
nonevent (normal operation) for variability and fore-
cast errors inside the scheduling period; fast event 
(contingency operation) for an unplanned outage of 
a generator or cross‐border transmission line; slow 
event for expected net‐load ramps; and forecast errors 
that can occur on longer timescales (tens of minutes 
to hours). The authors argue that generation from 
RES does not change fast enough to be a contingency 
event, and the impact on secondary reserve is lower 
than the impact on tertiary reserve (both reserves are 
included in the nonevent category). High penetrations 
of RES will introduce slow events characterized by 
high rapid generation ramps and forecast errors.

On the timescale of tertiary reserve, several coun-
tries have already created a reserve category for slow 
events; for example, the manual reserve in Denmark 
and the balancing reserve in Spain and Hydro‐Quebec.

Deterministic methods (or rules) for setting the 
reserve requirements have served many SOs in the 
past[57], mainly because they are easier to be under-
stood and applied by operators, and continued to high 
security levels with minimum study effort. However, 
with high levels of renewable generation, exces-
sively conservative approaches would result in a high 
reserve cost and to a waste of renewable generation‐
related benefits. For example, operators not comfort-
able with the possibility of high forecast errors might 
define high levels of reserve to compensate potential 
deviations, thus reducing the economic attractiveness 
of RES. On the other hand, because risk is not really 
monitored in deterministic approaches, conservative 
rules may sometimes fail in specific circumstances 
not included in their original rationale.

The alternative consists of using probabilistic 
methods for setting the reserve requirements. In fact, 
the use of probabilistic methods for setting the reserve 
in the operating domain is not new. A classic example 
is the Pennsylvania–New Jersey–Maryland (PJM) 
interconnection method that evaluates the risk of the 
committed generation units considering generation 
outages and load forecast errors[58].

The First Step: Hybrid  
of Probabilistic–Deterministic Rules

Presently, SOs are starting to include information 
about forecast errors and uncertainty when defining 
the reserve requirements. The first step consisted of 
including a probabilistic component in the former 

deterministic rules. For example, Electricity Reliabil-
ity Council of Texas (ERCOT) (Texas Independent 
SO) defines the nonspinning reserve (the one that 
handles forecast errors) as the 95th percentile of the 
observed hourly net load error from the previous 
30 days, plus the size of the largest unit[59]. The 
Spanish SO (REE – Red Eléctrica de España) defines 
the balancing reserve requirements as the sum of the 
generation shortage/surplus due to load and wind 
generation historical forecast errors, and unplanned 
outages[60]. The European Network of Transmission 
System Operators for Electricity (ENTSO‐E) revised 
the rules from the former Union for the Coordination 
of Transmission of Electricity (UCTE), and a new 
probabilistic criterion for setting the total reserve 
(secondary and tertiary) was included[54], but without 
explicitly mentioning renewable generation.

The Next Step: Probabilistic Methods

Gouveia and Matos[61] extended the PJM method by 
including the wind power uncertainty modeled with a 
Markov model. The main limitation (common to other 
methods) is that the model does not include forecast-
ing information, but only the a priori probability dis-
tribution of a set of wind power levels. Thus, the next 
step is to use probabilistic tools with uncertainty fore-
casts as input.

The first set of methods assumed that the WPF 
error follows a normal distribution. Several authors[62, 

63] compute the level of imbalance between load and 
generation by summing the variances of the load and 
WPF errors (σ2

LW
  =  σ2

L
 + σ2

W
), assuming that both 

random variables are normal and independent. The 
reserve requirement needed to deal with the estimated 
imbalances is given by the variation contained within 
three standard deviations (3·σ

LW
) of the overall system 

imbalance. Doherty and O’Malley[64] presented an ana-
lytical method for defining the reserve requirements. 
The model includes generators’ unplanned outages 
(both full and partial outages), load, and WPF errors 
modeled by a normal distribution. Ortega‐Vazquez 
and Kirschen[65] described a method for minimizing 
the sum of expected cost of energy not served (i.e. 
expected energy not served [EENS] multiplied by the 
value of lost load) and the operating cost. The wind 
power and load uncertainties are normal distributions 
and combined by summing their variances.

