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Preface

In statistical mechanics, it is common practice to use models of large interacting
assemblies governed by stochastic dynamics. The trimester “Stochastic Dynamics
Out of Equilibrium”, held at the Institut Henri Poincaré (IHP) in Paris from April to
July 2017, focused on the “out-of-equilibrium” aspect. Indeed, non-reversible
dynamics have features which cannot occur at equilibrium and for which novel
methods have to be developed. The three domains relevant to this trimester were
(i) transport in nonequilibrium statistical mechanics; (ii) the design of more efficient
simulation methods; (iii) life sciences.

The trimester at IHP brought together physicists, mathematicians from many
domains, computer scientists as well as researchers working at the interface
between biology, physics and mathematics. Various events were scheduled during
the trimester: a pre-school in Marseille-Luminy, three workshops and several series
of courses and seminars; see the website of the trimester

https://indico.math.cnrs.fr/e/stoneq17
for complete information. Each chapter in this book corresponds to one of these
events.

Part I gathers lecture notes from the pre-school at the Centre International de
Recherche Mathématique (CIRM). This one-week event provided an introduction
to the domains listed above. It was intended especially for a junior audience (PhD
students and post-docs) but also for more senior researchers not familiar with some
of these domains.

Part II includes lecture notes for two of the seven mini-courses which took place
during the trimester. Each mini-course was a set of three sessions of one hour and a
half, with a first lecture sufficiently introductory to be understood by all the par-
ticipants of the trimester, and then more specialized sessions. A broad spectrum of
scientific fields, topics and techniques was covered by the speakers. Indeed, with a
balance depending on the speaker’s background, all lectures featured a mix of
rigorous mathematical arguments and more physically motivated derivations; they
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used, from the mathematical perspective, techniques from analysis, partial differ-
ential equations, probability theory and dynamical systems.

Part III corresponds to the workshop “Numerical aspects of nonequilibrium
dynamics”. The scientific motivation for this event was that many successful
approaches for the efficient simulation of equilibrium systems cannot be adapted as
such to nonequilibrium dynamics. This is the case for instance for standard variance
reduction techniques such as importance sampling or stratification. This three-day
workshop (held from Tuesday, April 25 to Thursday, April 27) was focused on the
developments of original numerical methods specifically dedicated to the simula-
tion of nonequilibrium systems, as well as their certification in terms of error
estimates.

Part IV corresponds to the workshop “Life sciences”. This three-day workshop
(held from Tuesday, May 16 to Thursday, May 18) gathered researchers coming
from different fields—mathematics, physics, life sciences—and working with dif-
ferent approaches and tools, ranging from researchers dealing directly with real data
to scientists interested in the theoretical aspects of the models. The aim was on one
hand to understand the impact that recent advances in nonequilibrium statistical
mechanics and PDE analysis can have on life sciences and, on the other hand, to
widen the spectrum of models and phenomenologies tackled by mathematicians and
physicists.

Part V corresponds to the workshop “Stochastic dynamics out of equilibrium”.
This one-week workshop (held from Monday, June 12 to Friday, June 16) was
oriented towards general aspects of nonequilibrium stochastic dynamics, with a
broad audience. The topics concerned interface dynamics and KPZ universality,
nonequilibrium fluctuations, thermal conductivity and superconductivity in one
dimension, connection to macroscopic thermodynamics and more.

Let us conclude by acknowledging the various institutions and persons who
contributed to the success of the trimester we organized, and who helped us in
producing this volume. Let us first thank the staff at the Centre Emile Borel of IHP
who was in charge of the administrative aspects of the organization and handled
them with a spectacular efficiency. The funding from CNRS (Centre National de la
Recherche Scientifique), as well as from IHP and CIRM (through labex CARMIN)
were crucial for hosting our visitors. We also benefited from additional fundings
from various institutions in Paris (Fondation des Sciences Mathématiques de Paris,
Institut des Hautes Etudes Scientifiques, Sorbonne Université, Université Paris Sud,
Université Paris Dauphine, Université Paris Descartes, Université Paris Diderot,
Inria Paris, etc.) and abroad (Technische Universität München, Italian–French
agreement LYSM, Portugal–France agreement), as well as individual grants from
French or European funding agencies (ANR COSMOS and LSD from Agence
Nationale de la Recherche, projects HyLEF and MsMaths funded by the European
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Research Council). Finally, we warmly thank the contributors to this volume and
the referees of the contributions, as well as the staff of Springer, in particular Elena
Griniari, for helping us in the editorial process.

November 2018 Giambattista Giacomin
Stefano Olla
Ellen Saada

Herbert Spohn
Gabriel Stoltz
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Stochastic Mean-Field Dynamics and
Applications to Life Sciences

Paolo Dai Pra(B)

Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova, Padua, Italy
daipra@math.unipd.it

1 Introduction

Although we do not intend to give a general, formal definition, the stochastic
mean-field dynamics we present in these notes can be conceived as the ran-
dom evolution of a system comprised by N interacting components which is:
(a) invariant in law for permutation of the components; (b) such that the con-
tribution of each component to the evolution of any other is of order 1

N . The
permutation invariance clearly does not allow any freedom in the choice of the
geometry of the interaction; however, this is exactly the feature that makes these
models analytically treatable, and therefore attractive for a wide scientific com-
munity.
Originally designed as toy models in Statistical Mechanics, the emergence of
applications in which the interaction is typically of very long range and not
determined by fundamental laws, have renewed the interest in models of this
sort. Applications include, in particular, Life Sciences and Social Sciences.
The goal of these lectures is to

– review some of the basic techniques allowing to derive the macroscopic limit
of a mean-field model, and provide quantitative estimates on the rate of con-
vergence;

– illustrate, without technical details, some applications relevant to life sciences,
in particular for what concerns the study of the properties of the macroscopic
limit.

