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The search for truth should be the goal of our
activities; it is the sole end worthy of them.

—Henri Poincaré



Preface

This volume contains essays that were mostly presented in the joint international
workshop entitled “Econophys-2017” and “APEC-2017,” held at the Jawaharlal
Nehru University and University of Delhi, New Delhi, during November 15–18,
2017. For the first time, the Econophys series and the Asia Pacific Econophysics
Conference (APEC) series merged together to have a great workshop, which was
organized jointly by the Jawaharlal Nehru University, University of Delhi, Saha
Institute of Nuclear Physics, and CentraleSupélec. We received great support and
encouragement from the steering committee of the APEC.

Economic and financial markets appear to be in a permanent state of flux.
Billions of agents interact with each other, giving rise to complex dynamics of
economic quantities at the micro- and macro-levels. With the availability of huge
data sets, researchers are able to address questions at a more granular level than
were possible earlier. Fundamental questions of aggregation of action and infor-
mation, coordination, complexity, and evolution of economic and financial net-
works have received significant importance in the current research agenda of the
Econophysics literature. In parallel, the Sociophysics literature has focused on
large-scale social data and their inter-relations. Empirical approach has become a
front-runner in finding short-lived patterns within the data. The essays appearing in
this volume include the contributions of distinguished experts and researchers and
their co-authors from varied communities—economists, sociologists, financial
analysts, mathematicians, physicists, statisticians, and others. A positive trend for
this interdisciplinary track is that more and more sociologists, economists, and
statisticians have started interacting with the physicists, mathematicians, and
computer scientists! Evidently, most have reported their recent works and reviews
on the analyses of economic and social behaviors. A few papers have been included
that were accepted for presentation but were not presented at the meeting since the
contributors could not attend due to unavoidable reasons. The contributions are
organized into three parts. The first part comprises papers on “Econophysics”. The
papers appearing in the second part include studies in “Sociophysics”. Finally, the
third part is Miscellaneous, containing a proposal for an Interdisciplinary research
center, and an “Epilogue”, which discusses the advent of “Big data” research.
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Chapter 1
Strategic Behaviour and Indicative Price
Diffusion in Paris Stock Exchange
Auctions

Damien Challet

Abstract We report statistical regularities of the opening and closing auctions
of French equities, focusing on the diffusive properties of the indicative auction
price. Two mechanisms are at play as the auction end time nears: the typical price
change magnitude decreases, favoring underdiffusion, while the rate of these events
increases, potentially leading to overdiffusion. A third mechanism, caused by the
strategic behavior of traders, is needed to produce nearly diffusive prices: waiting to
submit buy orders until sell orders have decreased the indicative price and vice-versa.

Introduction

Research in market micro-structure has focused on the dynamical properties of open
markets [5, 9]. However, main stock exchanges have been using auction phases when
they open and close for a long time.1 Auctions are known to have many advantages,
provided that there are enough participants: for example, auction prices are well-
defined, correspond to larger liquidity, and decrease price volatility (and bid-ask
spreads) shortly after the opening time and before closing time (see e.g. [8, 10, 11]).

Only a handful of papers are devoted to the dynamics of auction phases, i.e.,
periods duringwhichmarket participantsmay send limit ormarket orders specifically
for the auction. Reference [6] investigateswhen fast and slow traders send their orders
during the opening auction phase of the Paris Stock Exchange and find markedly
different behaviors: the slow brokers are active first, while high-frequency traders
are mostly active near the end of auctions. In the same vein, [3] shows how and when

1London Stock Exchange and XETRA (Germany) recently added a mid-day short auction
phase.

D. Challet (B)
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4 D. Challet

low-latency traders (identified as high-frequency traders) add or remove liquidity in
the pre-opening auction of the TokyoStockExchange.Accordingly, [12] finds typical
patterns of high-frequency algorithmic trading in the auctions of XTRA. Finally, [7]
analyzes anonymous data from US equities and compute the response functions of
the final auction price to the addition or cancellation of auction orders as a function
of the time remaining until the auction, which have strikingly different behaviors in
the opening and closing auction phases.

