Sungdeok Cha - Richard N. Taylor
Kyochul Kang Editors

| Handbook of
Software
Engineering

Handbook of Software Engineering

Sungdeok Cha ¢ Richard N. Taylor * Kyochul Kang
Editors

Handbook of
Software Engineering

@ Springer

Editors

Sungdeok Cha Richard N. Taylor
College of Informatics University of California, Irvine
Korea University CA, USA

Seoul, Korea (Republic of)

Kyochul Kang

Professor Emeritus
POSTECH

Pohang, Korea (Republic of)

ISBN 978-3-030-00261-9 ISBN 978-3-030-00262-6 (eBook)
https://doi.org/10.1007/978-3-030-00262-6

Library of Congress Control Number: 2018960866

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-00262-6

Preface

2019—the year of this handbook’s publication—marks the 50th anniversary of the
traditional birth of the discipline of software engineering. Now with substantial
maturity, software engineering has evolved from narrow concerns in “coding” to
cover a broad spectrum of core areas, while mingling at the edges with the disci-
plines of human—computer interaction, programming language design, networking,
theory, and more. This volume provides a concise and authoritative survey of the
state of the art in software engineering, delineating its key aspects and serving as a
guide for practitioners and researchers alike.

This handbook is unique among other handbooks (e.g., the Software Engineering
Body of Knowledge or SWEBOK) in several aspects.

First, each chapter provides an organized tour of a critical subject in software
engineering. The central concepts and terminology of each subject are laid out and
their development is traced from the seminal works in the field. Critical readings
for those seeking deeper understanding are highlighted. Relationships between
key concepts are discussed and the current state of the art made plain. These
presentations are structured to meet the needs of those new to the topic as well
as to the expert.

Second, each chapter includes an in-depth discussion of some of the field’s most
important and challenging research issues. Chosen by the respective subject matter
experts, these topics are critical emphases, open problems whose solutions may
require work over the next 10-15 years.

Articles in the handbook are appropriate to serve as readings for graduate-
level classes on software engineering. Just as well, chapters that describe some of
the most fundamental aspects of software development (e.g., software processes,
requirements engineering, software architecture and design, software testing) could
be selectively used in undergraduate software engineering classes.

A distinguishing characteristic of this volume is that in addition to ‘“classical”
software engineering topics, emerging and interdisciplinary topics in software engi-
neering are included. Examples include coordination technologies, self-adaptive
systems, security and software engineering, and software engineering in the cloud.

vi Preface

Software engineering practitioners in the field can thus get a quick but in-depth
introduction to some of the most important topics in software engineering, as well
as topics of emerging importance. Selective references at the end of each chapter
guide readers to papers to obtain more detailed coverage on specific concepts and
techniques.

No handbook can be considered complete nor will it remain relevant indefinitely
due to rapid advances in software engineering technologies. Some topics are omitted
here because, while having deep roots in software engineering, due to their maturity
they are no longer broadly active research areas. Configuration management is an
example. Some topics are, unfortunately, left out because of practical constraints.
The editors believe that this handbook will best serve the community of software
engineering researchers and practitioners alike if it is updated regularly.

Enjoy reading the 2019 state-of-the-art survey in software engineering presented
by respected authorities in each of the subject areas. Needless to say, contributors to
various chapters deserve the most credit for their generosity to share their expertise
with the community and donate their precious time.

Seoul, Korea Sungdeok Cha
Irvine, CA, USA Richard N. Taylor
Pohang, Korea Kyochul Kang

Acknowledgment

The editors of this handbook would like to thank the authors who spent many
hours of their highly demanding schedule in writing the manuscripts. Without their
enthusiastic support, this book would not exist. The Springer publication team,
especially Ralf Gerstner, deserves a special note of appreciation for support and
patience during the period when progress on this handbook project slowed.

Several people helped the editors as anonymous reviewers of various chapters,
and we acknowledge their contribution. Special thanks are due, not in particular
order, to: Kenji Tei (National Institute of Informatics, Japan), Kyungmin Bae
(POSTECH, Korea), Moozoo Kim (KAIST, Korea), and Jaejoon Lee (Lancaster
University, UK).

Finally, the editors would like to express personal acknowledgment for the
support they received while working on this book project.

Sungdeok (Steve) Cha thanks his wife, Christine Yoondeok Cha, for her endless
love and support in prayer. This book is my gift to you, Yoondeok. Richard Taylor
thanks his wife, Lily May Taylor, for her continuing support, in this year of our
40th wedding anniversary. Kyochul Kang thanks the late Prof. Daniel Teichroew
for leading him into software engineering research. Also, sincere gratitude goes to
his wife Soonok Park for her loving care and support whenever he challenged for a
new career.

vii

Contents

Process and Workflow 1
Leon J. Osterweil, Volker Gruhn, and Nils Schwenzfeier

1 Background, Goals, and Motivationoovuieiiiiiiiiieenninnn. 1
2 History and Seminal Work......... ... 5
3 Some Definitions, Unifying Assumptions, and Characterizations 9
4 Conceptual Framework ..ol 11
5 Specific Processes, Frameworks, and Architectures......................... 23
6 Future DIreCtionsoovuuetiiet et 35
T CONCIUSIONS ...ttt e 46
RETEIONCES ... eeetei e 47
Requirements Engineering............... ..., 51
Amel Bennaceur, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh

1 INtrodUCHON .. oottt 51
2 Concepts and PrinCiples.........ooviuiiiiiiiiiiiii e 53
3 Organised Tour: Genealogy and Seminal Worksoo.. 59
4 Future Challengesooouuuiiieiiii e 83
5 CONCIUSION ..ttt ettt e 86
RETEICNCES ...ttt 86
Software Architecture and Design ... 93
Richard N. Taylor

1 INtrOAUCTION 93
2 An Organized Tour: Genealogy and Seminal Papers 95
3 Concepts and Principles: Summarizing the Key Points 108
4 Future DIteCtionsS «.ooeeeeee e e 117
S CONCIUSIONSt 119
References ..ooovveeiiii 120
Software Testing 123
Gordon Fraser and José Miguel Rojas

1 INtrOAUCTION .. . e 124
2 Concepts and Principles...........ooooiiiiiiiiiiii 125

X Contents

3 Organized Tour: Genealogy and Seminal Worksoooeeee. 130
4 Future Challengesooouuuuiieiiii s 178
R) T L T 16 s TRt 184
R CIENCES .ttt e 185
Formal Methods......... ... i 193
Doron A. Peled