2 Generalities

2.1 The Prototypical Model

Mainly inspired by [46], we introduce the topic by some heuristics on a simple
class of models.
Consider a system of N interacting diffusions on R

d solving the following system
of SDE:

dXi,N
t =

1
N

N∑

j=1

b(Xi,N
t ,Xj,N

t )dt + dW i
t

c© Springer Nature Switzerland AG 2019
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4 P. Dai Pra

where b : R
d × R

d is a Lipschitz function, (W i)i≥1 are independent standard
Brownian motions, and we assume (Xi,N

0 )N
i=1 to be i.i.d square integrable random

variables. In particular, the dynamical equation is well posed.
Note that, for t > 0, the random variables (Xj,N

t )N
j=1 will be, by permutation

invariance of the model, identically distributed, but the interaction will break
the initial independence. The following heuristics is based on the assumption
that a Law of Large Numbers for these random variables holds also for t > 0.
Thus, if we consider the evolution of a single component Xi,N , and let N → +∞,
it is natural to guess that Xi,N converges, as N → +∞, to a limit process X

i

solving

dX
i

t =
∫

b(X
i

t, y)qt(dy)dt + dW i
t

X
i

0 = Xi
0

(2.1)

where qt = Law(X
i

t). Once the nontrivial problem of well posedness of this last
equation is settled, one aims at showing that, for any given T > 0 and indicating
by X[0,T ] ∈ C([0, T ]) the whole trajectory up to time T , the following statement
holds: for any m ≥ 1

(X1,N
[0,T ],X

2,N
[0,T ], . . . , X

m,N
[0,T ]) → (X

1

[0,T ],X
2

[0,T ], . . . ,X
m

[0,T ])

in distribution as N → +∞. Note that the components of the process

(X
1

[0,T ],X
2

[0,T ], . . . ,X
m

[0,T ])

are independent. Thus, independence at time 0 propagates in time, at least in
the macroscopic limit N → +∞. This property is referred to as propagation of
chaos.

2.2 Propagation of Chaos and Law of Large Numbers

Propagation of chaos can be actually rephrased as a Law of Large Numbers. To
this aim, given a generic vector x = (x1, x2, . . . , xN ), denote by ρN (x; dy) :=
1
N

∑N
i=1 δxi

(dy) the corresponding empirical measure. The propagation of chaos
property stated above, is equivalent to the fact that the sequence of empiri-
cal measures ρN (XN

[0,T ]) converges in distribution to Q ∈ P(C([0, T ])), where
P(C([0, T ])) denotes the set of probabilities on the space of continuous functions
[0, T ] → R

d, provided with the topology of weak convergence and Q is the law
of the solution of (2.1). This is established in the following result (see also [46],
Proposition 2.2).

Proposition 1. Let (Xi,N : N ≥ 1, 1 ≤ i ≤ N) be a triangular array of random
variables taking values in a topological space E, such that for each N the law
of (Xi,N )1≤i≤N is symmetric (i.e. invariant by permutation of components).
Moreover let (X

i
)i≥1 be a i.i.d. sequence of E-valued random variables. Then

the following statements are equivalent:
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(a) for every m ≥ 1

(X1,N ,X2,N , . . . Xm,N ) → (X
1
,X

2
, . . . ,X

m
)

in distribution as N → +∞;
(b) the sequence of empirical measures ρN (XN ) converges in distribution to

Q := Law(X
1
) as N → +∞.

Proof. Denote by QN the joint law of (X1,N ,X2,N , . . . XN,N ) in EN , and
by ΠmQN its projection on the first m components, i.e. the law of
(X1,N ,X2,N , . . . Xm,N ). The statements in (a) is equivalent to: for each m ≥ 1

ΠmQN → Q⊗m (2.2)

weakly, where Q⊗m is the m-fold product of Q.
(a) ⇒ (b).
To begin with, let F : E → R be bounded and continuous. Writing 〈F, μ〉 for∫

Fdμ and denoting by E
QN the expectation w.r.t. QN :

E
QN
(〈F, ρN (x) − Q〉2) =

1
N2

N∑

i,j=1

E
QN [F (xi)F (xj)]

− 2
N

〈F,Q〉
N∑

i=1

E
QN [F (xi)] + 〈F,Q〉2

=
1
N

E
QN [F 2(x1)] +

N − 1
N

E
QN [F (x1)F (x2)]

− 2〈F,Q〉EQN [F (x1)] + 〈F,Q〉2,

where we have used the symmetry of QN . By Assumption (a) this last expression
goes to zero as N → +∞.

Now, let Φ : P(E) → R be continuous and bounded, where P(E) is the space
of probabilities on the Borel subsets of E, provided with the weak topology. By
definition of weak topology, given ε > 0 one can find δ > 0 and F1, . . . Fk : E → R

bounded and continuous such that if

U := {P ∈ P(E) : |〈P − Q,Fj〉| < δ for j = 1, . . . , k}

then P ∈ U implies |Φ(P ) − Φ(Q)| < ε. Thus
∣∣EQN [Φ(ρN (x))] − Φ(Q)

∣∣ ≤ εQN (ρN (x) ∈ U) + ‖Φ‖∞QN (ρN (x) �∈ U).

Therefore, to show (b), i.e.
∣∣EQN [Φ(ρN (x)] − Φ(Q)

∣∣ → 0 for every Φ bounded
and continuous, it is enough to show that

lim
N→+∞

QN (ρN (x) �∈ U) = 0.
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But, by what seen above and the Markov inequality,

QN (ρN (x) �∈ U) ≤
k∑

j=1

QN (|〈ρN (x) − Q,Fj〉| ≥ δ)

≤
k∑

j=1

E
QN
(〈Fj , ρN (x) − Q〉2)

δ2
→ 0.