Auctions, Data and Notations

The opening auction phase of Paris Stock Exchange starts at 7:15 and ends at 9:00
while the closing auction phase is limited to the period 17:30 to 17:35. The auction
price maximises the matched volume.

From the Thomson Reuters Tick History, we extract auction phase data for the
2013-04-16 components of the CAC40 index. This database contains all the updates
to either the indicative match price or the indicative matched volume in the 2010-08-
02 to 2017-04-12 period, which amounts to 8,095,524 data points for the opening
auctions and 15,007,048 for the closing auctions. Note that the closing auction phase
has about twice as many updates despite being considerably shorter.

For each asset α, we denote the indicative price of auction x ∈ {open, close} of
day d at time t by π x

α,d(t), the time of auction x by t x and the auction price by
pxα,d . Dropping the index α since this paper focuses on a single asset at a time,
the i-th indicative price change occurs at physical time t xi,d and its log-return equals
δpxi,d = logπ x

d (t xi,d) − logπ x
d (t xi−1,d). It is useful to work in the time-to-auction (TTA

henceforth) time arrow: setting τ = t x − t , the log-return between the final auction
price and the current indicative is then Δpxd (τ ) = log pxd − logπ x

d (t).
Similarly, the indicative matched volume is written as Wx

d (t), while the final
volume is V x

d . Finally, when computing averages over days, since updates occur at
random times, we will use time coarsening by δτ seconds, i.e. compute quantity
averages over days within time slices of δτ seconds.

Figure 1.1 illustrates why auctions deserve attention: the relative importance of
the closing auction volume has more than doubled in the last 10 years. Note that the
relative opening auction volume of French equities is quite small (typically around
1%) and has stayed remarkably constant.

From Collisions in Event Time to Diffusion in Physical Time

It is useful to consider the price as the position of a uni-dimensional random walker
and assume that each price change is caused by a collision: if collision i shifts the
price p by δpi , after N collisions the mean square displacement equals
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Fig. 1.1 Opening and
closing fraction of the total
daily volume (median
computed over all the
tickers) since 2007, showing
the global increase of the
relative importance of the
closing auction, but not of
the opening auction. Medians
over assets of monthly
medians for single assets
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if the increments δpi are i.i.d, a straightforward consequence of the central limit
theorem. This corresponds to standard diffusion. In addition, if the collisions occur
at a constant rate ρ, then time is homogeneous and E(ti ) = iρ. As we shall see, none
of these assumptions is true during auctions, which makes them quite interesting
dynamical systems.

Event Rates

In the case of indicative auction prices, the event rate is not constant: the activity
usually increases just before the auction time. This finding is a generic feature of
auctions with fixed end time [4], and more generally of human procrastinating nature
when faced with a deadline, be it conference registration [1] or paying its fee [2].

Let us denote by Nx
d (t) = ∑

i, 0<t xi,d≤t 1 the number of price events (changes)
having occurred up to time t on day d for auction x. The activity pattern of day d can be
measured by the ratio between the number of events up to time t on day d and the total
number of events which happened that day, defined as νd(t) = Nx

d (t)/Nx
d (t x ). The

average and median ν(t) = M(νd)(t), where M stands for either average or median
over days, can be seen in Fig. 1.2. One similarly defines the fraction between the
indicative matched volume at time t and the auction volume ωd(t) = M(Wx

d (t)/V x
d ),

reported in the same figure.
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Fig. 1.2 Average activity patterns for opening and closing auctions (left and right plots, respec-
tively) for the most active asset (Total). Upper plots: scaled price change events ν at a function of
physical time t . Lower plots: scaled indicative volume fraction ω as a function of t. δτ = 30 s for
opening auctions and 5s for closing auctions