1 IntrodUCtionooiiiii i et 193
2 Historical Perspectivecoeeiiniiiii it 195
3 Grand Tour of Formal Methods.............coooiiiiiiiiiiiiii i 199
4 Future Challengesooouuuiieeiiii e 217
R CTENCES oot 219
Software Evolution................ i 223
Miryung Kim, Na Meng, and Tianyi Zhang

1 IntrodUCtionooiuiii e ettt 223
2 Concepts and PrinCiples.........oovieiiiiiiiiiiiii i 225
3 An Organized Tour of Seminal Papers: Applying Changes................. 227
4 An Organized Tour of Seminal Papers: Inspecting Changes 247
5 An Organized Tour of Seminal Papers: Change Validation 262
6 Future Directions and Open Problemscccooiiiiiiiiiii... 268
R CTENCES .ttt 273
Empirical Software Engineering 285
Yann-Gaél Guéhéneuc and Foutse Khomh

1 IntrodUCHONot e e e e 286
2 Concepts and PrincCiples. 287
3 Genealogy and Seminal Papers ... 294
4 Challengesoonnnieei it 303
5 Future DIr€Ctionsuueiitiet ittt e 312
(I ©0 1 o3 11 3 () s B S 316
ReferenCes ..o 316
Software Reuse and Product Line Engineering............................... 321
Eduardo Santana de Almeida

1 IntrodUCHiONot e s 321
2 Concepts and Principles...........oooiiiiiiiiiii 322
3 Organized Tour: Genealogy and Seminal Papers 329
4 Software Product Lines (SPL): An Effective Reuse Approach 341
I 601 Ted 11 13 () s B 345
ReferencCes ..o e 346
Key Software Engineering Paradigms and Modeling Methods............... 349
Tetsuo Tamai

1 IntrodUCHiONot e e e e 349
2 Organized Tour: Genealogy and Seminal Works 350

3 Future Challengesooiiiiii i 368

Contents xi

4 CONCIUSIONS .ottt ettt e et 371
RETEICNCES ... eeetei e 372
Coordination Technologiescooiiiiiiiiiiiiiiiiiiiiiiiiiiees 375
Anita Sarma

1 INtrodUCHON .. oottt 375
2 Organized Tour of Coordination Technologiesoooeee.. 377
3 The Coordination Pyramid...............ccoiiiiiiiiiiiiiiiii e, 378
4 Conclusion and Future Work ..., 391
RETEICNCES ...ttt 394
Software Engineering of Self-adaptive Systems 399
Danny Weyns

1 INtrodUCHON ..« ot 399
2 Concepts and PrinCiples.........ooviuiiiiiiiiiiii e 401
3 An Organised Tour in Six Wavesccooviiiiiiiiiiiiiiii e, 406
4 Future Challengesooiuuuiieeiiii e 432
5 CONCIUSIONS ettt et 439
RETEICNCES ...ttt 439
Security and Software EngineeringL 445
Sam Malek, Hamid Bagheri, Joshua Garcia, and Alireza Sadeghi

L 1o 6 LT 5 o) o U 446
2 Concepts and Principles...........oooiiiiiiiiiiiiii 447
3 Organized Tour: Genealogy and Seminal Works 453
4 Future Challengesoouuiiiiiiiiii e 480
oS 10 o] 18 5] 107 o 484
G £S5 S5 4 (7 485
Software Engineering in the Cloud ... 491
Eric M. Dashofy

L 1o 6 LT (o) o U 491
2 KeY CONCEPLS .. .eveeeeeee e et e et 493
3 The Software Economics of Clouds..........ccooveiiiiiiiiiinnieiiiiiinnnns 505
4 Software Development and Deployment in the Cloud 507
5 Seminal Papers and Genealogyccooiiiiiiiiiiiiiiiii i 509
S 1) Tod 18 55 10 o 512
G £S5 S5 4 (7 514

Editors and Contributors

About the Editors

Sungdeok Cha is a Professor at Korea University in Seoul, Korea and a former
professor at Korea Advanced Institute of Science and Technology (KAIST) in
Daejeon. Prior to joining KAIST, he was a member of technical staff at the
Aerospace Corporation and the Hughes Aircraft Company working on various
software engineering and computer security projects. His main research topics
include software safety, requirements engineering, and computer security. He is also
a member of editorial boards for several software engineering journals.

Richard N. Taylor is a Professor Emeritus of Information and Computer Sciences
at the University of California, Irvine, USA. His research interests are centered on
design and software architectures, especially focusing on decentralized systems. In
2017 he received the ACM SIGSOFT Impact Paper Award (with Roy Fielding). In
2009 he was recognized with the ACM SIGSOFT Outstanding Research Award,
in 2008 the ICSE Most Influential Paper award, and in 2005 the ACM SIGSOFT
Distinguished Service Award. In 1998 he was named an ACM Fellow for his
contributions to research in software engineering and software environments.

Kyochul Kang is an Executive Vice President at Samsung Electronics as well
as a Professor Emeritus at POSTECH in Korea. Prior to joining POSTECH, he
conducted software engineering research at Bell Communications Research, Bell
Labs, and SEI. His research career in software engineering began in the 1970s
as a member of the PSL/PSA team, which developed the first-ever requirements
modelling and analysis technology. He is well known for his FODA (Feature-
Oriented Domain Analysis) work at SEI and is an expert on software reuse and
product line engineering.

Xiii

Xiv Editors and Contributors
Contributors

Eduardo Santana de Almeida Federal University of Bahia, Salvador, Babhia,
Brazil

Hamid Bagheri University of Nebraska-Lincoln, Lincoln, NE, USA
Amel Bennaceur The Open University, Milton Keynes, UK

Eric M. Dashofy The Aerospace Corporation, El Segundo, CA, USA
Gordon Fraser University of Passau, Passau, Germany

Joshua Garcia University of California, Irvine, CA, USA

Volker Gruhn Lehrstuhl fiir Software Engineering, Universitidt Duisburg-Essen,
Essen, Germany

Yann-Gaél Guéhéneuc Polytechnque Montréal and Concordia University,
Montreal, QC, Canada

Foutse Khomh Polytechnque Montréal, Montreal, QC, Canada
Miryung Kim University of California, Los Angeles, CA, USA
Sam Malek University of California, Irvine, CA, USA

Na Meng Virginia Tech, Blacksburg, VA, USA

Bashar Nuseibeh The Open University, Milton Keynes, UK

Lero The Irish Software Research Centre, Limerick, Ireland

Leon J. Osterweil University of Massachusetts, Amherst, MA, USA
Doron A. Peled Bar Ilan University, Ramat Gan, Israel