(b) ⇒ (a).
It is enough to show that if F1, F2, . . . , Fm : E → R are bounded and continuous,
then

E
QN [F1(x1) · F2(x2) · · · Fm(xm)] →

m∏

j=1

E
Q[Fj(x)] (2.3)

Observe that
∣∣∣∣∣∣
E

QN [F1(x1) · F2(x2) · · · Fm(xm)] −
m∏

j=1

E
Q[Fj(x)]

∣∣∣∣∣∣

≤
∣∣∣∣∣∣
E

QN [F1(x1) · F2(x2) · · · Fm(xm)] − E
QN

⎡

⎣
m∏

j=1

〈ρN (x), Fj〉
⎤

⎦

∣∣∣∣∣∣

+

∣∣∣∣∣∣
E

QN

⎡

⎣
m∏

j=1

〈ρN (x), Fj〉
⎤

⎦−
m∏

j=1

E
Q[Fj(x)]

∣∣∣∣∣∣
(2.4)

By (b), the last summand converges to 0. Using symmetry

E
QN

⎡

⎣
m∏

j=1

〈ρN (x), Fj〉
⎤

⎦ =
1

Nm
E

QN

⎡

⎣
∑

τ :{1,...,m}→{1,...,N}

m∏

j=1

Fj(xτ(j))

⎤

⎦

=
DN,m

Nm
E

QN [F1(x1) · F2(x2) · · · Fm(xm)]

+
1

Nm
E

QN

⎡

⎣
∑

τ not injective

m∏

j=1

Fj(xτ(j))

⎤

⎦ ,

where DN,m = N !
(N−m)! is the number of injective functions

{1, . . . , m} → {1, . . . , N}.

Since DN,m

Nm → 1, we obtain

E
QN

⎡

⎣
m∏

j=1

〈ρN (x), Fj〉
⎤

⎦→ E
QN [F1(x1) · F2(x2) · · · Fm(xm)]

which, by (2.4), completes the proof.
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Going back to the model in Sect. 2.1, once the propagation of chaos

(X1,N
[0,T ],X

2,N
[0,T ], . . . , X

m,N
[0,T ]) → (X

1

[0,T ],X
2

[0,T ], . . . ,X
m

[0,T ])

is shown, Proposition 1 implies that the empirical measure at time t, ρN (XN
t )

converges in distribution to qt = Law(X
1

t ), for every t ≥ 0. Moreover, being the
law of the solution of (2.1), qt solves the so-called McKean-Vlasov equation

∂

∂t
qt − ∇

[
qt

∫
b( · , y)qt(dy)

]
+

1
2
Δqt = 0.

2.3 Symmetry and Empirical Measures

Invariance by permutations of components is the main feature of mean-field
dynamics. In practice, for most of the models considered in the literature, per-
mutation invariance is obtained by assuming the characteristics of the dynamics,
e.g. the drift for diffusions, to be a function of the empirical measure ρN . Next
result provides sufficient conditions for a function which is invariant by per-
mutation to be asymptotically a function of the empirical measure. The main
assumption is that changing a single component produces variations of order 1

N
in the value of the function.

Proposition 2. Let K ⊆ R be a compact set, and, for N ≥ 1, fN : KN → R.
Assume the following conditions hold:

(i) the functions fN are invariant by permutations of components;
(ii) the functions fN are uniformly bounded, i.e. there is C > 0 such that

|fN (x)| ≤ C for every N ≥ 1 and x ∈ R
N ;

(iii) there is a constant C > 0 such that for every N ≥ 1, if x, y ∈ R
N and

xj = yj for all j �= i, then

|fN (x) − fN (y)| ≤ C

N
|xi − yi|.

Then there exists a continuous function U : P(K) → R and an increasing
sequence nk such that

lim
k→+∞

sup
x∈Knk

|fnk
(x) − U(ρnk

(x))| = 0.

Proof. Consider the Wasserstein metric on P(K)

d(ν, ν′) := inf
{∫

|x − y|Π(dx, dy) : Π has marginals ν and ν′
}

which, by compactness of K, induces the weak topology.
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We define the function UN : P(K) → R by

UN (μ) := inf
x∈KN

[fN (x) + Cd(μ, ρN (x))] ,

where C is a constant for which assumption (iii) holds. We claim that, for each
y ∈ KN

UN (ρN (y)) = fN (y). (2.5)

If not, there would be x ∈ KN with

fN (x) + Cd(ρN (y), ρN (x)) < fN (y),

in particular
|fN (y) − fN (x)| > Cd(ρN (y), ρN (x)). (2.6)

However a basic result in optimal transport states that

d(ρN (y), ρN (x)) = inf
σ∈SN

1
N

N∑

i=1

|xi − yσ(i)|,

where SN denotes the set of permutations of {1, 2, . . . , N}. This, the permutation
invariance of fN and assumption (iii) imply

|fN (y) − fN (x)| ≤ Cd(ρN (y), ρN (x)),

which contradicts (2.6), thus proving (2.5).
Now, let μ, ν ∈ P(K). By definition of UN , given ε > 0 there is x ∈ KN such
that

UN (ν) ≥ fN (x) + Cd(ν, ρN (x)) − ε.

Thus

UN (μ) ≤ fN (x) + Cd(μ, ρN (x)) ≤ UN (ν) + Cd(μ, ρN (x)) − Cd(ν, ρN (x)) + ε

≤ UN (ν) + Cd(μ, ν) + ε.

By symmetry this implies that

|UN (μ) − UN (ν)| ≤ Cd(μ, ν).

Therefore, the sequence of functions (UN ) is equicontinuous and, clearly, bounded
uniformly in N . By the Theorem of Ascoli-Arzelà there is a subsequence con-
verging uniformly to a function U . This, together with Claim 1, completes the
proof.