There are clear peaks of changes for both ν and ω at unimaginative physical
times such as 7:30, 8:30, etc., and at round minutes and multiples of 30 s during the
closing auction. This, of course, denotes a regular behavior of some investors. If each
peak is systematically caused by a single trader, there are reasons to think that this
regularity does inject information and that itwill be exploited bymoreflexible traders.
However, sending orders at the same time as other traders is a rational behavior as it
allows one to hide in the crowd, unless one’s orders are systematically of the same
imbalance sign as the aggregate volume at that time. Thus, from a game theoretical
point of view, the emergence of activity peaks is self-organized and stable. Nothing
constrains the number of peaks and their locations, which are hence instances of
emerging, self-organized conventions. The closing auction being much shorter than
the opening one, it is natural that the peaks should appear at round minutes, as this
somehow provides more obvious peak locations than the opening auction. When the
closing auction lasts for a much longer time, e.g. for US equities, there are much
fewer price activity peaks [7].
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The global pattern of price changes and total volume matched clearly differs
between both types of auctions. During opening auctions, the price change rate
increases much, starting from a low baseline. During closing auctions, the opposite
happens: price change activity is first large, slows down during the first 2–3 minutes
and then picks up again just before the cut-off time (17:34:45). The average relative
matched volumeω(t) behaves similarly as ν(t) during the opening auctions, probably
because prices changes aremostly caused by the arrival of newmatchable volume, not
cancellations. Indeed, half of the open auction events typically happen in the last 10
minutes formost assets, and half of the volume ismatched in the lastminutes. Closing
auctions display a different behavior: more than half of the volume is matched during
the first minute, and 80% during the first two minutes. For a few assets (TOTF.PA,
UNBP.PA, for ones), there is a peak of indicative matched volume up to 10% larger
than the auction volume about one minute before the end of the auction; the same
behavior is found in US equity markets [7].

Activity Acceleration

The acceleration pattern of price change rate follows some regularity. To characterize
it in a simpler way, it is useful to work in Time-To-Auction τ frame. Since the latter
reverts the time arrow, the activity decelerates as a function of τ . Let us denote the
average event rate ρx (τ ) so that the expected number of event in the period τ to
τ + δτ is nx (τ ) = E[Nx

d (τ + δτ) − Nx
d (τ )] = ρx (τ )δτ . Figure 1.3 shows nopen(τ )

of several assets, together with the smoothed version of nx , denoted by nx
smoothed =

Nx (τ )/τ : if nx ∝ τ−β , so does nx
smoothed but with much less noise, which helps

assessing the presence of a power-law visually. We shall drop the x superscript
when no confusion is possible.

Fig. 1.3 Average number of
price changes as a function
of the time to auction τ , in
seconds, for the opening
auction. Dashed lines refer to
nsmoothed. Time coarsing
factor δτ = 60s
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100 1000
τ
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Assuming that n(τ ) ∝ τ−β , we perform a robust linear fit of log n(τ ) = cst − βτ

for τ ∈ [100, 300] seconds and only keep the fits whose t-statistics associated with
β is larger than 5. This particular choice of interval for τ corresponds to a typical
period during which the autocorrelation of δpi at one lag is roughly constant (see
section “Diffusive Properties of Indicative Prices”). In addition, for each asset, we
only keep days during which there were at least 50 price changes.

If the typical absolute value of price change σ does not depend on τ and is still
i.i.d., Eq. (1.1) becomes

E

([ N∑
i=1

δpi

]2)
=

∑
i : ti<=τ

E(δpi )
2 ∝ στ 1−β (1.2)

hence the Hurst exponent in τ time, denoted by h, equals (1 − β)/2: the price change
rate influences the diffusive pattern in a simple way, given the above approximations.
It is worth noting at this juncture that in the normal time frame the price is overdif-
fusive if σ does not depend on τ and if β > 0, i.e., if the rate of price changes
increases near the auction end time and the Hurst exponent in the normal time arrow
is H = (1 + β)/2.

Typical Price Change

When the indicative price changes, it jumps to the next non-empty tick of the auction
order book. Thus, the typical indicative price change reflects the density of the latter,
which increases as the auction time nears. As a consequence, the typical price change
magnitude σ is not constant but decreases near the auction end time, or equivalently
increases as a function of τ . Once again, for opening auctions, we find an approximate
power-law relationship σ(τ) ∝ τα (see Fig. 1.4). We apply the same method as for
n(τ ) to estimate α: we only keep days during which there were at least 50 price
changes for a given asset; robust fits of log δp(τ ) = cst + ατ for τ ∈ [100, 300] are
carried out. Only fits whose t-statistics associated with α are larger than 5 are kept.

