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Preface

The Ninth International Workshop on Meshfree Methods for Partial Differential
Equations was held from September 18 to September 20, 2017, in Bonn, Germany.
Meshfree methods have a diverse and rich mathematical background and their
flexibility renders them particularly interesting for challenging applications in which
classical mesh-based approximation techniques struggle or even fail. This workshop
series was established in 2001 to bring together European, American, and Asian
researchers working in this exciting field of interdisciplinary research on a regular
basis.

To this end, Ivo Babuška, Jiun-Shyan Chen, Michael Griebel, Wing Kam Liu,
Marc Alexander Schweitzer, C. T. Wu, and Harry Yserentant invited scientists
from all over the world to Bonn to strengthen the mathematical understanding and
analysis of meshfree discretizations and to promote the exchange of ideas on their
implementation and application.

The workshop was again hosted by the Institut für Numerische Simulation at
the Rheinische Friedrich-Wilhelms-Universität Bonn with the financial support of
the Sonderforschungsbereich 1060 The Mathematics of Emergent Effects and the
Hausdorff Center for Mathematics.

Bonn, Germany Michael Griebel
Bonn, Germany Marc Alexander Schweitzer
December 2018
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Preconditioned Conjugate Gradient
Solvers for the Generalized Finite
Element Method

Travis B. Fillmore, Varun Gupta, and Carlos Armando Duarte

Abstract This paper focuses on preconditioners for the conjugate gradient method
and their applications to the Generalized FEM with global-local enrichments
(GFEMgl) and the Stable GFEMgl. The preconditioners take advantage of the
hierarchical struture of the matrices in these methods and the fact that most of the
matrix does not change when simulating for example, the evolution of interfaces
and fractures. The performance of the conjugate gradient method with the proposed
preconditioner is investigated. A 3-D fracture problem is adopted for the numerical
experiments.

1 Introduction

The Generalized or Extended FEM (GFEM/XFEM) [3, 4, 6, 12, 26, 28, 31]
has successfully been applied to problems involving moving interfaces, crack
propagation, material discontinuities, and many others. These applications rely on
a-priori knowledge of the solution in order to define enrichment functions. Several
assumptions are usually required for the derivation of these enrichments. As a
result, refinement of the FEM mesh is usually required for acceptable accuracy. One
strategy to address this issue is to define the enrichments numerically as the solution
of auxiliary boundary value problems [10]. This leads to the so-called Generalized
FEM with global-local enrichments (GFEMgl). Another limitation of the GFEM is
the ill-conditioning of the resulting system of equations which may lead to severe
round-off errors of direct solvers or to the lack convergence of iterative solvers.
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2 T. B. Fillmore et al.

Preconditioning schemes for the GFEM can be found in the works of Kim et
al. [23] which proposes a Block-Jacobi preconditioner for the conjugate gradient
method, Waisman et al. [7, 36], Menk and Bordas [27], Béchet et al. [5], and several
others.

The Stable GFEM (SGFEM), initially proposed in [1, 2] and extended to 2- and
3-D fracture mechanics in [17, 18], provides a robust and yet simple solution to the
problem of ill-conditioning of the GFEM/XFEM. It is shown in [2] that the SGFEM
yields matrices with a condition number which is orders of magnitude lower than in
the GFEM/XFEM.

Block Gauss-Seidel iterative solution algorithms for the SGFEM are proposed in
Kergrene et al. [20] and [15]. This paper proposes preconditioners for the SGFEM
and, in particular to the SGFEMgl –an application of SGFEM ideas to the GFEMgl

which was first proposed in [15]. The key idea of the preconditioners is to explore
the hierarchical structure of the system of equations in Generalized FEMs like
the SGFEMgl. For example, when simulating the propagation of fractures in a
domain using the SGFEMgl, only the enrichments change between propagation
steps. The entries of the matrix associated with the FEM space—a sub-space of
the SGFEMgl space—remains constant throughout the entire simulation regardless
of the complexity of the fracture. This has been demonstrated in [32]. Two
preconditioners for the conjugate gradient method are investigated: The Block
Jacobi (BJ-PCG) and the Block Gauss-Seidel (BGS-PCG). They are defined in
Sect. 4 and their performance investigated in Sect. 5. The numerical experiments
involve the solution of a 3-D fracture problem using the SGFEMgl. This method
is briefly reviewed in Sect. 3. The model problem adopted in this paper—the
linear elastic fracture mechanics problem—is summarized in Sect. 2. The main
conclusions of this work are presented in Sect. 6.