3 Propagation of Chaos for Interacting Systems

3.1 The Microscopic Model

In this section we introduce a wide class of R
d-valued interacting dynamics,

which includes the prototypical model above. The main aim is to introduce
quenched disorder, which accounts for inhomogeneities in the system, and jumps
in the dynamics; this allows to include processes with discrete state space. The
dynamics is determined by the following characteristics.
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– “Local” parameters (hi)N
i=1, drawn independently from a distribution μ on

R
d′

with compact support.
– A drift b(xi, hi; ρN (x, h)), where

ρN (x, h) =
1
N

N∑

i=1

δ(xi,hi),

and
b : Rd × R

d′ × P(Rd × R
d′

) → R
d.

– A diffusion coefficient σ(xi, hi; ρN (x, h))

σ : Rd × R
d′ × P(Rd × R

d′
) → R

d×n,

where n is the dimension of the driving Brownian Motion.
– A jump rate λ(xi, hi; ρN (x, h)) with

λ : Rd × R
d′ × P(Rd × R

d′
) → [0,+∞).

– A distribution for the jump f(xi, hi; ρN (x, h); v)α(dv) with

f : Rd × R
d′ × P(Rd × R

d′
) × [0, 1] → R

d

and α(dv) is a probability on [0, 1].

The dynamics could be introduced via generator and semigroup, but it will be
convenient to use the language of Stochastic Differential Equations (SDE). So let
(W i)i≥1 be a i.i.d. sequence of n-dimensional Brownian motions; moreover let
(N i(dt, du, dv))i≥1 be i.i.d. Poisson random measures on [0,+∞)×[0,+∞)×[0, 1]
with characteristic measure dt ⊗ du ⊗ α(dv). The microscopic model is given as
solution of the SDE for every given realization of the local parameters (hi):

Xi,N
t = Xi

0 +

∫ t

0
b
(
Xi,N

s , hi, ρ(X
N
s , h)

)
ds +

∫ t

0
σ

(
Xi,N

s , hi, ρ(X
N
s , h)

)
dW i

s

+

∫
[0,t]×[0,+∞)×[0,1]

f
(
Xi,N

s− , hi; ρN (XN
s− , h);α

)
1[

0,l
(

X
i,N

s− ,hi,ρ(XN
s− ,h)

)](u)N i(ds, du, dv)

(3.1)

It will be assumed, without further notice, that the initial states Xi
0 are i.i.d.,

square integrable, independent of both the local parameters (hi) and of the
driving noises (W i, N i).
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3.2 The Macroscopic Limit

At heuristic level it is not hard to identify the limit of a given component Xi,N

of (3.1) subject to a local field h. We omit the apex i on the process and of the
driving noises

Xt(h) =X0 +

∫ t

0
b
(
Xs(h), h, rs

)
ds +

∫ t

0
σ

(
Xs(h), h, rs

)
dWs

+

∫
[0,t]×[0,+∞)×[0,1]

f
(
Xs− (h), h; rs;α

)
1[0,λ(Xs− (h),h,rs)](u)N(ds, du, dv)

(3.2)

where rs = Law(Xs(h))⊗μ(dh). Choosing X0 = Xi
0, and driving noises W i, N i,

we indicate by X
i

the corresponding solution (3.2).

3.3 Well Posedness of the Microscopic Model: Lipschitz Conditions

We now give conditions that guarantee well posedness of (3.1) and (3.2); they
are far from being optimal, but allow a reasonable economy of notations. Weaker
conditions can be found, for instance in [1]. It is useful to work with probability
measures possessing mean value:

P1(Rd) :=
{

ν ∈ P(Rd) :
∫

|x|ν(dx) < +∞
}

which is provided with the Wasserstein metric

d(ν, ν′) := inf
{∫

|x − y|Π(dx, dy) : Π has marginals ν and ν′
}

.

– [L1] The function b(x, h, r) and σ(x, h, r), defined in R
d ×R

d′ ×P1(Rd ×R
d′

)
are continuous, and globally Lipschitz in (x, r) uniformly in h.

– [L2] The Lipschitz condition of the jumps is slightly less obvious. We assume
f : Rd ×R

d′ × P1(Rd ×R
d′

) × [0, 1] → R
d and λ : Rd ×R

d′ × P(Rd ×R
d′

) →
[0,+∞) are continuous, and obey the following condition

∫ ∣∣f(x, h, r, v)1[0,λ(x,h,r)](u) − f(y, h, r′, v)1[0,λ(x,h,r)](u)
∣∣ duα(dv)

≤ L [|x − x′| + d(r, r′)] (3.3)

for all x, y, r, r′, h.

Remark 1. The above assumptions imply that when one replaces r by the empir-
ical measure ρN (x, h), one recovers a Lipschitz condition in x. For instance, the
function b(xi, hi; ρN (x, h)) is globally Lipschitz in x uniformly in h.

Remark 2. Continuity, global Lipschitzianity and compactness of the support of
μ imply the linear growth conditions

|b(x, h, r)| ≤ C

[
1 + |x| +

∫
|y|r(dy, dh)

]

|σ(x, h, r)| ≤ C

[
1 + |x| +

∫
|y|r(dy, dh)

]

∫
|f(x, h, r, v)|λ(x, h, r)α(dv) ≤ C

[
1 + |x| +

∫
|y|r(dy, dh)

]
.

(3.4)
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Remark 3. Condition L2 is satisfied if both f and λ are continuous, bounded
and globally Lipschitz in x, r uniformly of the other variables. In the case f does
not depend on x, r but on h, v only, unbounded Lipschitz jump rate λ can be
afforded.

Using Remark 1, together with standard methods in stochastic analysis, one
obtains the following result. A detailed proof can be found e.g. in [30].