Diffusive Properties of Indicative Prices

It is easy to see why the increase of activity and decrease of the typical magnitude
of price changes have antagonistic and purely mechanistic effects on the diffusive
properties of the indicative auction price in the simplest case: neglecting the auto-
correlations and cross-correlations of both n(τ ) and δpi , Eq. (1.2) becomes indeed
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Fig. 1.4 Average scale of the log price increment as a function of the time to auction τ, in seconds,
for the opening auction. Dashed lines refer to the smoothed quantity

E
(
Δp2

)
(τ ) �

∑
τ ′<=τ

E(n(τ ′)δp2(τ ′)) ∝ τ h0 (1.3)

�
∑

τ ′<=τ

E(n(τ ′))E(δp2(τ ′)) ∝ τ 1+α−β = τ h(αβ)

0 , (1.4)

The first approximation assumes that all δpi within a time slice are i.i.d, while the
second one assumes no correlation between n and δp2. The relative merits of both
approximations can be assessed in Fig. 1.5. The first approximation corresponds to
the continuous black line and the second one to the black dots. Both curves are close
together; however neglecting the dependence between n and |δp| underestimates the
typicalmagnitude ofΔp. The samefiguremakes it clear that something iswrong even
in the first approximation, as

∑
τ ′<=τ E(n(τ ′)δp2(τ ′)) is about 10 times larger than

E(Δp2). This discrepancy is mainly due to the bouncing behavior of π for large τ : a
large δpi is typically followed by large δpi+1 of opposite sign, which inflates E(δp2)
and does not correspond to significant price change as the latter reverts immediately
to a value close to that before event i . This is why trimmed means, which removes a
given fraction of the largest δpi for each time slice and each day, decrease much this
discrepancy. The latter is also due in part to a simple strategic behavior: during the
auction phase, negative indicative price change triggers the sending of buy orders
and vice-versa, causing an intrinsically smaller than expected Δp(τ )2 (see below for
a more detailed discussion) (Fig. 1.6).

Let us now compare the TTA Hurst exponents of the above quantities, plotted
in Fig. 1.7 for the 6 stocks whose fits of both α and β are deemed significant. Two
features stand out. First, h0 overestimates h, evenwhen accounting for the fairly large
error bars. This implies that the dynamics caused by the interplay between typical
price change shrinking and the acceleration of the activity is more subtle than the
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Fig. 1.5 Average square difference between the auction price and the indicative price τ

seconds before the opening auction. Continuous red lines (bottom of the figure) refer to
E(Δp2)(τ ), The upper black continuous line is

∑
τ ′<=τ [n(τ ′)δp2(τ ′)], and the black dots are∑

τ ′<=τ E[n(τ ′)]E[δp2(τ ′)]. Left plot: plain averages over all values of δpi ; right plot: trimmed
means where the 20% largest (in absolute value) δpi for each day and each time slice of δτ = 30 s
have been removed in the computation of the averages of quantities based on δpi

Fig. 1.6 Autocorrelation
between two consecutive
price changes within time
slices of δτ = 60 s, averaged
over all days for TOTF.PA
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simple approximation above. In fact, interestingly, hαβ

0 also overestimates the Hurst
h0 exponent: this emphasizes the fact that the δpi are not i.i.d.

Indeed, in practice, even linear autocorrelation of both ρ(τ) and δpi and the cross-
correlationbetween themare not negligible. Let us focus on the autocorrelationof δpi ,
denoted by Cδp(δi). For each time slice [τ, τ + δτ [, we average Cδp,d(1) over all the
days for a given asset. Figure 1.6 plots this quantity versus τ for TOTF.PA, the most
active asset in our dataset. Generally, Cδp(1) < 0; even more, it becomes more and
more negative near the auction time, i.e., for small τ . Since the price changes become



1 Strategic Behaviour and Indicative Price Diffusion … 11

Fig. 1.7 Hurst exponents h0
and h(αβ)