However, the normal distribution assumption is 
highly questionable because the WPF errors’ dis-
tribution presents high skewness[66] and kurtosis[67], 
even when several wind farms are aggregated[25]. This 
assumption, when setting the reserve requirements, 
may result in a underestimation of the risk[68].
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Excluding this normality assumption, Matos and 
Bessa[69] proposed a probabilistic method that takes 
as input a probabilistic WPF. The load probabilistic 
forecast and generation uncertainties (i.e. unplanned 
outages of conventional generation units and wind tur-
bines plus WPF probabilistic forecast) are convolved 
with the fast Fourier transform. From the convolution 
result, risk attributes related with a generation short-
age (upward reserve) and surplus (downward reserve) 
are computed for each reserve level. The results of 
this exercise are risk/reserve and risk/cost curves for 
each lead time. As an example, Figure 1.4 depicts the 
EENS (one of the possible reliability indices) against 
the reserve level. Establishing this relation allows the 
SO to make a decision with different methods: (i) set 
a reference value for the risk and get the reserve level 
directly from the curve; (ii) establish a trade‐off bet-
ween reserve cost and risk and find the corresponding 
optimal reserve level; and (iii) build a value function 
to find the best compromise between cost and risk. 
Bessa et al.[70], in the framework of the European proj-
ect ANEMOS.plus, reported results from an opera-
tional demonstration of this method for the Portuguese 
SO. The demonstration showed that the probabilistic 
method outperformed the deterministic rules in use at 
that time.

Menemenlis et  al.[71] describe a method based 
on convolution which also constructs risk/reserve 
curves for each lead time. The wind power is 

modeled with gamma functions fitted with time‐
varying parameters for each class of generation 
level. The decision method consists of establish-
ing a reference value for the risk. The main limi-
tation of the method is that the gamma functions 
for each wind farm are combined, assuming 
independence of the uncertainties. This assump-
tion does not consider the spatial dependency of 
uncertainties, which cannot be neglected. Maurer 
et al.[72] also proposed a method based on convolu-
tion, but the authors did not provide details about 
how the uncertainties are estimated. An interesting 
contribution is a two‐step approach for separating 
the total reserve in secondary and tertiary reserve. 
The use of ensembles of wind power for setting 
the reserve was proposed by Pahlow et  al.[73] The 
authors, using ensembles from the multischeme 
ensemble prediction system[74], compared several 
rules, such as reserve equal to the difference bet-
ween the minimum and maximum of the ensem-
ble in each hour. The results showed that the rules 
based on the ensemble are cost efficient and cover 
more hours when compared with the deterministic 
rule (i.e. 11% of installed capacity).

The reviewed methods can be used for purchasing 
reserve services in a sequential electricity market (i.e. 
reserve market after the energy market) or included in 
the UC market clearing process. This second possibil-
ity is reviewed in the UC section.
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Reserve for Extreme Events

The additional value/information of ramp forecast-
ing in decision‐making problems (e.g. UC) is cur-
rently under discussion. Some authors believe that 
information about ramps should mainly be used as 
supporting information for the operators, and not 
as a direct input to an optimization problem (e.g. 
UC)[39, 75]. A ramp forecast tool can be used to gener-
ate alarms to the operator and quantify the risk, sup-
porting preventive measures against rapid variations 
of wind power.

A particular type of ramp occurs in situations with 
high wind speed. The wind turbines have a cut‐out 
wind speed value (generally around 25 m s−1), and 
above that value the turbine starts to trip. In this case, 
the SO must deal with an unforeseen rapid drop of 
wind generation that must be forecasted in order to 
take preventive measures. Figure 1.5 depicts a wind 
power reduction of around 600 MW in 1400 MW tele-
metered by the SO of Portugal, and originated by the 
cyclone Klaus on 23 January 2009. The forecasting 
system did not predict this extreme event, and the 
incident was handled with fast starting hydro units 
and importing energy from Spain. With solar power 
generation, an equivalent event can be triggered by 
fast‐moving clouds.