José Miguel Rojas University of Leicester, Leicester, UK

Alireza Sadeghi University of California, Irvine, CA, USA

Anita Sarma Oregon State University, Corvallis, OR, USA

Nils Schwenzfeier Universitit Duisburg-Essen, Essen, Germany
Tetsuo Tamai The University of Tokyo, Tokyo, Japan

Richard N. Taylor University of California, Irvine, CA, USA
Thein Than Tun The Open University, Milton Keynes, UK

Danny Weyns Katholieke Universiteit Leuven, Leuven, Belgium

Linnaeus University, Vixjo, Sweden
Yijun Yu The Open University, Milton Keynes, UK
Tianyi Zhang University of California, Los Angeles, CA, USA

Process and Workflow m)

Check for
updates

Leon J. Osterweil, Volker Gruhn, and Nils Schwenzfeier

Abstract Processes govern every aspect of software development and every aspect
of application usage. Whether trivial, complex, formal, or ad hoc, processes are
pervasive in software engineering. This chapter summarizes a variety of ways
in which process models, also referred to as workflows, can be used to achieve
significant improvements in a range of different disciplines. The chapter starts with
a brief summary of the evolution of this approach over the past century. It then
identifies some principal ways in which important advantages can be obtained
from exploiting process models and process technology. The chapter goes on
to specify key criteria for evaluating process modeling approaches, suggesting
the different kinds of modeling approaches that seem particularly effective for
supporting different uses. A representative set of examples of current process
modeling approaches, and different ways in which process modeling is being used
to good advantage, is then described. These examples are then used to suggest some
key research challenges that need to be met in order for society to obtain a large
range of further advantages from the continued development of process and process
modeling technology.

1 Background, Goals, and Motivation

A nearly unique characteristic of humans is our ability to get things done by
planning, coordinating, adapting, and improving how to achieve our objectives.
It seems to be true that lions, wolves, and dolphins plan, coordinate, and execute
schemes for killing prey to satisfy their needs for food, and that beavers make
plans to build dams that raise water levels to expedite their access to trees needed

L. J. Osterweil
University of Massachusetts, Amherst, MA, USA
e-mail: ljo@cs.umass.edu

V. Gruhn - N. Schwenzfeier
Universitidt Duisburg-Essen, Essen, Germany
e-mail: gruhn@adesso-gmbh.de; Nils.Schwenzfeier @paluno.uni-due.de

© Springer Nature Switzerland AG 2019 1
S. Cha et al. (eds.), Handbook of Software Engineering,
https://doi.org/10.1007/978-3-030-00262-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00262-6_1&domain=pdf
mailto:ljo@cs.umass.edu
mailto:gruhn@adesso-gmbh.de
mailto:Nils.Schwenzfeier@paluno.uni-due.de
https://doi.org/10.1007/978-3-030-00262-6_1

2 L. J. Osterweil et al.

for food and shelter. But humans have carried things to a far higher level, using
planning, coordination, and improvement as the basis for getting done nearly
everything that we need or desire, ranging from the acquisition of food, to the
construction of shelter, to the creation of entertainment vehicles, and even the
creation of family and social units. Moreover, humans employ written media to
supplement sight and sound as vehicles for improving coordination and expediting
improvement. In this chapter, we refer to this systematic and orderly approach
to planning, coordination, and execution for the purpose of the improvement
and effectiveness of functioning as process. We note that the process approach has
been exploited by governmental units of all kinds, by medical practice on all scales,
by companies, large and small, (where the term workflow has been attached to this
approach), and by the software development industry (where the term software
process has been attached to this enterprise)—to enumerate just a few example
communities.

1.1 Goals and Benefits of Process

The rather vague words “improvement” and “effectiveness” have just been used to
characterize the goals of the diverse communities that have studied and exploited
process. But we can be much more specific about the precise goals for the use of
process to achieve improvement and effectiveness. We enumerate the most salient
of these goals as follows.

1.1.1 Communication

A primary motivation for creating processes has been to use specifications of them
as vehicles for improving communication among all process stakeholders (Indulska
et al. 2009). The stakeholders for a process may be numerous and varied, including,
for example, the current participants, proposed participants, parties intended to be
the recipients of the results of the process, as well as auditors, regulators, and an
interested public at large. The benefits to these stakeholders are also varied. Thus,
for example, process participants can use a process specification to make it clear
just what they are supposed to do when they are supposed to do it, and how they are
supposed to do it. Recipients may wish to see the process specification in order to
improve their confidence that they are being treated fairly and correctly. Regulators
may wish to see the process specification to be sure that it conforms to applicable
laws. It should be noted that different stakeholder groups will have different levels of
technical sophistication, and different amounts of patience with details, suggesting
that different kinds of process specifications are likely to be relatively more useful
and acceptable to different stakeholder groups.

Process and Workflow 3

1.1.2 Coordination

Process specifications are also particularly useful in helping the members of a
team to coordinate their efforts. Especially as the size of a team gets large, and
the complexity of its task grows, it becomes increasingly important for all team
members to understand what they are supposed to be doing, how their tasks relate
to the tasks performed by others, how they are to communicate with each other,
what can be done in parallel, and what must not be done in parallel. A good
process specification can make all of that clear, greatly increasing the effectiveness
of the team by reducing or avoiding duplication, delay, and error. As in the case
of the use of process specifications to support communication, using them for
coordination requires that the process specification be expressed in a form that
is readily comprehensible to all process participants. This becomes increasingly
difficult as the membership of a team becomes more diverse and distributed.

1.1.3 Training

Closely related to the previous two uses of process specifications for communication
and coordination is the use of process specifications for training. In this case it is
assumed that a process participant who is currently unfamiliar with, or insufficiently
facile with, a process is able to use the process specification to gain a desired or
needed level of understanding of how to participate effectively in the performance
of the process (Jaakkola et al. 1994). Often, initial familiarization with the process
is best communicated through a high-level, perhaps relatively informal, overall
process specification. But when a sure grasp of the details of a process is needed,
more precise, detailed, fine-grained process specifications are called for.

1.1.4 Understanding

Specifications of processes, especially particularly complex processes, can also be
useful in supporting deeper understandings of the nature of a process. While an
individual process participant may be able to readily understand his or her role in
a process, and how to communicate effectively with others, this is no guarantee
that any of the participants will have a deeper understanding of the overall nature
of the entire process. A clear specification of the whole process can be used by
participants to see the larger picture, and can be used by others, such as managers
and high-level executives, to get a clear sense of its characteristics, its strengths, and
its weaknesses. This, in a sense, is communication, but of a higher-level, more global
sort of communication. Thus, process specifications that are able to present a clear
high-level picture, while also supporting deep dives down into fine-grained details
when desired, are relatively more effective in supporting understanding. Then too,
since understanding is likely to be desired by both participants in, and observers

4 L. J. Osterweil et al.

of, the process, the form of the specification ideally ought to be something that is
broadly understandable.