0 versus the actual
Hurst exponent for the 6
assets of the CAC40 that
yield good power-law fits of
both σ 2 ∝ τα and n ∝ τ−β ;
open auction, δτ = 60[s];
Time-To-Auction arrow.
Error bars correspond to one
standard deviation. When no
error bar is visible, the error
is at most as large as the
symbol
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relatively smaller in that limit, this reflects a purposeful bounce of the indicative
auction price between two close price ticks; the large negative autocorrelation points
to strategic behavior, by which traders try to decrease the immediate impact of their
auction orders by submitting their orders after other orders of the opposite sign (hence
to hide their actions); in fact, the autocorrelation of the sign of δp, Csign δp(1) is even
smaller than Cδp(1) for small τ. For large τ, this auto-correlation also tends to have
very small values, which is reinforced by the fact that an outstandingly large δpi is
often followed by a similarly large δpi+1 of opposite sign. Thus strategic behavior is
more common for small τ.

When Cδp(1) does not depend on τ, it only modifies the prefactor of τ in Eq. (1.3)

by a factor of the order 1+Cδp(1)
1−Cδp(1)

, not the Hurst exponent, and thus explains in part

the discrepancy between E(Δp2)(τ ) and
∑N

τ ′=1 E[n(τ ′)δp(τ ′)2]. The dependence
of Cδp(1) < 0 on τ modifies the apparent Hurst exponent in a nontrivial way. This
is why we measured h for τ ∈ [100, 300], i.e., in a region where Cδp(1) < 0 is the
most constant.

Discussion

Indicative auction prices display non-trivial properties due in part to the antagonistic
effects of both the acceleration of activity and the reduction of the typical price change
magnitude. However, the indicative price is much less over-diffusive than what these
two effects alone imply. In other words, the deviation from purely mechanistic effect
points to a more subtle dynamics. This makes sense, as the traders have a clear
incentive to minimize their easily detectable impact. Their strategic behavior results
in often alternatively positive and negative indicative price changes, i.e., in a clearly



12 D. Challet

anti-correlated price changes. Quite tellingly, this negative auto-correlation is more
and more pronounced as the auction end nears.

So far, we have used a basic data type, which nevertheless has a rich behavior.
More detailed data, such as data from the auction book, will allow us to characterize
order strategic placement, the evolution of the average auction book density and the
price impact of new orders and order cancellations much before the auction time, in
the spirit of the response function of [7], but accounting for both the volume of new
auction orders and their immediate impact on the auction order book.
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Chapter 2
Complex Market Dynamics in the Light
of Random Matrix Theory

Hirdesh K. Pharasi, Kiran Sharma, Anirban Chakraborti
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Abstract We present a brief overview of random matrix theory (RMT) with the
objectives of highlighting the computational results and applications in financial
markets as complex systems. An oft-encountered problem in computational finance
is the choice of an appropriate epoch overwhich the empirical cross-correlation return
matrix is computed. A long epoch would smoothen the fluctuations in the return time
series and suffers from non-stationarity, whereas a short epoch results in noisy fluc-
tuations in the return time series and the correlation matrices turn out to be highly
singular. An effective method to tackle this issue is the use of the power mapping,
where a non-linear distortion is applied to a short epoch correlationmatrix. The value
of distortion parameter controls the noise-suppression. The distortion also removes
the degeneracy of zero eigenvalues. Depending on the correlation structures, interest-
ing properties of the eigenvalue spectra are found. We simulate different correlated
Wishart matrices to compare the results with empirical return matrices computed
using the S&P 500 (USA) market data for the period 1985–2016. We also briefly
review two recent applications of RMT in financial stock markets: (i) Identification
of “market states” and long-term precursor to a critical state; (ii) Characterization of
catastrophic instabilities (market crashes).
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Introduction

With the advent of the “Big Data” era [9, 13], large data sets have become ubiquitous
in numerous fields—image analysis, genomics, epidemiology, engineering, social
media, finance, etc., forwhichwe need new statistical and analyticalmethods [3, 5, 6,
15, 29]. Empirical correlationmatrices are of primal importance in big data analyses,
since various statisticalmethods strongly rely on the validity of suchmatrices in order
to isolate meaningful information contained in the “observational” signals or time
series [2]. Often the time series are of finite lengths, which can lead to spurious
correlations and make it difficult to extract the signal from noise [11, 26]. Hence,
it is very important to understand quantitative effects of finite-size time series in
determination of empirical correlations [8, 11, 26, 33].