Lin et  al.[76] describe a model for estimating the 
wind power generation reduction under extreme 
wind conditions. A high‐resolution tool, with cal-
culations in the frequency domain and considering 
the spatial distribution of the wind farms, simulates 
power reduction trajectories in a minute‐to‐minute 
time resolution. From the simulation results, a reserve 

requirements curve informing how much reserve is 
required for different wind speed values (close to cut‐
out speed) is constructed. In the operational domain, 
the tool combined with NWP enables the calculation 
of reduction trajectories samples and a corresponding 
reserve requirements curve. The main advantage of 
the described model is that it does not require exten-
sive historical data of the wind farms in the region 
under analysis.

UC and ED with RES

The UC problem consists of scheduling genera-
tion units to minimize the cost of supplying the 
forecasted load with a set of constraints related to 
power system security and operation (e.g. ramping 
rates, start‐up times). The economic dispatch (ED) 
is based on the UC generation schedule and com-
putes the generation levels of each unit that lead to 
the lowest possible cost. In summary, the UC decides 
which units should be running (e.g. on or off) and the 
ED determines the generation levels of the commit-
ted (or online) units. It is common to find these two 
processes in noninterconnected power systems and 
in the United States as a market clearing instrument. 
The UC and ED, in the United States, are used in the 
following steps[15]: in the day‐ahead market clearing, 
a security‐constrained UC and ED is used to sched-
ule and dispatch the generation units, using bids 
(price and quantity pairs in a stepwise increasing 
function) from market agents; after the day‐ahead 
market clearing, a reliability assessment commit-
ment (RAC) is performed using security‐constrained 
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UC; a  security‐constrained ED is performed in the 
real‐time market to dispatch the units scheduled by 
the day‐ahead market and RAC.

Presently, SOs only use deterministic UC/ED, and 
the load and conventional generation uncertainty is 
covered in a constraint for guaranteeing a fixed amount 
of reserve. The state‐of‐the‐art for solving the UC 
problem is mixed‐integer programming (MIP), which 
is available in most commercial optimization pack-
ages. New UC/ED policies that include probabilistic 
information can be promising alternatives with increas-
ing levels of RES. For example, ERCOT, when mak-
ing the day‐ahead plan of the generation resources, 
uses as a WPF the 20% quantile (i.e. 80% probabil-
ity of surplus)[77]. This can be understood as a conser-
vative approach that guarantees a safety margin, but 
increases the cost due to the overcommitment of con-
ventional generation units and leads to a greater need 
for downward reserve. Thus, an alternative approach 
is stochastic UC/ED (SUC/SED).

The state‐of‐the‐art for the SUC and SED is a 
two‐stage stochastic programming with recourse[78]. 
The UC decisions, excluding fast‐starting generation 
units, are taken in the first stage (modeled as here‐
and‐now variables). The dispatch decisions are made 
in stage 2, modeled as wait‐and‐see variables, when 
realized values are known (i.e. real‐time).

Generally, this stochastic problem is converted into 
a deterministic equivalent that is solved with MIP. 
The objective function in the published formulations 
is the minimization of the expected cost[30, 78]. How-
ever, subjects such as uncertainty modeling, strategies 
for including the reserve requirements, and whether 
or not transmission network constraints are included 
differ in the literature.

Uncertainty Modeling

Uncertainty is generally modeled through a set of 
scenarios. However, the characteristics of these sce-
narios differ from author to author. Some scenarios 
are generated with techniques that are only suitable 
for planning studies[79]. For the operational domain, 
several authors generated scenarios assuming that the 
wind power follows a normal distribution and without 
considering the temporal dependency of errors[80–83].