Proposition 3. Under L1 and L2, the system (3.1) admits a unique strong
solution.

3.4 Well Posedness of the Macroscopic Limit

The proof of the convergence of one component of (3.1) toward a solution of (3.2)
allows two alternative strategies. One consists in: (a) showing tightness of the
sequence of microscopic processes; (b) showing that any limit point solves weakly
(3.2); (c) showing that for (3.2) uniqueness in law holds true. We rather follow
the following approach, which is somewhat simpler and allows for quantitative
error estimates: (a) we show that (3.2) is well posed; (b) by a coupling argument
we show L1-convergence of one component of (3.1) to a solution of (3.2) driven
by the same noise.

Proposition 4. Under L1 and L2, the system (3.2) admits a unique strong
solution.

Proof. We sketch the proof of existence. We use a standard Picard iteration.
Define X

(0)
t (h) ≡ X0 and

X
(k+1)
t (h) = X0 +

∫ t

0

b
(
X(k)

s (h), h, r(k)s

)
ds +

∫ t

0

σ
(
X(k)

s (h), h, r(k)s

)
dWs

+
∫

[0,t]×[0,+∞)×[0,1]

f
(
X

(k)
s− (h), h; r(k)s ;α

)
1[

0,λ
(

X
(k)
s− (h),h,r

(k)
s

)](u)N(ds, du, dv)

(3.5)

where
r(k)s = Law

(
X(k)

s (h)
)

⊗ μ(dh).

We estimate

E
(k)
T :=

∫
E

[
sup

t∈[0,T ]

∣∣∣X(k+1)
t (h) − X

(k)
t (h)

∣∣∣

]
μ(dh). (3.6)

If we use (3.5) and subtract the equations for X(k+1) and X(k), take the supt∈[0,T ]

and use the triangular inequality, we obtain the sum of three terms.
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(A) The first term comes from the drift.

sup
t∈[0,T ]

∣∣∣∣
∫ t

0

b
(
X(k)

s (h), h, r(k)s

)
ds −

∫ t

0

b
(
X(k−1)

s (h), h, r(k−1)
s

)
ds

∣∣∣∣

≤
∫ T

0

∣∣∣b
(
X(k)

s (h), h, r(k)s

)
− b
(
X(k−1)

s (h), h, r(k−1)
s

)∣∣∣ ds

≤ L

∫ T

0

(∣∣∣X(k)
s (h) − X(k−1)

s (h)
∣∣∣+ d(r(k)s , r(k−1)

s )
)

ds

≤ L

∫ T

0

(∣∣∣X(k)
s (h) − X(k−1)

s (h)
∣∣∣+
∫

E

∣∣∣X(k)
s (h′) − X(k−1)

s (h′)
∣∣∣μ(dh′)

)
ds

where the inequality

d(r(k)s , r(k−1)
s ) ≤

∫
E

∣∣∣X(k)
s (h′) − X(k−1)

s (h′)
∣∣∣μ(dh′) (3.7)

comes directly form the definition of the metric d, and we have used (L1).
Averaging:

∫
E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

b
(
X(k)

s (h), h, r(k)s

)
ds −

∫ t

0

b
(
X(k−1)

s (h), h, r(k−1)
s

)
ds

∣∣∣∣

]
μ(dh)

≤ 2L

∫ T

0

∫
E

∣∣∣X(k)
s (h) − X(k−1)

s (h)
∣∣∣μ(dh) ≤ 2LTE

(k−1)
T .

(B) The second term comes from the diffusion coefficient.

sup
t∈[0,T ]

∣∣∣∣
∫ t

0

σ
(
X(k)

s (h), h, r(k)s

)
ds −

∫ t

0

σ
(
X(k−1)

s (h), h, r(k−1)
s

)
dWs

∣∣∣∣ .

By the L1 Burkholder-Davis-Gundy inequality (see e.g. [42])

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

[
σ
(
X(k)

s (h), h, r(k)s

)
− σ

(
X(k−1)

s (h), h, r(k−1)
s

)]
dWs

∣∣∣∣

]

≤ CE

⎡

⎣
(∫ T

0

∣∣∣σ
(
X(k)

s (h), h, r(k)s

)
− σ

(
X(k−1)

s (h), h, r(k−1)
s

)∣∣∣
2

ds

) 1
2
⎤

⎦

≤ CLE

⎡

⎣
(∫ T

0

(∣∣∣X(k)
s (h) − X(k−1)

s (h)
∣∣∣+ d(r(k)s , r(k−1)

s )
)2

ds

) 1
2
⎤

⎦

≤ CL
√

TE

[
sup

s∈[0,T ]

(∣∣∣X(k)
s (h) − X(k−1)

s (h)
∣∣∣+ d(r(k)s , r(k−1)

s )
)

ds

]
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Averaging over h and using (3.7) as before, we obtain

∫
E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

[
σ
(
X(k)

s (h), h, r(k)s

)
− σ

(
X(k−1)

s (h), h, r(k−1)
s

)]
dWs

∣∣∣∣

]
μ(dh)

≤ 2CL
√

TE
(k−1)
T .

(C) Finally, we have the term coming from the jumps.

sup
t∈[0,T ]

∣∣∣∣∣
∫
[0,t]×[0,+∞)×[0,1]

f
(
X

(k)

s− (h), h; r
(k)
s ; v

)
1[

0,λ
(

X
(k)
s− (h),h,r

(k)
s

)](u)N(ds, du, dv)

−
∫
[0,t]×[0,+∞)×[0,1]

f
(
X

(k−1)

s− (h), h; r
(k−1)
s ; v

)
1[

0,λ
(

X
(k−1)
s− (h),h,r

(k−1)
s

)](u)N(ds, du, dv)

∣∣∣∣∣
(3.8)

Let

F k
s := f

(
X

(k)
s− (h), h; r(k)s ; v

)
1[

0,λ
(

X
(k)
s− (h),h,r

(k)
s

)](u).