2 Model Problem

The iterative solvers investigated in this paper are not restricted to a particular
problem. However, we focus on linear elastic fracture mechanics problems in 2-
and 3-D. Consider a cracked domain �̄ = � ∪ ∂� in R

d, d = 2 or 3, as illustrated
in Fig. 1. The boundary is decomposed as ∂� = ∂�u ∪ ∂�σ with ∂�u ∩ ∂�σ = ∅.
The crack surface S ⊂ ∂�σ is assumed to be traction-free. We consider the linear
elasticity problem on this domain. The equilibrium equations are given by

∇ · σ = 0 in �, (1)

where σ is the Cauchy stress tensor. The following boundary conditions are
prescribed on ∂�

u = ū on ∂�u σ · n = t̄ on ∂�σ , (2)
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Fig. 1 Fractured domain �̄
in R

2 or R3

where n is the outward unit normal vector to ∂�σ and t̄ and ū are prescribed
tractions and displacements, respectively. Without loss of generality, we assume
hereafter that ū = 0. The constitutive relations are given by the generalized Hooke’s
law,

σ = C : ε, (3)

where C is Hooke’s tensor. The kinematic relations are given by

ε = ∇su in �, (4)

where ε is the linear strain tensor and ∇s is the symmetric part of the gradient
operator. We seek to find a GFEM approximation to the solution u of the problem
defined by Eqs. (1)–(4).

3 GFEM and GFEMgl Approximations

A brief review of generalized FEM approximations is given in this section. Further
details can be found in, for example, [3, 11, 26, 31, 34].

The GFEM test and trial space S
GFEM is obtained by hierarchically enriching a

low-order standard finite element approximation space SFEM, with special functions
related to the given problem and belonging to the enrichment space SENR. Consider
a finite element mesh covering the domain of interest �̄. Let Nα(x), α ∈ Ih =
{1, · · · , nnod}, be the standard linear finite element shape function associated with
node xα and with support ωα . The patch or cloud ωα is given by the union of the
finite elements sharing node xα . The test/trial space of the GFEM is given by

S
GFEM = S

FEM + S
ENR, (5)
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where

S
FEM =

∑

α∈Ih
û αNα, û α ∈ R

d , d = 2, 3,

S
ENR =

∑

α∈I eh
Nαχα, and χα(ωα) = span{Eαi}mαi=1. (6)

The basis functionEαi is called an enrichment function, α ∈ I eh ⊂ Ih is the index of
the node with this enrichment, and i = {1, · · · ,mα} is the index of the enrichment
function at the node withmα being the total number of enrichments associated with
node xα. The functions Eαi ∈ χα(ωα) are chosen such that they approximate
the unknown solution u of the problem locally in ωα . Examples of enrichment
functions are polynomials, the Heaviside function, crack tip singular functions, and
numerically generated functions (cf. Sect. 3.1). The spaces χα(ωα) are called patch
approximation spaces, and S

ENR is referred to as the global enrichment space of the
GFEM. The functions in S

ENR

φαi(x) = Nα(x)Eαi(x), α ∈ I eh, i = 1, . . . ,mα, (7)

are denoted GFEM shape functions. They are built from the product of Finite
Element shape functions, Nα(x), α ∈ I eh , and enrichment functions, Eαi , i =
1, . . . ,mα . There are mα GFEM shape functions at a node xα, α ∈ I eh , of a finite
element mesh. These nodes also have a standard FE shape function Nα ∈ S

FEM.
Nodes not in the set I eh have only one function—the FE shape functionNα .

Based on Eqs. (5)–(7), the GFEM approximation uGFEM of a vector field u (e.g.,
displacements) can be written as

uGFEM(x) = uFEM(x)+ uENR(x)

=
∑

α∈Ih
ûαNα(x)

︸ ︷︷ ︸
Standard FEM approx.