Further UC formulations use different princi-
ples. Constantinescu et  al.[84] describe a computa-
tional framework that combines a NWP model with 
a sampling technique for generating physical‐based 
scenarios able to capture the spatial–temporal evo-
lution of forecast errors. Wang et  al.[30] and Zhou 
et  al.[85] modeled wind power uncertainty with  the 
method from Pinson et  al.[31] Sturt and Strbac[86] 

use a quantile‐based scenario tree for wind power 
uncertainty. The scenario tree is constructed from 
a user‐defined topology, and forecast errors at each 
node are determined from quantiles of the forecast 
error distribution.

The use of a large set of scenarios increases the 
computational requirements. A common practice is 
to reduce the number of scenarios with a technique 
that aggregates similar scenarios and eliminates sce-
narios low probability. The most‐used techniques are 
backward reduction and forward selection based on 
a family of Kantorovich or transportation probabil-
ity metrics[87]. Pappala et  al.[82] described a scenario 
reduction method based on particle swarm optimiza-
tion, and Sumaili et al.[88] described another algorithm 
based on clustering techniques.

Modeling the Reserve Requirements

In the SUC, uncertainty is implicitly modeled by 
using a set of scenarios. According to Bouffard and 
Galiana[81], the reserves in the SUC are defined inter-
nally and there is no need for specifying a priori a 
reserve requirement. The quantile‐based scenario 
tree proposed by Sturt and Strbac[86] for modeling 
wind power uncertainty avoids the need to consider 
additional reserves for the SUC. Because the sce-
narios capture the worst‐case tail, it allows the SUC 
to model dynamic levels of reserve that weigh the 
cost of providing them compared with the load shed-
ding cost or the cost from committing expensive gen-
eration. In the SUC of Morales et  al.[89], the reserve 
requirements are determined considering the value of 
lost load, electrical energy cost and reserve bids, and 
also a set of scenarios.

However, other authors also studied the inclusion 
of a constraint related with reserve requirements, for 
modeling uncertainty explicitly.

Ruiz et  al.[78], although not considering RES 
uncertainty, showed that the inclusion of a suitable 
amount of reserve requirements in the SUC formula-
tion resulted in better performance in terms of total 
cost and unserved energy. Restrepo and Galiana[90] 
proposed a deterministic UC that includes a con-
straint that limits the probability of the forecasted 
residual load exceeding the schedule upward and 
downward reserve. Wang et  al.[30] showed that an 
SUC with additional reserve for covering the impos-
sibility of comprising all events in a limited set of 
scenarios performs better than an SUC without addi-
tional reserve. Pappala et al.[82] in addition to a set of 
scenarios, considered additional spinning reserve for 
dealing with wind power ramps between two consec-
utive periods.
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Stochastic Versus Deterministic UC/ED

Several authors conducted studies comparing deter-
ministic UC and SUC. Tuohy et  al.[79] compared 
both approaches and the SUC decreased the total 
cost around 0.25%. Interesting differences were: the 
deterministic UC commits more expensive mid‐merit 
gas and peaking units; the SUC imports more energy 
because of the scenarios with low wind power gener-
ation; deterministic UC increases the number of start-
ups in the generation units; the SUC presents a better 
performance in meeting the spinning and replacement 
reserve requirements.

Wang et al.[30] compared different deterministic and 
SUC strategies for dealing with wind power uncer-
tainty. Results for a three‐month period showed that a 
deterministic UC without any WPF (i.e. the wind gen-
eration is assumed to be zero) resulted in an overcom-
mitment of conventional units, and when only point 
forecasts for wind power are included, it leads to the 
highest cost and load curtailment. The SUC strategies 
have a relatively low cost, but a deterministic UC 
with a reserve rule (point forecast minus 10% quan-
tile and 5% of the load) obtained a similar cost. Zhou 
et al.[85] extended this comparison to the RAC, where 
fast‐starting units are committed or decommitted by 
using very‐short‐term wind power probabilistic fore-
casts and scenarios in the SUC. Both articles show 
that a dynamic rule for setting the reserve combined 
with deterministic UC presents a better performance 
than a fixed reserve value and can yield similar results 
to SUC, without the need to change considerably 
the current operational procedures or increasing the 
computational effort. On other hand, the SUC, as it 
uses scenarios with temporal correlation, can capture 
with more detail the ramps between hours and, con-
sequently, compute a suitable reserve for dealing 
with temporal variability. Another advantage is that 
it includes the uncertainty impact in the objective 
function.