Since N is a positive measure, (3.8) is bounded above by,

∫ T

0

|F k
s − F k−1

s |N(ds, du, dv) =
∫ T

0

|F k
s − F k−1

s |dsduα(dv)

+
∫ T

0

|F k
s − F k−1

s |Ñ(ds, du, dv), (3.9)

where
∫ T

0
|F k

s − F k−1
s |Ñ(ds, du, dv) has mean zero, since dsduα(dv) is the com-

pensator of N(ds, du, dv). Thus averaging, we are only left with the term∫ T

0
|F k

s − F k−1
s |dsduα(dv), which is dealt with using (L2), and gives an upper

bound similar of that of part (A).
Summing up the contributions of (A), (B) and (C), we get, for a sufficiently

large constant C,
E

(k)
T ≤ C(T +

√
T )E(k−1)

T .

We now observe that the processes X(k), k ≥ 0, h ∈ R
d′

are progressively
measurable for the filtration generated by the initial condition and the driving
noise W,N , and satisfy

∫
E

[
sup

t∈[0,T ]

∣∣∣X(k)
t (h)

∣∣∣

]
μ(dh) < +∞.
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This can be seen by induction on k, replicating the steps above but using, rather
than the Lipschitz conditions, the linear growth conditions (3.4). If we denote by
M the space of progressively measurable, cadlag, Rd valued processes such that

‖X‖ := E

[
sup

t∈[0,T ]

|Xt|
]

< +∞,

and we take T sufficiently small, we have shown that
∑

k

∫
‖X(k+1)(h) − X(k)(h)‖μ(dh) < +∞,

and therefore for all h in a set F of μ-full measure
∑

k

‖X(k+1)(h) − X(k)(h)‖ < +∞.

The norm ‖ · ‖ is not complete in M, as the sup-norm is not complete in the
space of cadlag functions. To get a complete metric, we replace the distance in
sup-norm by the Skorohod distance dS (see [5]), i.e.

DS(X,Y ) := E [dS(X,Y )] .

Since the Skorohod distance is dominated by the distance in sup-norm, a Cauchy
sequence for ‖ · ‖ is also Cauchy for the metric DS . Thus, the limit X(h) of the
sequence X(k)(h) can be defined for all h ∈ F , where F is a set of measure one
for μ, and it is not hard to show (using also Proposition 1) that (3.2) holds for the
limit. X(h) can be then easily defined for h �∈ F just by imposing that (3.2) holds.

This establishes existence of solution in M for T small. Since the condition
on T does not involve the initial condition, the argument can be iterated on
adjacent time intervals, obtaining a solution on any time interval.

Establishing uniqueness would actually be easy by using similar arguments.
For us it is not actually needed, as uniqueness will follow from the convergence
result in next section (Theorem 1).

Remark 4. It is more customary to use L2 norms rather that L1 norms for con-
structing solutions to SDE. The main difference is in (C), where we estimate
(3.8). When estimating the mean of the square of (3.9), the martingale con-
tributes with ∫ T

0

|F k
s − F k−1

s |2dsduα(dv).

To complete the argument one needs a Lipschitz condition of the form
∫ ∣∣f(x, h, r, v)1[0,λ(x,h,r)](u) − f(y, h, r′, v)1[0,λ(y,h,r′)](u)

∣∣2 duα(dv)

≤ L
[|x − x′|2 + d22(r, r

′)
]
, (3.10)

where, in the whole argument, the distance

d2(ν, ν′) :=
(

inf{
∫

|x − y|2Π(dx, dy) : Π has marginals ν and ν′}
) 1

2
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would be used. The Lipschitz condition (3.10) is harder to check than (3.3), for
the simple reason that “squaring an indicator function does not produce any
square”.

3.5 Propagation of Chaos

Theorem 1. Suppose conditions L1 and L2 hold. For i ≥ 1 denote by X
i
(h)

the solution of (3.2) with the local parameter h and the same initial condition
Xi

0 of (3.1). Then for each i and T > 0

lim
N→+∞

∫
E

[
sup

t∈[0,T ]

∣∣∣Xi,N
t − X

i

t(hi)
∣∣∣

]
μ⊗N (dh) = 0

where μ⊗N is the N -fold product of μ.

Proof. As in the proof of Proposition 4 we subtract the two equations for Xi,N

and X
i
. Using the triangular inequality, we estimate supt∈[0,T ]

∣∣∣Xi,N
t − X

i

t(hi)
∣∣∣

as sum of three terms, corresponding respectively to drift, diffusion and jumps.
In this proof we only show how to deal with the drift term. The other two terms,
involving stochastic integrals, are reduced to terms with Lebesgue time integrals
as in the proof of Proposition 4, and then are estimated as the drift term.

We therefore give estimates for

∫
E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

b
(
Xi,N

s , hi, ρ(XN
s , h)

)
ds −

∫ t

0

b
(
X

i
s(hi), hi, rs

)
ds

∣∣∣∣
]

μ⊗N (dh)

≤
∫

E

[∫ T

0

∣∣∣b
(
Xi,N

s , hi, ρ(XN
s , h)

)
− b

(
X

i
s(hi), hi, rs

)∣∣∣
]

μ⊗N (dh) (3.11)

By (L1)
∣∣∣b
(
Xi,N

s , hi, ρ(XN
s , h)

)− b
(
X

i

s(hi), hi, rs

)∣∣∣

≤ L
[∣∣∣Xi,N

s − X
i

s(hi)
∣∣∣+ d

(
ρ(XN

s , h), rs

)]
. (3.12)

Now,

d
(
ρ(XN

s , h), rs

) ≤ d
(
ρ(XN

s , h), ρ(Xs, h)
)

+ d
(
ρ(Xs, h), rs

)
. (3.13)

We consider the two summands in the r.h.s. of (3.13) separately. By definition
of the metric d(·, ·)

d
(
ρ(XN

s , h), ρ(Xs, h)
) ≤ 1

N

N∑

j=1

∣∣∣Xj,N
s − X

j

s

∣∣∣ ,
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so, by symmetry,
∫

E
[
d
(
ρ(XN

s , h), ρ(Xs, h)
)]

μ⊗N (dh) ≤
∫

E

[∣∣∣Xi,N
s − X

i

s(hi)
∣∣∣
]
μ⊗N (dh).