+
∑

α∈I eh
Nα(x)

mα∑

i=1

ũαiEαi(x)

︸ ︷︷ ︸
GFEM enriched approx.

, ûα, ũαi ∈ R
d , d = 2, 3.

(8)

The above equation clearly shows that a GFEM approximation is obtained by
hierarchically enriching a standard finite element approximation. As a consequence,
any GFEM stiffness matrix is given by a FEM matrix augmented with entries
associated with GFEM enrichments. This property of GFEM matrices is used in
the proposed preconditioners for the GFEM.
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3.1 The Generalized FEM with Global-Local Enrichments

Available enrichment functions for linear elastic fracture problems [6, 12, 13, 28,
30] are based on the expansion of the elasticity solution in the neighborhood of a
straight crack front in an infinite domain. They also assume a planar fracture surface.
These assumptions are not valid in most practical fracture mechanics problems, in
particular for the case of 3-D problems. As a result, refinement of the FEM mesh
is required for acceptable accuracy. Alternatively, the enrichments can be defined
numerically as the solution of auxiliary boundary value problems [10, 14]. This
so-called Generalized FEM with Global-Local Enrichments (GFEMgl), combines
the GFEM and the global-local FEM [9, 29]. This allows the GFEM to use coarse
meshes while delivering accurate solutions. The GFEMgl has been formulated and
applied to various classes of problems. In Sect. 5, the method is used to discretize
a 3-D linear elastic fracture problem. The resulting discrete system of equations is
solved using the iterative solvers described in Sect. 4. Further details on GFEMgl in
the context of linear elastic fracture mechanics, can be found in [10, 21, 22].

3.2 Stable GFEM and Stable GFEMgl

It can be shown that the growth of the condition number for the GFEM is O(h−4)

with mesh refinement [2]. In contrast, the condition number of the standard FEM
stiffness matrix for a 3-D elasticity problem subjected to Neumann boundary
conditions is O(h−2) [8]. It is noted that if point constraints are adopted in 3-D
to eliminate the rigid body motions, the condition number of the FEM matrix with
these point constraints is O(h−3) [8]. Condition number in this paper is taken to
mean the condition number computed using the non-zero eigenvalues of a matrix
scaled such that its diagonal entries are 1 or O(1). This is also known as the scaled
condition number.

The Stable GFEM (SGFEM) [2] was proposed to address this ill-conditioning
issue of the GFEM. In the SGFEM, the enrichment functions are locally modified
to construct the patch approximation spaces χ̃α, α ∈ I eh . The modified SGFEM
enrichment functions Ẽαi(x) ∈ χ̃α(ωα) are given by

Ẽαi(x) = Eαi(x)− Iωα (Eαi)(x) and χ̃α = span{Ẽαi}mαi=1 (9)

where Iωα (Eαi) is the piecewise linear finite element interpolant of the enrichment
function Eαi on the patch ωα . The global enrichment space associated with χ̃α is
denoted by S̃

ENR. Therefore, the SGFEM trial space SSGFEM is given by

S
SGFEM = S

FEM + S̃
ENR. (10)
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The SGFEM shape functions φ̃αi(x) belonging to S̃
ENR are constructed using the

same framework as GFEM and are given by

φ̃αi(x) = Nα(x)Ẽαi(x). (11)

The above procedure can also be applied to the GFEMgl [15, 25]. The resulting
methodology is denoted as the SGFEMgl. Further details about the SGFEM are
given in [1, 2, 17]. The numerical implementation of the SGFEM is described in
Section 4 of [17].

4 Iterative Solvers

The iterative solvers studied in this paper are the Block Gauss-Seidel (BGS),
the Conjugate Gradient (CG), Block Jacobi Preconditioned CG (BJ-PCG), and
Block Gauss-Seidel PCG (BGS-PCG). All of the “Block” iterative solvers take
advantage of the hierarchical nature of the GFEM/SGFEM approximation spaces (5)
and (10). This property leads to the following structure for the global stiffness matrix
K, displacement vector d , and load vector f associated with a GFEM/SGFEM
discretization of the problem described in Sect. 2:

Kd =
[

K0 K0,gl

Kgl,0 Kgl

] [
d0

dgl

]
=
[

f 0

f gl

]
= f , (12)

where K0 is associated with the FEM space SFEM, Kgl is associated with enrichment
space S

ENR or S̃
ENR, and Kgl,0 = (K0,gl)T represents the coupling between the

FEM and enrichment spaces.