Random matrix theory (RMT) tries to describe statistics of eigenvalues of ran-
dom matrices, often in the limit of large dimensions. The subject came up first in
a celebrated paper of Wishart [39] in 1929 where he proposed that the correlation
matrix of white noise time series was an adequate prior for correlation matrices.
E. Cartan proposed the classical random matrix ensembles in an important but little
known paper [4]. After that there was increasing interest in the subject among which
it is important to mention work by L.G. Hua, who published the first monographs on
the subject in 1952; an English translation is available [12].

Wigner introduced RMT to physics, based on the assumption that the interactions
between the nuclear constituents were so complex that they could be modeled as
random fluctuations in the framework of his R-matrix scattering theory [36]. This
culminated in the presentation of the Hamiltonian Ĥ as a large random matrix,
such that the energy levels of the nuclear system could be approximated by the
eigenvalues of this matrix, and indeed the spacings between the energy levels of
nuclei could be modeled by the spacing of eigenvalues of the matrix [37, 38]. The
use of RMT has spread over many fields from molecular physics [14] to quantum
chromodynamics [28]. Lately, RMT has become a popular tool for investigating the
dynamics of financial markets using cross-correlations of empirical return time series
[25, 30].

In this chapter, we present recent techniques of random matrix theory (RMT)
mainly focused on computational results and applications of correlations in financial
markets viewed as complex systems [1, 10, 30, 31]. A central problem that often
arises in computational finance is the choice of the epoch size over which the empir-
ical cross-correlation return matrix needs to be computed. A very long epoch would
smoothen thefluctuations in return time series and also the time series suffers from the
problem of non-stationarity [19], whereas a short-time epoch would result in noisy
fluctuations in return time series and the correlation matrix turns out to be highly sin-
gular (with many zero eigenvalues) [8]. Among others, an effective method to tackle
this issue has been the use of the power mapping [8, 11, 26, 33], where a non-linear
distortion is applied to a short epoch correlation matrix. Here, we demonstrate how
the value of distortion parameter controls the noise-suppression. It also removes the
degeneracy of the zero eigenvalues (which for very small values of the distortion
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parameter leads to a well separated “emerging spectum” near zero). Depending on
the correlation structures, interesting properties of the eigenvalue spectra are found.
Correlation matrices constructed from white noise were introduced by Wishart and
their eigenvalue spectrum gets a shape of Marc̆enko-Pastur distribution [16]; there
are significant deviations when a correlation structure is introduced [7]. We simulate
different correlated Wishart matrices [18, 39] to compare the results with empir-
ical return matrices computed using S&P 500 (USA) market data for the period
1985–2016 [8]. We also briefly review two recent applications of RMT in finan-
cial stock markets: (i) Identification of “market states” and long-term precursor to a
critical state [23]; (ii) Characterization of catastrophic instabilities (market crashes)
[8].

This chapter is described as follows. Section “Data Description,Methodology and
Results” discusses the data description, methodology and results in details. Section
“Recent Applications of RMT in Financial Markets” contains applications of RMT
in financial markets. Finally, section “Concluding Remarks” contains concluding
remarks.

Data Description, Methodology and Results

Data Description

We have used the database of Yahoo finance [40], for the time series of adjusted
closure prices for S&P 500 (USA) market, for the period 02/01/1985–30/12/2016
(T = 8068 days); number of stocks N = 194, where we have included the stocks
that are present in the index for the entire duration. The sectoral abbreviations are
given in Table 2.1.