1.1.5 Improvement

The logical extension of the need to understand a process is the need to identify
weaknesses and support process improvement through the remediation of identified
weaknesses. Thus, improvement rests first upon analyzability, namely, the ability
to examine a process specification sufficiently deeply and rigorously to support the
identification of flaws, vulnerabilities, and inefficiencies, and then upon the ability
to support making modifications to the process and verifying that the modifications
have indeed removed the flaws, vulnerabilities, and inefficiencies (while also not
injecting new ones). There are many dimensions in which process improvements
are desired. Most fundamental is improvement through the detection and removal
of defects that cause the process to fail to deliver correct results some of the time or,
indeed, all of the time. Improvements to the speed and efficiency of a process are
also frequent goals of process analysis and improvement. But increasingly there is
a great deal of interest in detecting and removing process characteristics that render
the process vulnerable to attacks, such as those that compromise organizational
security and personal privacy.

Analyses of process specification can range from informal human inspections
of informal process specifications all the way up through rigorous mathematical
reasoning and verification of process specifications that are expressed using a
rigorously defined formal notation. The former seems best supported by clear
visualizations of the process, while the latter seems best supported by the use of
rigorous mathematics to define both the process specification and specifications
of desired properties. As both kinds of analysis seem highly desirable, a process
specification that supports both clear visualization and rigorous mathematical
analysis is also highly desirable. Such specifications are rare, however.

1.1.6 Guidance and Control

Process specification can also be used to help guide and control the performance of
processes. In this way this use of process specifications differs fundamentally from
the previously described uses. The previously described uses are offline, entailing
only reading, analyzing, thinking about, and modifying a static descriptive entity.
Process guidance and control, on the other hand, entails the dynamic use of a
process specification to assume such roles as the coordination of the actions of
participants, the evaluation of their performance, and the smooth integration of
the contributions of both automated devices and humans. The greater the extent
to which a process specification is relied upon for guidance and control, the greater
must be the assurance that the specification is complete and correct. Thus, this use
of a process specification typically relies upon careful and exhaustive analysis and

Process and Workflow 5

improvement of the process specification. That, in turn, suggests that the process
specification be stated in a particularly rigorous form, and be complete down to the
lowest-level fine-grained details.

In this chapter, we will explore the approaches that have been taken in attempts
to reach these specific goals, and will conclude the chapter with an exploration of
where the attempts have fallen short and need to be improved and expanded. But
first, some history.

2 History and Seminal Work

Work in the area of software process treats completed software systems as products
that emerge as the result of the performance of a process. Work in the area of
workflow treats the effective performance of business and management activities
as the results of the performance of a workflow. In this way, software process and
workflow are the rather direct extensions of much earlier work on other kinds of
processes. It is hard to identify the earliest beginnings of this process approach, but
for specificity in this chapter, we mark that beginning with the work of Frederick
Taylor (1911). In this section of the chapter, we trace the development of process
activity from Taylor to the present day. Figure 1 provides a visual summary of that
history, which we will refer to throughout the rest of this chapter. The arrows in this
figure can be thought of as representing how concepts and products have resulted
from others. Specifically, when a concept or product is at the head of an arrow, it
signifies that it has come into existence or practice at least in part due to the influence

Software Conceptual

Taylor, Shewhart Workflow
Process Core

Demingy Juran |

|
1 Process Description 1
|

Design Waterfall Diagram etaprogramming * 1 ffice Automation
Methods Iterative Process)

Improvement |
Data

L Process
Mining NMining

WfmC

DoD 2167, 2167A Workflow Reference Model

Process

Spiral Mogde o
Specification

The CMM/CMMI Workflow Langtages BPM Conference Series

Pro

Agile Method

YAWL BPMN and BPEL

Adaptive
brocess AAlysis Case Management
Extreme

Programming

cess

meworks , 1
Architectures and Adaptation

Fig. 1 Diagrammatic representation of the development of process thought and technology

6 L. J. Osterweil et al.

of the concept or practice at the tail of the arrow. In some cases, double-headed
arrows are used to indicate where concepts or practices have coevolved through
strong and ongoing interactions. Note that the diagram is divided into three vertical
columns, representing parallel development. The middle column represents the
development of process core concepts, such as process definition, process analysis,
and process evolution. The outer columns represent the parallel development of
software process ideas and technologies (shown on the left) and workflow ideas and
technologies (shown on the right). The figure indicates how core concepts have both
emerged through consideration of practical technology development, and have also
been the inspirations and stimuli for further development of technologies. The figure
also indicates the almost complete lack of interactions between the workflow and
software process communities. More will be said about this unfortunate situation in
the rest of this chapter.

In the early twentieth century, Frederick Taylor looked at ways to understand
and improve industrial processes (Taylor 1911). His work focused on measuring
and improving productivity by scrutinizing the performance of both humans and
machines, looking at ways to improve each and to use process improvement
approaches to effect better coordination. Walter Shewhart (1931), W. Edwards
Deming (1982), and Joseph Juran (1951) all also sought to improve processes,
emphasizing how to use them to improve product quality, as well as process
efficiency. The scope of their work encompassed industrial, management, and office
processes, among others. Indeed this early work can be viewed as the forerunner of
much later work on office automation, workflow, and business process management.
Shewhart proposed the Shewhart Cycle, which is still referred to as a clear model
of continuous improvement. It posits that process improvement is a four-phase
process. The first phase of the process entails examination and analysis of the
process and its behavior with the aim of identifying shortcomings that are in need
of being remedied. The second phase entails the proposal of specific remedies for
the identified shortcomings. In the third phase, the proposed remedies are tried
and evaluated to determine whether they effect the desired improvements. Only if
the desired improvement has been demonstrated can the fourth phase be initiated.
The fourth phase entails the incorporation of the remedies into the current process,
resulting in a new process. This new process then becomes the subject of the first
phase of a new improvement cycle. Process improvement, thus, is expected to be an
ongoing process, continuing for the lifetime of the process. The Shewhart Cycle has
been reinvented with various minor modifications and renamings continuously over
the past 100 years.