Remark 1 The notation K0,gl , Kgl , dgl, and f gl is adopted since the enrichments
used in this paper are computed through a global-local analysis as described in
Sect. 3.1.

Remark 2 Matrix K0 does not change in a crack propagation simulation. Thus, it
can be factorized once and re-used to define an efficient pre-conditioner for the
GFEM. This factorization can also be re-used when solving the enriched global
problem in the GFEMgl [10]. An iterative algorithm for the standard FEM can be
used to solve a system of equations with coefficients given by K0 instead of a direct
method. In this paper, however, a direct method is adopted.

4.1 Block Gauss-Seidel Algorithm

The Block Gauss-Seidel iterative method has been used in [15] and [20] to solve the
system of equations (12). An SGFEM was adopted in these references. Rather, than
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factorizing K , the Block Gauss-Seidel (Block GS) method factorizes the diagonal
blocks K0 and Kgl . Algorithm 1 describes the method in details.

Algorithm 1: Block GS algorithm
Input: K,f , d

Output: d

for i = 0 until convergence do
rgl ← f gl −Kgl,0d0

dgl ← (Kgl)−1rgl

r0 ← f 0 −K0,gldgl

d0 ← (K0)−1r0

return d

4.2 Preconditioned Conjugate Gradient Method

The Preconditioned Conjugate Gradient (PCG) method is one of the most used
iterative methods to solve symmetric positive-definite systems of equations. An
excellent introduction to PCG can be found in [35]. The method finds new search
directions through A-orthogonalization of previous search directions. It finds the
magnitude of this direction by using the residual, a preconditioner, and matrix K .
The PCG algorithm as described in [35] follows in Algorithm 2.

The effectiveness of the PCG depends on the symmetric positive definite
preconditioner M adopted. Matrix M is usually similar to K but easier to factorize.
The lower the condition number of M−1K , the faster the convergence of PCG.
The most effective preconditioner is one that is easy to compute and factorize while
leading to a better condition number than K. The Block Jacobi and the Block Gauss-
Seidel preconditioners are adopted in this paper. They are briefly described next.

4.2.1 Block Jacobi Preconditioner

The Block Jacobi PCG is used in [23] to solve the systems of equations (12). The
following preconditioner is adopted in this algorithm

M =
(

K0 0
0 Kgl

)
. (13)

This is potentially a good preconditioner for the SGFEM and SGFEMgl since in
these methods Kgl and K0 are near orthogonal [1]. The Block Jacobi Preconditioner
proceeds as described in Algorithm 3.
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Algorithm 2: PCG algorithm
Input: K,f , d

Output: d

i ⇐ 0
r ⇐ f −Ku

d ⇐ M−1r

δnew ⇐ rT d

for i = 0 until convergence do
q ⇐ Kd

α ⇐ δnew

dT q

d ⇐ d + αd

if i is divisible by 50 then
r ⇐ f −Ku /* Reset r to exact value */

else
r ⇐ r − αq /* r is typically not evaluated directly to
save computations */

s ⇐ M−1r /* Preconditioner solution step */

δold ⇐ δnew

δnew ⇐ rT s

η ⇐ δnew
δold

d ⇐ s + ηd

return d

Algorithm 3: BJ preconditioner algorithm
Input: K, r

Output: s

sgl ← (Kgl)−1rgl

s0 ← (K0)−1r0

return s

In this paper, the Cholesky factorization of K0 and Kgl are computed and stored
at the start of the PCG iteration. See also Remark 2.

4.2.2 Block Gauss-Seidel Preconditioner

The Block Gauss-Seidel PCG uses the Block Gauss-Seidel Algorithm 4 as M . The
BGS method is similar computationally to the Block Jacobi method. It solves two
systems of equations using the factorizations of K0 and Kgl .