Methodology and Results

Correlations between different financial assets play fundamental roles in the analyses
of portfolio management, risk management, investment strategies, etc. However, one
only has finite time series of the assets prices; hence, one cannot calculate the exact

Table 2.1 Abbreviations of ten different sectors for S&P 500 index

Labels Sectors Labels Sectors

CD Consumer discretionary ID Industrials

CS Consumer staples IT Information technology

HC Health care MT Materials

EG Energy TC Technology

FN Financials UT Utilities



16 H. K. Pharasi et al.

correlation among assets, but only an approximation. The quality of the estimation
of the true cross-correlation matrix strongly depends on the ratio between the length
of the financial price time series T and the number of assets N . The larger the ratio
Q = T/N, the better the estimation is; though for practical limitations, the ratio
can be even smaller than unity. However, such correlation matrices are often too
noisy, and thus need to be filtered from noise. To build the correlation matrices, we
first calculate the return ri from the daily price Pi of stocks i = 1, . . . , N , at time t
(trading day):

ri (t) = ln Pi (t) − ln Pi (t − 1), (2.1)

where Pi (t) denotes the price of stock i at time t. Since different stocks have varying
levels of volatility, we define the equal-time Pearson cross-correlation coefficient as

Ci j (τ ) = 〈rir j 〉 − 〈ri 〉〈r j 〉
σiσ j

, (2.2)

where 〈. . . 〉 denotes the time average and σk denotes the standard deviation of the
return time series rk , k = 1, . . . , N , computed over an epoch of M trading days end-
ing on day τ . The elements Ci j are restricted to the domain −1 ≤ Ci j ≤ 1, where
Ci j = 1 corresponds to perfect correlations, Ci j = −1 to perfect anti-correlations,
and Ci j = 0 to uncorrelated pairs of stocks. The difficulties in analyzing the sig-
nificance and meaning of the empirical cross-correlation coefficients Ci j are due to
several reasons, which include the following:

1. Market conditions change with time and the cross-correlations that exist between
any pair of stocks may not be stationary if an epoch chosen is too long.

2. Too short epoch, for estimation of cross-correlations, introduces “noise”, i.e.,
fluctuations.

For these reasons, the empirical cross-correlation matrix C(τ ) often contains “ran-
dom” contributions plus a part that is not a result of randomness [22, 24]. Hence, the
eigenvalue statistics of C(τ ) are often compared against those of a large random cor-
relation matrix—a correlation matrix constructed from mutually uncorrelated time
series (white noise) known as Wishart matrix.

We first reproduce the basic results of RMT, e.g., the Marc̆enko-Pastur distribu-
tion, orMarc̆enko-Pastur law,whichdescribes the asymptotic behavior of eigenvalues
of square random matrices [16]. Then, we present a study of time evolution of the
empirical cross-correlation structures of return matrices for N stocks and the eigen-
values spectra over different time epochs, and try to extract some new properties or
information about the financial market [8, 23].

Wishart and Correlated Wishart Ensembles

Let us construct a large random matrix B arising from N random time series each
of length T , where the entries of a time series are real independent random variables
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drawn from a standard Gaussian distribution with zero mean and variance σ 2, such
that the resulting matrix B is N × T. Then the Wishart matrix can be constructed as

W = 1

T
BB′. (2.3)

In RMT, the ensemble of Wishart matrices is known as the Wishart orthogonal
ensemble. In the context of a time series, W may be interpreted as the covariance
matrix, calculated over N stochastic time series, eachwith T statistically independent
variables. This implies that on average, W does not have cross-correlations.

A correlated Wishart matrix can be constructed as

W = 1

T
GG′, (2.4)

where G = ζ 1/2B, is a N × T matrix; G′ is the T × N transpose matrix of G, and
the N × N positive definite symmetric matrix ζ controls the actual correlations. If
ζ is a diagonal matrix with the diagonal entries as unity and off-diagonal entries as
zero (i.e., ζ = 1, the identity matrix), then the resulting matrix W reduces to one
of the former Wishart orthogonal ensemble. If the diagonal entries of ζ are unity
and off-diagonal elements are non-zero and real, then the resulting matrices form
the correlated Wishart orthogonal ensemble. For simplicity, in this chapter, we have
generated and used ζ for which all the off-diagonal elements are same (equal to a
constant U , which lies between zero and unity).