With the work of Deming and Juran we see the beginnings of the use of notation
and crude formalisms to attempt to describe processes more clearly and precisely, in
order to improve the effectiveness of efforts to use them for better communication,
coordination, education, and improvement. As noted in Fig. 1, this work is one of
the earliest examples of the use of visual notation to represent processes. Deming
and Juran had a powerful influence on manufacturing through the first half of the
twentieth century. In particular, their argument that process improvement could
be used to improve product quality was eagerly taken up by manufacturers in
Japan during the mid-twentieth century. The marketplace success of such Japanese

Process and Workflow 7

products as cars, cameras, and electronics was widely attributed to the quality of
these products, which was in turn widely attributed, at least in large measure, to a
focus on process improvement. This focus on process improvement, consequently,
attracted the attention of American and other manufacturers, and led to a wider
appreciation of the ideas of Juan and Deming, and to a growing focus on the
importance of process. All of this has set some important directions that continue
through today.

The birth of the software industry in the mid-twentieth century came against this
backdrop of a strong focus on quality and the use of systematic process improvement
to achieve that quality. So, it is not hard to understand that there was an early
focus on processes aimed at assuring software development efficiency, and software
product quality. An early representative of this focus was the enunciation of the
Waterfall Model (Royce 1970, 1987) of software development, which as noted
in Fig. 1, used a visual notation to represent processes. In its earliest and most
primitive form, the Waterfall Model simply mandated that development must begin
with requirements specification, then proceed through design, then on to coding,
and finally to deployment and maintenance. It is worthwhile to note that this kind of
high-level process had previously been adopted by the US Department of Defense
as a guide to the creation of hardware systems. Thus, its enunciation as a model
for software development is not hard to understand. Almost immediately, however,
the manifest differences between hardware items and software systems occasioned
the need for a more careful examination of what a software process specification
should look like. As a result, successive modifications to the basic Waterfall Model
added in such modifications and embellishments as iterations of various kinds,
decomposition of the major phases into subphases, and identification of types of
artifact flows through the phases and subphases.

Much work on embellishing the Waterfall Model during the 1970s and 1980s
focused on systematizing and formalizing the software design process. Three
examples of this work are the SADT approach (Ross and Schoman 1977), proposed
by Douglas Ross; the JSP system (Jackson 1975), proposed by Michael Jackson; and
the Modular Decomposition method (Parnas 1972), proposed by David Parnas. Each
suggested canonical sequences of artifacts to be created, with the end result expected
to be superior designs. It is particularly interesting that the main focus of these
efforts was on the artifacts to be created, rather than on the activities to be carried
out. Each approach focused attention on the structure, semantics, and contents of
the intermediate and final artifacts to be created during design. In contrast to most
other early process specification work, there is correspondingly little attention paid
to the structure and detail of the sequence of activities to be performed, which are
addressed essentially as sparingly specified transformers of the input artifacts they
receive into the outputs that they create. It is noteworthy, in addition, that the SADT
and JSD methods incorporated pictorial diagrams of their artifacts.

Much of this embellishment and amplification was incorporated into a succession
of US Department of Defense standards, such as DoD Standard 2167 and 2167A
(DoD 2167, DoD 2167A). The totality of these embellishments resulted in docu-
ments with so much complexity and flexibility that they barely served as useful
guides to how software development should actually proceed.

8 L. J. Osterweil et al.

DeRemer and Kron (1976) made an important conceptual step forward with
their identification and articulation of “Metaprogramming,” which they described,
essentially, as the process by which software is produced. In their paper they suggest
that the process by which software is produced seems to be an entity whose nature
might be better understood by thinking of it as some kind of a program, and the
creation of this process as some kind of programming.

A sharp focus on the concept of a Software Process began in the 1980s.
One particularly powerful catalyst was the establishment of the Software Process
Workshop series, which was first held in 1984, organized by Prof. Meir (Manny)
Lehman of Imperial College London (ISPW 1). Interest in this area was intensified
by Prof. Leon Osterweil’s keynote talk at the 9th International Conference on
Software Engineering, which suggested that “Software Processes are Software Too”
(Osterweil 1987), elaborating on the suggestion made by DeRemer and Kron. As
indicated in Fig. 1, this idea of Process Programming drew upon basic notions
of a software development life cycle, and led to various conjectures about the
nature of languages that might be used, not simply to describe, but to define
software processes, a search for a canonical, “ideal” software process, and initial
investigations of how to analyze, improve, and evolve software processes.

Interestingly at about this same time, work began at Xerox Palo Alto Research
Center on Office Automation. Dr. Clarence Ellis and his colleagues began pondering
the possibility of creating a notation that could be used to specify organizational
paperwork processing sufficiently precisely that the work could be shared smoothly
and more efficiently among humans and machines (especially Xerox copiers!) (Ellis
and Nutt 1980; Ellis and Gibbs 1989; Ellis et al. 1991). That line of work continued
in parallel with similar work on Software Process through the 1980s and into the
1990s. Much of the work was organized and led by the Workflow Management
Coalition, which enunciated a canonical business process workflow architecture
(Hollingsworth 1995). In the 1990s, there was a brief and unsuccessful attempt
to integrate the Workflow and Software Process communities. Office Automation
was subsequently renamed Business Process Management, and has grown into a
large and powerful community with its own meeting and publication venues (BPM,
Conferences, Newsletters), almost completely separate from the Software Process
community’s meeting and publication venues (ISPW, ICSSP, JSEP). Unfortunately,
the Business Process and Software Process communities continue to have few
interactions, sharing very little in the way of work, ideas, and practitioners, despite
the fact that their problems, and even many of their approaches, are very much the
same.

The diagram shown in Fig. 1, summarizing much of the above history, will also
be referred to occasionally to establish context for many of the key concepts and
achievements to be described below. To facilitate being precise and clear about all
of this, we now state some definitions and establish some terminology.

Process and Workflow 9

3 Some Definitions, Unifying Assumptions,
and Characterizations

In order to improve the precision and specificity of the material to be presented in
the rest of this chapter, it is important to establish some terms and concepts.

3.1 Processes and Workflows

Because both the entity that is the focus of the Software Process community
and the entity most commonly referred to as a “workflow” by the Business
Process Management community seem to be nearly identical, we will use the
word “process” to refer to both of them for the rest of this chapter. As shall be
explained subsequently, some distinctions can be drawn between the views of the
two communities about these entities. In such cases, this chapter will identify these
differences and distinctions. Otherwise, our use of the word process will be intended
to refer to both a software process and a business workflow.

3.2 Process Performances

It is important from the outset to distinguish carefully between a process, a
performance of a process, and a specification of a process. A process can be
thought of as a collection of activities taking place in the real world, entailing the
coordination and sequencing of various tasks and activities that may involve work by
both humans and automated systems, whose aim is to produce one or more products
or to achieve some desired change in the state of the real world. We note that a
process may be performed somewhat differently under differing circumstances (e.g.,
the abundance or scarcity of task performers, the existence of different real-world
conditions, or the occurrence of unusual events), and we refer to such a single,
particular, specific performance, yielding a particular specific outcome, as a process
performance.