BGS-PCG is different from BJ-PCG because it involves sparse matrix multipli-
cation of K0,gl and its transpose, which is relatively inexpensive. This means that
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Algorithm 4: Block GS algorithm
Input: K, r, s

Output: s

sgl ← (Kgl)−1
(
rgl −Kgl,0s0

)

s0 ← (K0)−1
(
r0 −K0,glsgl

)

return s

BGS-PCG considers more information about the coupling matrices. The BGS-PCG
can also perform multiple iterations. In this paper, one iteration of the BGS is used
in the preconditioner step of the PCG iteration. The initial value for r is 0.

5 Analysis of a 3-D Edge-Crack

The 3-D edge-crack shown in Fig. 2 is analyzed in this section using the GFEMgl

and the SGFEMgl. The system of equations is solved using the iterative algorithms
described in the previous section. The problem domain and dimensions are shown
in Fig. 2. The dimensions are b = 2, l = 4, t = 1, and a = 1. The magnitude
of the tractions is taken as σ = 1. The material parameters are Young’s modulus
E = 200, 000, and Poisson’s ratio ν = 0.3. Point displacement boundary conditions
are assigned to selected nodes of the FEM mesh to prevent rigid body motions. The
GFEMgl and the SGFEMgl are used to numerically define the enrichment functions
adopted in the global problem. The three steps of the (S)GFEMgl analysis of this
problem are illustrated in Fig. 3. It shows the domains for each stage in the GFEMgl

and SGFEMgl solution process. Tetrahedron elements are used at both global and
local problems. The local step of the GFEMgl simulates the crack. Spring boundary

Fig. 2 Three-dimensional
edge crack

tb

l

l

a

crack

s
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Fig. 3 GFEMgl steps for a
3-D edge crack. The same
steps are used in the
SGFEMgl. Red spheres are
shown at global nodes
enriched with the local
solution. (a) Initial global
mesh. (b) Local mesh. (c)
Enriched global mesh

(a)

(b)

(c)

conditions are applied along the portion of the local boundary that does not intersect
the boundary of the global problem. The local mesh is refined near the crack front,
with the element length adjacent to the crack front being about 5% of the crack
length. The polynomial order of the local problem is taken as 3. The local solution
is used to generate enrichments for the enriched global problem. These global-local
enrichments are the only enrichments in the global domain.

5.1 Condition Number Analysis

The condition number of the global stiffness matrix K of the GFEMgl and the
SGFEMgl is compared in this section. The condition number of the sub-matrices
in (12) is also compared. The following notation is adopted hereafter: κ(K), κ(K0),
and κ(Kgl) denote the condition number of global matrix K , and sub-matrices K0
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Fig. 4 Growth of condition numbers as the global mesh is refined in all three directions. Point
Dirichlet boundary conditions are prescribed to the global problem to prevent rigid body motion

and Kgl, respectively. The condition number is computed for a sequence of global
meshes with the same number of elements in all three directions. The local mesh is
unchanged. This, and the boundary condition of the global problem, implies that the
global-local enrichments do not change with refinement of the global mesh.

Figure 4 shows the condition number for the GFEMgl and the SGFEMgl with
this sequence of meshes. The plots show that κ(K) = O(h−3) for both methods
and that κ(K0) is also of O(h−3). This is surprising since one would expect that
the conditioning of K would grow much quicker than κ(K0), at least for the
GFEMgl. The cause of this apparent contradiction is the point Dirichlet boundary
conditions prescribed to prevent rigid body motion of the global problem. The
condition number of the FEM stiffness matrix for a 3-D Neumann problem with
point boundary conditions is O(h−3) [8]. Thus, the condition number for both the
GFEMgl and the SGFEMgl matrices is controlled by the effect of point constraints.
Figure 4 also shows κ(K0) when no point constraint is prescribed to the global
problem. In this case κ(K0) = O(h−2) as expected. It is noted that in the case
of the GFEMgl, κ(K) is expected to grow faster than O(h−3) with further mesh
refinement than shown in Fig. 4. This is proved in [1].