Papavasiliou et  al.[91] compared an SUC that uses 
scenarios with a deterministic UC with two alternative 
rules for setting the reserve: 20% of the forecast peak 
load, 3% of the forecasted load plus 5% of the fore-
casted wind power. The SUC improves the daily oper-
ational cost over the deterministic UC: 0.39% for the 
first rule, and 0.54% for the second rule with 7.1% 
of wind power penetration; 1.33% and 1.09% corre-
spondingly with 14% of wind power penetration.

Lowery and O’Malley[92] studied the impact of WPF 
errors statistics (i.e. variance, skewness, and kurtosis) 
on the UC and system operation, using a test system 
a portfolio from the all Island Grid study (Ireland 
and Northern Ireland). The authors evaluated which 

statistical properties of the error distribution contrib-
ute to the system operation performance. The results 
showed that variance has the most impact on the total 
cost, and skewness only decreases the system cost if 
complemented by kurtosis. For instance, skewness 
combined with variance results in an overcommit-
ment of expensive base‐load units due to an incorrect 
estimation of the tail probabilities. The introduction of 
these error statistics in the UC changes the generation 
levels of flexible mid‐merit and peak units, while base‐
load units are almost stable. Furthermore, the number 
of unit startup increases with the forecast uncertainty, 
with the exception of coal‐based power plants.

The authors also evaluated the impact of over‐ and 
underestimation of these statistics, and several con-
clusions were obtained. For example, inaccuracy in 
kurtosis will aggravate the effects (i.e. system cost) 
of an underestimation of variance because an overes-
timation of kurtosis increases the dependency from 
flexible units, and underestimation overcommits 
base‐load units. The overestimation of kurtosis when 
variance is accurate results in a decrease of the total 
cost because it reduces the use of slower generation 
units. The lowest number of require startups when 
variance is underestimated is when skewness is accu-
rate. If variance is overestimated, inaccurate skewness 
reduce the number of startups of flexible units due to 
an incorrect estimation of the expected wind power.

Constrained SUC/SED

The constrained UC/ED is particularly important for 
countries (e.g. United States) with nodal prices. When 
the transmission network constraints are included, 
new optimization techniques are needed for solving 
the problem.

Wu et  al.[93] use Lagrangian relaxation to decom-
pose the optimization problem in tractable determin-
istic constrained SUC subproblems that can be solved 
with MIP. Wang et al.[80] divided a constrained SUC 
in a master problem according to the wind power sce-
nario. The security of an initial dispatch is checked 
in a subproblem, and a redispatch is made for mit-
igating violations. If the redispatch is insufficient, 
Benders decomposition is used to revise the gener-
ation commitment of the master problem. Morales 
et  al.[89] present a network‐constrained market‐clearing 
mechanism for energy and reserve (spinning and 
nonspinning) optimization, considering wind power 
uncertainty. A two‐stage stochastic programming 
problem is proposed. The first optimization stage 
comprises the constraints and rules of the electricity 
market, whereas the second stage represents the 
power system operation and physical limitations.
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Managing Network Congestion

A “weak” transmission network with a high penetra-
tion of RES is prone to congestion situations, which 
limits the benefits arising from RES integration. For 
instance, network bottlenecks bind the reduction 
in operational costs promoted by wind power and 
increase the amount of curtailed wind generation dur-
ing low load periods[77, 89]. The use of power flow tools 
capable of including renewable energy uncertainty 
can help detect and manage situations with conges-
tion, avoiding curtailment of renewable energy, and 
in the medium term can defer network investments.

Two approaches can be found for including uncer-
tainty in power flow calculations: probabilistic 
power flow (PPF) and fuzzy power flow (FPF). Both 
methods calculate, under steady‐state conditions, the 
probability distributions or fuzzy values (possibility 
distributions) for voltages (angle and magnitude), 
active and reactive power flows, and active losses.