(3.14)
For the second summand in (3.13) we observe that, under P⊗μ⊗∞, the random
variables

(
X

i

s(hi), hi

)
are i.i.d. with law rs ∈ P(Rd+d′

). By a recent version of
the Law of Large Number ([27], Theorem 1), there exists a constant C > 0, only
depending on d and d′, and γ > 0 (any γ < 1

d+d′ does the job) such that

∫
E
[
d
(
ρ(Xs, h), rs

)]
μ⊗N (dh) ≤ C

Nγ
. (3.15)

Inserting what obtained in (3.12), (3.13) and (3.14) in (3.11) we get for some
C > 0, which may also depend on T ,

∫
E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

b
(
Xi,N

s , hi, ρ(XN
s , h)

)
ds −

∫ t

0

b
(
X

i

s(hi), hi, rs

)
ds

∣∣∣∣

]
μ⊗N (dh)

≤ C

∫
E

[∫ T

0

∣∣∣Xi,N
s − X

i

s(hi)
∣∣∣

]
μ⊗N (dh) +

C

Nγ
.

Dealing similarly with all terms arising in supt∈[0,T ]

∣∣∣Xi,N
t − X

i

t(hi)
∣∣∣, if we set

Et :=
∫

E

[
sup

s∈[0,t]

∣∣∣Xi,N
s − X

i

s(hi)
∣∣∣

]
μ⊗N (dh)

we obtain

Et ≤ C

∫ t

0

Esds +
C

Nγ
,

which, by Gromwall’s Lemma and the fact that E0 = 0 yields

ET ≤ CT

Nγ

for some T -dependent constant CT , and this complete the proof.

4 Applications

In this section we review some classes of models that are relevant for life sciences.
Some key results will be stated, but no proofs are given.
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4.1 The Stochastic Kuramoto Model

Synchronization phenomena leading to macroscopic rhythms are ubiquitous in
science. Most (ab)used examples include

– applauses;
– flashing fireflies;
– protein concentration within cells in a multicellular system (reprissilators).

In these examples the systems are comprised by many units, each unit tending to
behave periodically. Under circumstances depending on how units communicate,
oscillation may synchronize, producing macroscopic pulsing. The (stochastic)
Kuramoto model [33] is perhaps the most celebrated stylized model to capture
this behavior.

In the Kuramoto model units are rotators, i.e. the state variable is an angle.
Denoting by Xi,N the angular variable (phase) of the i-th rotator, with i =
1, 2, . . . , N , the evolution is given by

dXi,N
t = hidt +

θ

N

N∑

j=1

sin
(
Xj,N

t − Xi,N
t

)
dt + dW i

t . (4.1)

Here hi is the characteristic angular velocity of the i-th rotator. The effect of the
interaction term is to favor phases to stay close. We assume the hi’s are i.i.d.,
drawn from a distribution μ on R with compact support. By possibly adding
a constant speed rotation, there is no further loss of generality to assume that
μ has mean zero. We further assume μ is symmetric, i.e. invariant by reflection
around zero.

Clearly all results in Sect. 3 apply, and we get the following macroscopic limit:

dXt(h) = hdt + θ

∫
sin(y − Xt)qt(dy;h′)μ(dh′)dt + dWt, (4.2)

where qt(dy;h′) is the law of Xt(h′). The flow of measures qt( · , h) solves (indeed
in the classical sense for the density w.r.t. the Lebesgue measure)

∂

∂t
qt(x;h) =

1
2

∂2

∂x2
qt(x;h) − ∂

∂x
[(h + θrqt sin(ϕqt − x)) qt(x, h)] =: M[qt](h),

(4.3)
where

rqte
iϕqt :=

∫
eixqt(dx;h)μ(dh).

Equation (4.3) describes the collective behavior of the system of rotators. rqt

captures the degree of synchronization of the system: rqt = 0 indicates total lack
of synchronization, while a perfectly synchronized systems has rqt = 1.

One is interested in the long time behavior of solutions of (4.3), in particular
stable equilibria. Note that, since the model is rotation invariant, if q(x;h) solves
M[q] = 0, then also q(x+x0;h) does; thus there is no loss of generality in looking
for equilibria satisfying ϕq = 0.

The proof of the following statement can be found in [7].
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Theorem 2. q∗ is a solution of M[q] = 0 with ϕq∗ = 0 if and only if it is of
the form

q∗(x;h) = (Z∗)−1 · e2(hx+θr∗ cos x)

[
e4πh

∫ 2π

0

e−2(hx+θr∗ cos x)dx

+(1 − e4πh)
∫ x

0

e−2(hy+θr∗ cos y)dy

]
, (4.4)

where Z∗ is a normalization factor and r∗ satisfies the consistency relation

r∗ =
∫

eix q∗(x, h)μ(dh) dx. (4.5)

r∗ = 0 is a solution of (4.5), and it corresponds to the incoherent solution

q∗(x;h) ≡ 1
2π

,

i.e. the phases of the rotators are uniformly distributed on the torus.

Linear stability of the incoherent solution depends in a highly nontrivial
way on θ and on the distribution μ of the local parameters. It is rather well
understood in some special cases [7,8,20].