Another interesting feature shown in Fig. 4 is the noticeable decrease in
SGFEMgl κ(Kgl) relative to κ(Kgl) from GFEMgl. This is the case even though
the SGFEM was designed to reduce the condition number κ(K) by reducing the
coupling between K0 and Kgl. This reduction in κ(Kgl) has an impact on the
performance of iterative solvers as shown in the next section.
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5.2 Performance of Preconditioners for GFEMgl and
SGFEMgl

The performance of the iterative algorithms described in Sect. 4 is investigated
in this section. The CG, BJ-PCG and BGS-PCG algorithms are used to solve the
global system of equations (12) associated with the GFEMgl and the SGFEMgl

discretizations. Each iterative solver is run until the relative error is less than
econv = 10−5, which is taken as the convergence tolerance. The relative error ei

of an iterative solver solution is calculated at each iteration i using

ei = ||d̂ − d i ||2
||d̂||2

where d̂ is a precalculated direct solver solution. The iteration i at which the solver
converges is hereafter denoted iconv.

Figure 5 shows the number of iterations for convergence (iconv) of each solver
and for the GFEMgl and SGFEMgl. The same sequence of global meshes adopted
in the previous section is used. Point Dirichlet boundary conditions are used in the
global problem to prevent rigid body motion. For any given mesh, the GFEMgl

iconv is significantly higher than that for the SGFEMgl. Also, the rate of growth of
iconv with respect to element size for the SGFEMgl is less than half the rate for the
GFEMgl. This indicates that although the conditioning of the matrices for GFEMgl

and SGFEMgl are for this problem fairly similar, iteratively solving (12) for the
SGFEMgl is faster than for the GFEMgl. Both BGS-PCG and BJ-PCG benefit from
the SGFEMgl. The slopes of the curves in Fig. 5 is similar but iconv is always less
for the BGS-PCG than for BJ-PCG. The advantages of SGFEM versus GFEM in
iterative solvers are also shown in [15] and [20].

Fig. 5 Iterations to convergence of CG, BJ-PCG and BGS-PCG when solving global system (12)
for GFEMgl (left) and SGFEMgl (right). Point Dirichlet boundary conditions are adopted in the
global problem
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5.3 Comparison of BGS-PCG with Pardiso

The performance of the proposed BGS-PCG algorithm with the SGFEMgl is
compared with the Intel Pardiso direct solver [24, 33]. The pure Neumann edge-
crack problem with point Dirichlet boundary conditions is solved using both solvers
and the sequence of uniform meshes described earlier. The largest global problem
has about 2 million degrees of freedom. The CPU time required for convergence of
the BGS-PCG when solving (12) and for the factorization of K by Pardiso is plotted
against the number of degrees of freedom in Fig. 6. It shows that the BGS-PCG is,
for this problem, always faster than Pardiso. The slope of the BGS-PCG curve is
lower than the one for Pardiso which implies that the bigger the problem, the more
efficient the BGS-PCG is relative to Pardiso. For the largest problem solved, BGS-
PCG took 496 s for convergence while Pardiso required 7030 s for the factorization
of K which is about 14 times slower than BGS-PCG.

The slope of 2.07 for Pardiso and 1.54 for BGS-PCG shown in Fig. 6 can
be considered equivalent to the rate of increase of the total number of algebraic
operations versus the number of degrees of freedom of the problem. The theoretical
rate when solving 3-D elliptic boundary value problems using the adopted sparse
direct solver is 2 [19]. This matches pretty well with the rate shown in Fig. 6. The
theoretical rate when solving the same class of problems using the preconditioned
conjugate gradient is 1.17 [19], which is lower than the rate for the BGS-PCG
shown in Fig. 6. This can be traced to the computational effort required by the
BGS preconditioner. The cost of the PCG is given by the number of CG iterations
times the cost of each iteration, including the preconditioner. Figure 5 shows that
the number of iterations required for convergence of the BGS-PCG grows at a rate
of 0.59/3 with respect to the number of degrees of freedom in 3-D. This slow rate

Fig. 6 Comparison of
BGS-PCG with Pardiso for
several problem sizes
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