3.3 Process Specifications

A process specification is an abstraction, intended to represent all possible process
performances. Note that a process may allow for a great variety (perhaps even an
infinite number) of different process performances, depending upon the particular
combination of performers, contexts, and event sequences present at the time
of a specific process performance. A process may allow for so many different

10 L. J. Osterweil et al.

performances that it is quite possible that a process will include some performances
that have not yet ever been experienced at the time that a specification of the process
is created. Indeed, the need to anticipate performances that have not yet occurred,
but might be problematic, is often the reason for creating a process specification. A
process specification is typically stated either informally, in natural language text,
or by means of an abstract notation that may or may not have rigorous semantics.
Moreover, the specification may or may not have a visual representation.

3.4 Activities

Typically, a process specification aims to integrate specifications of activities,
artifacts, and agents, and the relations among them. Activities are the specific
tasks, steps, or actions whose completion must occur in order for the process
to be performed. Thus, a software process will typically contain such steps as
“Produce code” and “Execute test cases,” while a business process will typically
contain steps such as “Approve payment,” and “Create invoice.” Typically, a key
aspect of a process specification is the way in which these activities are arranged
into structures. Most commonly, a process’s activities are structured using flow-of-
control constructs such as sequencing and alternation, while the use of concurrency
and iteration constructs is not uncommon. In addition, many process specifications
also use hierarchical decomposition to support the specification of how higher-
level activities can be comprised of aggregations of more fine-grained, lower-level
activities. This supports the understanding of higher-level notions by drilling down
into successively lower-levels of detail. Thus, the software process step “Execute
test cases,” will have such substeps as “Execute one test case” and “Create summary
results,” and the business process “Send invoice” will have such substeps as “Create
itemized list” and “Acquire authorization to send.”

3.5 Process Artifacts

Most process specifications also specify how artifacts are generated and consumed
by the process’s activities. This is particularly important for processes whose goals
include the creation of such artifacts. Thus, a software process will incorporate such
artifacts as code, architecture specifications, and documentation. A business process
will incorporate such artifacts as invoices, approvals, and status reports. Typically,
the artifacts are represented only as inputs and outputs to and from the different
activities of the process. Indeed, it is often the case that the semantics of an activity
are defined implicitly to be the transformation of its inputs into its outputs. Similarly,
the semantics of an artifact are often not defined more formally than as an entity
that is generated and used as specified by activity inputs and outputs. On the other
hand, there are some processes such as some early software design methods (e.g.,

Process and Workflow 11

SADT and JSD, addressed above) that emphasize careful specification of artifacts,
rather than of activities. In such cases, the semantics of these artifacts may be
elaborated upon, typically by hierarchical decompositions of higher-level artifacts
into their lower-level artifacts and components, but also often by prose explanations
and examples. In business processes, such hierarchical specifications may be further
augmented by database schema definitions.

3.6 Process Agents

A process specification’s agents are the entities required in order for the activities to
be performed. Not all process specifications require the specification of an agent
for every activity. But a typical process will incorporate some steps for which
the characteristics of the entity (or an explicit designation of the exact entity)
needed to perform the step must be specified explicitly. Thus, for example, in a
software process the “Authorize release of new version” step may require a high-
level executive as its agent, and the “Execute one test case” step may require a
computing device having some stated operational characteristics. Similarly, in a
business process, the “Release paychecks” step may require a high-level financial
executive as its agent, and the “Affix postage” step may require an automatic postage
machine as its agent. It should be noted that the performance of some steps may
require more than one agent. Thus, for example, “Create design element” will
require not only a human designer, but may also require the use of an automated
design aid. Some process specifications support the specification of such auxiliary
resources as well.

The next section presents a framework incorporating the principal concepts
underlying work in the process domain. It explores these concepts, indicates how
they relate to each other and how they evolved. The contributions of some of the
principal projects in each area are presented.

4 Conceptual Framework

Referring again to the middle column of Fig. 1, we see that technology in the
software process and workflow areas have both benefitted from and nourished the
development of key process concepts such as process specification, process analysis,
and process frameworks. This section presents these key concepts, indicating some
ways in which they have coevolved with technology development.

12 L. J. Osterweil et al.
4.1 Process Specification Approaches

As noted in the preceding section, different approaches to specifying processes seem
to be more appropriate to some uses than to others. In this section, we summarize
some of these approaches, their strengths and weaknesses, and suggest the uses to
which they seem most suitable.

4.1.1 Process Specification Evaluation Criteria

It is important to emphasize that a process specification is an abstraction whose goal
is to approximate the full range of characteristics and properties of an actual process.
Different forms of specification support this approximation to different extents.
It has previously been suggested (Osterweil 2009) that four principal dimensions
should be used to categorize the extent to which a process specification approach
approximates process specificity:

* Level of detail: Most process specifications support hierarchical decomposition,
at least of process steps. More detailed and specific process specifications
incorporate more hierarchical decomposition levels. Many of the goals for
process work seem to be met most surely and easily if the process is specified
down to a fine-grained level.

* Breadth of semantics: While most process specifications integrate specification
of activities and artifacts, some also incorporate agent and resource specifica-
tions. Some go further still, incorporating such additional semantic issues as
timing, physical locations, etc.

e Semantic precision: The understanding of some process specifications relies
upon human intuition, leaving relatively more room for different interpretations.
Other specifications use notations such as Finite State Machines (FSMs) and
Petri Nets whose semantics are based upon rigorous mathematics, enabling the
unambiguous inference of definitive interpretations.

» Comprehensibility: Most process specifications incorporate some kind of visual-
ization, while some (especially those based upon rigorous mathematical seman-
tics) lack such visualizations, typically using mathematical notations instead.
The existence of a visualization is particularly important in cases where domain
experts, generally not well-trained in mathematics, are needed in order to validate
the correctness of the process specification.

4.1.2 Example Process Specification Approaches

We now present a representative sample of different approaches that have been
taken to the specification of processes, and use the preceding four dimensions to
characterize and classify them. As shown in Fig. 1, specific approaches taken in
both the software development and business process communities have contributed

Process and Workflow 13

to our overall understanding of the key issues in process specification. Conversely,
these understandings have helped to sharpen the approaches.