The spectrum of eigenvalues for the Wishart orthogonal ensemble can be calcu-
lated analytically. For the limit N → ∞ and T → ∞, with Q = T/N fixed (and
bigger than unity), the probability density function of the eigenvalues is given by the
Marc̆enko-Pastur distribution:

ρ̄(λ) = Q

2πσ 2

√
(λmax − λ)(λ − λmin)

λ
, (2.5)

whereσ 2 is the variance of the elements ofG, whileλmin andλmax satisfy the relation:

λmax
min = σ 2

(
1 ± 1√

Q

)2

. (2.6)

For Q ≤ 1, positive semi-definite matrices W , the density ρ̄(λ) in the above
Eq. 2.5 is normalized to Q and not to unity. Therefore, taking into account the
(N − T ) zeros, we have

ρ̄(λ) = Q

2πσ 2

√
(λmax − λ)(λ − λmin)

λ
+ (1 − Q)δ(λ). (2.7)

First, we have generated a Wishart matrix W (with ζ = 1) of size N × N con-
structed from N time series of real independent Gaussian variables, each of finite
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length T , zero mean and unit variance (σ 2 = 1). Figure 2.1 shows the effect of
finite sizes of the sets of parameters N and T on the probability distributions of
the elements Wi j of the Wishart ensemble and the corresponding eigenvalue spec-
tra. Figure 2.1a shows the probability distribution of the elements of the Wishart
matrix of dimensions, where N = 1024 and T = 10240. Figure 2.1d shows the cor-
responding density of eigenvalues ρ̄(λ), which takes the shape of the theoretical
Marc̆enko-Pastur distribution (red dashed line) [16]. Similarly, Fig. 2.1b, c show
the respective probability distributions of the elements of Wishart matrices gener-
ated using the sets of parameters N = 10240 and T = 102400, and N = 30720
and T = 307200. We can see that with increase in system size (both N and T )
the shape of the distribution becomes narrower, implying that the amount of spu-
rious cross-correlations decreases. Ideally, the distribution should be a Dirac-delta
at zero, since true cross-correlations do not exist. The eigenvalue spectra are less
sensitive to the parameters N and T , as can be seen in Fig. 2.1e, f, which show
the corresponding eigenvalue spectra. For all of the above simulations, we find
the simulated data agree closely with the theoretical Marc̆enko-Pastur distributions
(red dashed lines) with λmax = 1.732 and λmin = 0.468 (theoretically calculated
using Eq. 2.6, and Q = 10).

As we have mentioned earlier, the assumption of stationarity fails for a very long
return time series, so it is often useful to break one long time series of length T into n
shorter epochs, each of size M (such that T/M = n). The assumption of stationarity
then improves for each of the shorter epochs. However, if there are N return time
series, such that N >> M , then the corresponding cross-correlation matrices are
highly singular with N − M + 1 zero eigenvalues, which lead to poor eigenvalue
statistics. We use the power map technique [11, 34] to break the degeneracy of
eigenvalues at zero. In this method, a non-linear distortion is given to each element
(Wi j ) of the Wishart matrix W (or later in each correlation coefficient Ci j of the
empirical cross-correlation matrix C) of short epoch by:

Wi j → (sign Wi j )|Wi j |1+ε, (2.8)

where ε is a noise-suppression parameter. For very small distortions, e.g., ε = 0.001
(as used here), we get an “emerging spectrum” of eigenvalues, arising from the
degenerated eigenvalues at zero which is well separated from the original spectrum.
The power mapping method suppresses noise present in the correlation structure of
short-time series (see e.g., Refs. [8, 17, 21, 23, 32] for recent studies and applica-
tions). Later in this chapter, we study different aspects of the power mapping method
by varying the value of distortion ε from 0 to 0.8.

In Fig. 2.2, we have studied the effect of non-linear distortion on the behavior of
Wishart ensemble (U = 0), where N >> M . The top row of Fig. 2.2 shows semi-
log plots of the ensembles with parameters: (a) N = 1024 and M = 512, and (b)
N = 1024 and M = 64. Then small non-linear distortions with ε = 0.001 are given
to the ensembles to display the emerging spectra, shown in Fig. 2.2c, d. Interestingly,
the shape of the emerging spectrum changes from a semi-circle to a strongly distorted
one, as M becomes shorter. Also, note that emerging spectrum shifts towards the left