Theorem 3. Denote by

θc =
[∫

μ(dh)
1 + 4h2

]−1

. (4.6)

(a) Suppose μ is unimodal, i.e. it has a (even) density decreasing on (0,+∞).
Then the incoherent solution is linearly stable if and only if θ < θc. At θc

one (circle of) synchronized solution (i.e. with rq > 0 bifurcates for the
incoherent solution.

(b) Suppose μ = 1
2 (δ−h0 + δh0) for some h0 > 0. Then the incoherent solution

is linearly stable if and only if θ < θc ∧2. For θc < 2 at θ = θc one (circle of)
synchronized solution (i.e. with rq > 0) bifurcates. For θc > 2 (which occurs
for h0 sufficiently large), at θ = 2 the incoherent solution loses stability
via a Hopf bifurcation: it is believed, but not rigorously proved, that stable
time-periodic solutions emerge.

It is not true in general that when the incoherent solution is stable then it is
unique. It is believed it is so in the unimodal case, but proved either for θ small,
or up to the critical point if μ is sufficiently concentrated around zero [37]. In the
binary case, for certain values of the parameters it is known that there are values
of θ smaller than the critical value for which two distinct circles of synchronized
solutions exists [37].

In general, when the support of μ is contained in a sufficiently small interval,
then synchronized solutions exist if and only if θ > θc, are unique up to rotation,
and are linearly stable [4,28].
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4.2 Interacting Fitzhugh-Nagumo Neurons

Designed as reduction of more realistic models (e.g. the Hodgkin-Huxley model),
the Fitzhugh-Nagumo model describes the evolution of the membrane potential
xt of a neuron through the following differential equation

ẋt = xt − 1
3
x3

t + yt + Iext
t

ẏt = ε(a + bxt − γyt)
(4.7)

where

– yt is a recovery variable obtained by reduction of other variables;
– Iext

t is the input current, assumed to be random and stationary. Without loss
of generality, choosing a properly, we can assume Iext

t has mean zero.
– b is the interaction strength between x and y, γ ≥ 0 is a dissipation param-

eter, and a is a kinetic parameter related with input current and synaptic
conductance.

The parameter ε can be used to separate the time scales of the evolutions of the
two variables. In what follows we assume dIext

t = σdWt for a Brownian motion W .
To begin with, consider the equation in absence of randomness in the input

current (σ = 0), and set b = −1, γ = 0 to make the analysis simpler. In this
case (4.7) has a unique equilibrium in (a,−a+a3/3), which is globally stable for
|a| < 1, is has a Hopf bifurcation at |a| = 1 and a stable periodic orbit emerges
for |a| > 1. Thus, the system can be excited by the input, producing, at least for
appropriate choice of the parameters, rapid variations of the potential (spikes)
which occur periodically.

There are various ways to make several neurons interact in a network, even
within the mean-field scheme, depending of how we model synapsis (see [2]). The
simplest, corresponding to electrical synapsis, leads to the following system. Here
Xi,N denotes the membrane potential of the i-th neuron. The local parameter
hi may be interpreted as the macroscopic location of the neuron, or its type.

dXi,N
t =

(
Xi,N

t − 1
3
(Xi,N

t )3 + Y i,N
t

)
dt

+
1
N

N∑

j=1

J(hi, hj)
(
Xi,N

t − Xj,N
t

)
dt + σdW i

t

dY i,N
t = ε(hi)

[
a(hi) + b(hi)X

i,N
t − γ(hi)Y

i,N
t

]
dt,

(4.8)

where the coupling parameters J(hi, hj) tune the interaction between pairs of
neurons.
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The model exhibits a richer behavior if one introduces a delay τ in the trans-
mission of informations between different neurons:

dXi,N
t =

(
Xi,N

t − 1
3
(Xi,N

t )3 + Y i,N
t

)
dt

+
1
N

N∑

j=1

J(hi, hj)
(
Xi,N

t − Xj,N
t−τ(hi,hj)

)
dt + σdW i

t

dY i,N
t = ε(hi)

[
a(hi) + b(hi)X

i,N
t − γ(hi)Y

i,N
t

]
dt.

(4.9)

Delay makes a bit more painful the well posedness analysis for both the model
and its macroscopic limit, but for propagation of chaos the same proof carries
through (see [48] for details), giving the following macroscopic limit

dXt(h) =
(

Xt(h) − 1
3
X

3

t (h) + Y t(h)
)

dt

+
∫

J(h, h′)
(
Xt(h) − y

)
qt−τ(h,h′)(dy;h′)μ(dh′)dt + σdWt

dY t(h) = ε(h)(a(h) + b(h)Xt(h) − γ(h)Y t(h))dt,

(4.10)

where qt(dx;h) denotes the law of Xt(h). Not much is known at this level of
generality, so we consider the simplest, homogeneous case in which h is constant,
γ = 0, b = −1 which gives

dXt =
[
Xt − 1

3
X

3

t + Y t + J(Xt − E(Xt−τ ))
]

dt + σdWt

dY t = ε(a − Xt)dt

(4.11)

A further simplification consists in letting the noise go to zero, in both the
diffusion and the initial condition. We obtain the deterministic system with
delay

ẋt = xt − 1
3
x3

t + yt + J(xt − xt−τ )

ẏ = ε(a − xt).
(4.12)

This system has been extensively studied in [32]. Here we assume J ≥ 0

– The point (a,−a + a3/3) is still the unique fixed point, and it is stable for
|a| >

√
1 + 2J and unstable for |a| < 1, no matter what τ is.

– For 1 < |a| <
√

1 + 2J loss of stability via a Hopf bifurcation can be obtained
by increasing τ : interaction and transmission delay may produce oscillations
even if single neurons are in the stability region.

Does noise play any role in exciting the neuronal network?