Natural Language

The most straightforward and familiar form of process specification is natural
language (e.g., English). Indeed, natural language specifications of processes
abound and are applied to specifying processes in both software development and
business process domains, as well as in myriad other domains. The key strength of
this specification approach is breadth of scope, as natural language can be used
to describe pretty much anything. While it might appear that comprehensibility
and depth of details are other key strengths of natural language, it is important
to acknowledge that they are undercut by a key weakness, namely, the lack of
precise semantics for natural languages. This weakness leaves natural language
specifications open to different interpretations, thus making the comprehensibility of
such specifications illusory, often leading to misinterpretations and disagreements,
and often making attempts to clarify low-level details frustrating exercises in trying
to be very precise while using a descriptive medium that is incapable of the needed
precision. Hence, it is increasingly common for process specification users to
augment or replace natural language with some forms of notation that are intended
to address the lack of precise semantics in natural language.

Box-and-Arrow Charts

Rudimentary diagrams have been used widely to specify processes from many
different domains. The most basic of these diagrams represents a process activity
as a geometric figure (typically a rectangle), and represents the flow of artifacts
between activities by arrows annotated with identifications of these artifacts. They
key advantages of this diagrammatic notation are its relative comprehensibility, and
the existence of some semantics that can be used as a basis for attaching some
unambiguous meaning to a diagram. It should be noted, however, that it is important
for these semantics to be specified clearly, as box-and-arrow diagrams are often
used to represent control flow, but are also not uncommonly used to represent data
flow. Breadth of semantics and depth of detail are greatly increased when these
diagrams comprise more than one kind of geometric figure and more than one
kind of arrow. Thus, for example, representing alternation in process control flow
is more clearly represented by a choice activity, often represented by a diamond-
shaped figure. Similarly, concurrency is more clearly represented by special edges
(e.g., those that represent forking and joining concurrent activities). Decomposition
of both activities and artifacts down to lower levels of detail is more clearly and
precisely specified by still other kinds of edges that represent this additional kind of
semantics. Indeed, one can find a plethora of different box-and-arrow approaches,

14 L. J. Osterweil et al.

featuring different choices of kinds of boxes, kinds of arrows, and specific semantics
for specifying the meanings of all of them.

Finite State Machines

Finite state machines (FSMs) have also often been used to specify processes. This
approach is particularly effective in cases where the performance of a process is
comfortably and naturally thought of as the effecting of changes in the state of the
world. In this view, a world state is thought of as a structure of values of artifacts
and parameters, and it is represented by a small circle. If the performance of a single
activity of the process is able to move the world from one state directly to another,
then the circles representing these two states are connected by an arrow. A distinct
advantage of this form of process specification is its rigor, derived from the existence
of a precise semantics, and the consequent existence of a large body of mathematical
results that can then be used to support the inference of some precise characteristics
of the process. Unfortunately, it is not uncommon for process practitioners from
domains other than Computer Science to misunderstand the semantics of these
diagrammatic icons, confusing states for activities, and state transitions for data
flows. Given these misunderstandings, unfortunately the understandability of FSMs
is far less universal that might be desired. Depth of detail is also facilitated by the use
of hierarchical FSMs. But FSMs are inherently nonhierarchical, and thus additional
semantics are needed to support process specifications that use the hierarchical
decomposition of FSMs. Similarly, additional semantics are needed to support
specifying artifact flow, timing, resource utilization, and many other dimensions of
semantic breadth and depth. Here too, a large number of different enhancements of
the basic FSM semantics have been proposed and used to support the specification
of processes.

Petri Nets

Petri Nets (1962) have also been used widely to support the precise specification of
processes (Murata 1989). Here too, a major advantage of doing so is the existence of
both powerful semantics and a large body of mathematics, all of which can be used
to support inferring precise understandings of processes specified by the Petri Net.
Here too, however, these understandings are relatively inaccessible to experts from
domains outside of computing. Moreover, a basic Petri Net has relatively restrictive
semantics, not including, for example, hierarchical decomposition, specification of
artifacts, and a number of other kinds of semantics needed to support the breadth
and depth that is often desired in a process specification. For this reason a variety
of enhancements to a basic Petri Net have been proposed and evaluated (David et
al. 2005). Thus, there are Colored Petri Nets that support a primitive system of
artifact types, Hierarchical Petri Nets that support the specification of hierarchical
decomposition, and still more elaborate enhancements. As might be expected, these

Process and Workflow 15

more elaborate Petri Nets are more effective in supporting the specification of more
process semantic issues to greater levels of detail.

Business Process Modeling Notation

Decades of experimentation with reusing existing notations (such as the previously
described box-and-arrow charts, FSMs, and Petri Nets) to attempt to specify pro-
cesses eventually caused some process practitioners to realize that the clear, precise,
and complete specification of their processes would be expedited considerably by
the creation of a special purpose process specification notations. Principal among
these has been the Business Process Modeling Notation (OMG). BPMN features
the use of intuitive graphical icons and notations to express a broad range of
process semantics, including concurrency, hierarchical decomposition, artifact flow,
and agent assignment to activities. As such it has constituted a large step forward
in the effective specification of processes, accessible both to process practitioners
and experts from noncomputing domains. A major failing of BPMN, however,
is the lack of a formal definition of the language semantics. Thus, while BPMN
process specifications offer broad intuitive appeal, they still suffer from the absence
of a semantic basis that could be used to resolve any doubts, ambiguities, or
disagreements about the precise meaning of a process specification. Still, the
appealing visualizations afforded by BPMN specifications have helped to make
BPMN a popular choice for use in describing complex processes.

Programming Languages

The foregoing progression of process specification approaches suggests a growing
awareness that processes are multifaceted entities, requiring significant power
and sophistication for their sufficiently complete specification, and significant
formalization for their precise understanding. From this perspective it is not much
of a leap to suggest, as did Osterweil in 1987, that programming languages might
be used to specify processes (Osterweil 1987). In this section, we describe some
representative efforts to do just that.

* Business Process Execution Language (BPEL): BPEL is a programming
language specially designed for use in supporting the specification of processes,
most specifically business processes (Andrews et al. 2003). BPEL has well-
defined semantics that are indeed sufficiently strong to support the actual
execution on a computer of a BPEL specification. To emphasize this important
distinction, we will refer to such an executable process specification as a
process definition. BPEL has powerful semantics that support such important,
but challenging, process features as concurrency, exception handling, and the
specification of resources. A major BPEL drawback is the lack of a visual
representation of the defined processes. Lacking an appealing visualization,

16 L. J. Osterweil et al.

BPEL is of value mostly to process domain experts, and is relatively inaccessible
to experts from most other domains. There has been some effort to merge the
BPMN and BPEL technologies, essentially using BPEL to provide the semantics,
and the executability, that BPMN lacks. To date, this effort has met with only
limited success.