In PPF studies, wind speed uncertainty is fre-
quently modeled by a Weibull distribution[94]. How-
ever, this modeling assumption is not suitable for the 
operational domain because the goal is to include 
forecast uncertainty. Moreover, the spatial depen-
dency between the random variables is also important 
for power flow calculations.

The first PPF considering WPF uncertainty was 
developed by Hatziargyriou et al.[95], for radial distri-
bution networks. The main limitations are the assump-
tion of a normal distribution for the WPF error, and 
dependencies are neglected. Morales et  al.[96] pre-
sented a PPF that includes uncertainty through the 
statistical moments (i.e. mean, variance, skewness, 
and kurtosis) of the distribution and also includes 
the spatial dependency of uncertainties. The authors 
proposed an analytical method based on a modified 
point‐estimate method (PEM). The dependent input 
random variables are transformed into independent 
variables, using an orthogonal transformation. Fur-
thermore, the authors also described a Monte Carlo 
method for solving the PPF through simulation, using 
spatial dependent scenarios. The comparison between 
the two methods showed that the Monte Carlo method 
takes about 350 times longer than PEM, and with a 
95% confidence level, the solutions provided by both 
methods are the same. Furthermore, it was shown that 
the dependency between WPF affects more the active 
power flow, and an increase in the correlation coeffi-
cient results in an increase of the power flow standard 
deviation.

Usaola[97] describes an analytical method for PPF 
based on the cumulant method and the Cornish‐Fisher 
expansion series. A small number of convolution 

operations are conducted for multimodal distributions. 
The method accepts dependent/independent, contin-
uous/discrete random variables. WPF uncertainty is 
modeled with beta functions conditioned to the level 
of injected power, and dependent scenarios are gen-
erated with a sampling process similar to others in 
the literature[31]. The author compared the proposed 
method with a PEM with independent random vari-
ables. The results showed that the PEM attains a good 
performance (i.e. average error between moments of 
the power flows) for the independent case up to the 
second‐order moment, whereas the proposed method 
behaves better in the dependent case.

Bessa et  al.[70] adapted the classical FPF for 
including WPF uncertainty. A set of forecasted 
quantiles is converted into a (triangular) fuzzy num-
ber. The FPF, in the framework of the ANEMOS.
plus project, was operationally demonstrated for the 
Portuguese SO, and the goal was to detect possi-
ble congestions and voltage violations in the market 
dispatch for the next day. The demonstration showed 
that in hours where wind power was underforecast-
ed, leading to branch congestion, the deterministic 
power forecast (PF) was unable to detect congestion, 
whereas the FPF, depending on the selected cutoff, 
was capable of detecting possible congestion. Eval-
uation analysis for the whole demonstration period 
(six months) showed that deterministic PF has the 
lowest percentage value of false alarms, but at the 
same time, has the highest percentage of overlooked 
congestions. FPF, with a cutoff properly defined by 
the user, offers a more balanced solution between 
the percentage of false alarms and the percentage of 
overlooked congestions.

All reviewed methods were applied only for detect-
ing congestion situations under normal steady‐state 
operation. Some SOs also run power flow calcula-
tions with branch contingencies (N‐1 regime) as the  
ENTSO‐E Policy 3 suggests[98]. Moreover, the methods 
do not define (at least directly) any preventive/ 
corrective action or perform a redispatch for solving 
the problem.

Vlachogiannis[99] proposed a constrained PPF that 
includes uncertainties from both wind power and 
electric vehicles (EVs). The method uses a learning 
algorithm based on learning automata systems for 
determining the values of continuous and discrete 
control variables. The goal is to determine robust 
values for the control variables that maintain the risk 
of constraints’ violation below a predefined level. 
This method has the following limitations: WPF are 
not included (i.e. wind speed uncertainty is modeled 
with a Weibull distribution) and spatial and temporal 
dependencies are neglected.