* YAWL (Yet Another Workflow Language): YAWL is anything but “yet
another” workflow language (van der Aalst et al. 2005). It succeeds in providing a
powerful, semantically strongly defined process definition language that provides
strong support for such difficult process constructs as concurrency, exception
management, and agent specification. In addition, however, it is also accompa-
nied by a very appealing visual representation, and a suite of documentation and
user manuals that make the language highly accessible. Its strength in all of these
dimensions makes it almost unique among process specification approaches.

o Little-JIL: Little-JIL (Wise et al. 2000; Little-JIL 2006) is another specially
designed language for supporting the development of executable process def-
initions. Like YAWL, it features a visual representation that is designed to
make process definitions readily accessible by experts in domains other than
computing. Taking the idea that processes should be thought of as first-class
programmable entities, Little-JIL borrows heavily upon basic concepts that
have proven to be particularly useful in traditional computer programming
languages. Thus, for example, abstraction is a first-class concept, supported
strongly and clearly in Little-JIL. Similarly, the language takes a powerful
and flexible approach to the specification and handling of exceptions and
concurrency. Particular attention is also paid to the specification of agents, both
human and nonhuman, and the specification of precisely how they are used in
the execution of a process. Unfortunately, Little-JIL is not well-supported by
manuals, documentation, and other accompaniments generally expected of a
language that might see widespread use.

4.2 Process Acquisition

Traditionally, understandings of processes have been acquired by some combination
of observing the performers, interviewing the performers, and reading documenta-
tion, most often written in natural language. These approaches are complementary,
with each having the potential to contribute important knowledge and insights, but
each lacking important dimensions. Thus, from observation of actual performers it is
possible obtain a strong sense of how a process proceeds, especially in the normative
cases, where little or nothing unusual arises and needs to be dealt with. In cases
where the process is particularly complex, and may require the collaboration of
multiple performers, it is generally the case that written documentation is important,
providing high-level concepts and structures that the process elicitor can use to help
structure and organize the relatively low-level activities that are being observed.

Process and Workflow 17

Written documentation typically has significant limitations, however, for all of
the reasons addressed in our immediately preceding discussions of the different
approaches to process specification. Processes tend to be large and complex entities
with a range of semantic features and issues that render them very hard to
describe clearly and completely. Thus, written documentation, even documentation
accompanied by visual representations, typically falls far short of the completeness
and precision needed. The failure of most documentation to address such issues
as exception handling is not surprising in view of the difficulty of doing so. As
a consequence, process elicitation then also often entails interviewing process
performers.

Interviewing process performers offers the opportunity to delve into process
details to whatever level of depth may be desired, and also affords a chance to
explore nonnormative exceptional situations, including those that may not ever
have occurred previously, and thus would be impossible to observe. Given that a
process may be highly variable, and need to deal with an almost limitless variety of
nonnormative situations, it is inevitable that process elicitation must be regarded as
an ongoing process of its own, uncovering a continuous stream of new information
that will need to be incorporated into an ever-evolving process specification.

That realization has given rise to an important new direction in process elic-
itation, namely, process mining. Process mining is the acquisition of process
specification information through the analysis of large quantities of process event
data, accumulated over a long period of time from the actual performance of
large numbers of process instances. The actual process specification information
that is acquired depends upon the nature of the process event data that has been
accumulated as well as the semantic features of the process specification approach
used. Cook and Wolf (1995) seem to have been among the first to attempt to
mine process specification features, attempting to capture a process specification
in the finite state machine formalism. More recently, especially with the rise in the
popularity and effectiveness of data mining and associated knowledge discovery
technologies, the acquisition of process specification information has become a very
widespread pursuit.

As shown in Fig. 1, process mining has been explored extensively in the
BPM community where datasets, often quite massive, archiving perhaps years of
experience with certain processes, have been mined, often recovering substantial
process specification information. This approach seems particularly appropriate for
recovering details about relatively straightforward processes with few alternations
of control, and with relatively few nonnormative events that must be detected and
responded to. In processes where external events cause the creation of nonnormative
process execution states, the process responses might need to become quite large and
complex, reflecting the different specialized responses that might be needed to deal
with a plethora of different process states, created by different sequences of events.
Some process responses to formalisms are better equipped than others to specify
such processes clearly and concisely.

It is important, moreover, to recognize that the process data that is acquired
through process mining can only express actual experiences with process executions

18 L. J. Osterweil et al.

that have occurred. Thus, this approach would not be very helpful in preparing
process performers for events and scenarios that have not yet taken place. Process
mining also cannot be expected to be particularly successful in identifying worri-
some vulnerabilities to events and event sequences that have not already occurred.
This suggests that process mining is probably not the preferred way to study process
vulnerability and robustness.

4.3 Process Analysis Facilities and Results

Especially because of the previously discussed difficulties in identifying a superior
process specification approach, and in using it to acquire a clear, complete, and
detailed process specification, it is all the more important to also explore approaches
to gaining assurances about the correctness of such process specifications. Indeed,
as shown in Fig. 1, the enterprise of process analysis occupies a very central
position in the process domain. Understanding of this enterprise is seen to be
nourished by work in both the software process and workflow domains. Moreover,
the development of process analysis technologies in both of these areas has been
advanced by understandings of the nature of the enterprise of analysis. Thus, for
example, in striking analogy to approaches to analysis in such domains as mechan-
ical engineering and software engineering, the approaches to analysis of process
specification can be neatly classified into dynamic and static approaches. Borrowing
from software engineering, one can further categorize the static approaches into
syntactic approaches, and various kinds of semantic approaches.

It should be noted that the creation of such analyzers is a nontrivial project. Thus,
the prior existence of analyzers for such existing formalisms as Petri Nets and Finite
State Machines seems to have improved the attractiveness and popularity of these
approaches as vehicles for process specification.

4.3.1 Dynamic Analysis of Process Specifications

The principal approach to the dynamic analysis of process specifications is discrete
event simulation. Such a discrete event process simulation must maintain the state of
the process as each of its activities is performed. The state is usually characterized
by the simulated values of all of the artifacts managed by the process, the estimated
time that has elapsed through each process activity, and sometimes also by the states
of the agents who are involved in performing the process.

As noted above, any given process might be performed differently due to
different behaviors of different agents, the occurrence of different combinations of
external events, and differences in the states of input artifacts at the commencement
of execution. Thus, a process simulator must be equipped to support exploration
of a variety of different execution scenarios. This is accomplished in a variety of
ways. Most simulators allow for the specification of different statistical distributions

