Amar Safdar *Editor*

Principles and Practice of Transplant Infectious Diseases

Principles and Practice of Transplant Infectious Diseases Amar Safdar Editor

Principles and Practice of Transplant Infectious Diseases

Editor Amar Safdar Clinical Associate Professor of Medicine Texas Tech University Health Sciences Center El Paso Paul L. Foster School of Medicine El Paso, TX USA

ISBN 978-1-4939-9032-0 ISBN 978-1-4939-9034-4 (eBook) https://doi.org/10.1007/978-1-4939-9034-4

© Springer Science+Business Media, LLC, part of Springer Nature 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Science+Business Media, LLC part of Springer Nature.

The registered company address is: 233 Spring Street, New York, NY 10013, U.S.A.

This book is dedicated to my parents, Taj & Safdar, for enduring inspiration and tenacity of purpose.

Preface

In pursuit of recognizing the risk of infection in patients undergoing transplantation, prescient cognizance requires sagacious understanding of hosts' home and healthcare environment, factors pertaining to the level of immune suppression that may have accumulated overtime, and, importantly, recent alterations in immune function resulting from additional immunosuppressive treatments such as donor lymphocyte transfusion, antineoplastic therapy, and immune modulatory biologic drugs and medical disorders like graft-versus-host disease, donor allograft rejection, posttransplant opportunistic malignancies, recrudescent or newly acquired cytomegalovirus infection, and relapsed hematologic neoplasms.

It is prudent to establish a targeted approach toward diagnosis, an approach which portends recognition of the true etiology with the help of assiduous investigation based on patient-specific vulnerability for infection. Special consideration needs to be placed upon the possibility of noninfectious processes that clinically are often difficult to distinguish from infection or sepsis-like syndrome. Toxicity due to commonly used drugs in the posttransplant period, thromboembolic events, acute engraftment syndrome, postsurgical deep tissue and body cavity hematoma, tissue ischemia and necrosis, opportunistic malignancies, and the potential for less common paraneoplastic disorders including tumor fever may initially present as a nonspecific acute febrile illness, with or without features suggestive of systemic inflammatory response syndrome. Similarly, a host of noninfectious maladies involving the skin and skin structures, brain, orointestinal tract, liver, kidneys, and lungs may clinically resemble infection. It is important to take into account that such processes may occur concurrently or sequentially in patients with a known infection diagnosis. Furthermore, in immunosuppressed patients after hematopoietic or solid organ allograft transplantation, plurality of simultaneously occurring infections makes selection of targeted, pathogen-specific empiric therapy a daunting task.

Individuals' genetic haecceity and its influence on susceptibility or inherent resistance to certain infections is evolving. Once validated and available for clinical use, this has the potential to reliably identify select subgroups of transplant recipients that are additionally vulnerable to specific infection(s). Infection prevention and empiric or preemptive treatment strategies in such patients may advance from the putative and arbitrary risk profiles presently in use.

This volume aims to provide a comprehensive and in-depth review of the issues pertaining to infectious diseases in patients undergoing transplantation.

El Paso, TX, USA

Amar Safdar, MD

Contents

Par	t I Principles of Transplantation and Overview of Infectious Diseases
1	Infections in Transplantation: Introduction and Overview 3 Amar Safdar 3
2	Infections in Heart, Lung, and Heart-Lung Transplantation21Andrés F. Henao-Martínez and José G. Montoya
3	Infections in Liver Transplantation.41B. Sharmila Mohanraj, Amol S. Rangnekar, and Joseph G. Timpone Jr.41
4	Infections in Kidney and Pancreas Transplantation 73 Megan K. Morales, Matthew Cooper, Peter Abrams, and Joseph G. Timpone Jr. 73
5	Infections in Intestinal and Multivisceral Transplantation
6	Infections in Limbs, Integuments, and Face Transplantation
7	Principles of Hematopoietic Stem Cell Transplantation
8	Infections in Pediatric Transplant Recipients 165 Aspasia Katragkou, Lucy O'Connor, Emmanuel Roilides, and Thomas J. Walsh
Par	t II Clinical Disorders in Transplant Recipients
9	Febrile Neutropenia in Transplant Recipients 185 Lior Nesher and Kenneth V. I. Rolston 185
10	Cytopenias in Transplant Patients
11	Infections in Allogeneic Stem Cell Transplantation. 209 Marcus R. Pereira, Stephanie M. Pouch, and Brian Scully
12	Complications Arising from Preparatory Conditioning Regimensfor Stem Cell Transplantation227Jasmine Zain, Merav Bar, and Amar Safdar
13	Intravascular Catheter and Implantable Device Infections in Transplant Patients.249Nasia Safdar, Cybele Lara R. Abad, and Dennis G. Maki
14	Surgical Site Infections: Wound and Stump Infections

15	Endovascular Infections and Endocarditis	273
16	Gastrointestinal Infections and <i>Clostridium difficile</i> Infection Stephen Harold and Herbert L. DuPont	291
17	Hepatobiliary Tract Infections. Jonathan Merola, Robert M. Mocharla, Alexander Z. Jow, Samuel H. Sigal, and Amar Safdar	303
18	Ocular Infections in Transplant Patients	319
19	Intracranial, Spinal, and Paraspinal Infections in the Transplant Recipient Matthew W. McCarthy, Axel Rosengart, and Thomas J. Walsh	331
20	Respiratory Tract Infections: Sinusitis, Bronchitis, and Pneumonia Benjamin A. Miko, Marcus R. Pereira, and Amar Safdar	339
21	Respiratory Tract Diseases That May Be Mistaken for Infection Robert M. Kotloff, Burton F. Dickey, and Nicholas Vander Els	351
22	Skin and Soft Tissue Infection in Transplant Recipients Robert G. Micheletti and Carrie L. Kovarik	365
23	Cutaneous Lesions that Mimic Infection in Transplant Patients	397
Par	t III Etiologic Agents in Infectious Diseases	
24	<i>Staphylococcus, Streptococcus, and Enterococcus</i>	419
25	<i>Enterobacteriaceae</i> in Transplantation	447
26	<i>Pseudomonas, Stenotrophomonas, Acinetobacter</i> , and Other Nonfermentative Gram-Negative Bacteria and Medically Important Anaerobic Bacteria in Transplant Recipients	461
27	Nocardiosis and Actinomycosis	473
28	Listeriosis. Heather E. Clauss and Bennett Lorber	481
29	Tuberculosis Cynthia Portal-Celhay and Jennifer A. Philips	491
30	Nontuberculous Mycobacterial Disease in Transplant Recipients	503
31	Invasive Fungal Disease in the Transplant Population: An Overview Jennifer L. Saullo, John R. Perfect, and Barbara D. Alexander	519
32	Candida Infections in Hematopoietic and Solid Organ Transplant Recipients Alison G. Freifeld and Carol A. Kauffman	543
33	Aspergillosis	559

х

34	Mucormycosis . Brad Spellberg and Johan Maertens	577
35	<i>Cryptococcus</i> Infections in Transplant Recipients Raymund R. Razonable and Pearlie P. Chong	591
36	Histoplasmosis, Coccidioidomycosis, and Diseases Due to Other Endemic Fungi in Transplant Recipients Pascalis Vergidis, Chadi A. Hage, and L. Joseph Wheat	599
37	Cytomegalovirus	611
38	Epstein-Barr Virus Infection and Posttransplant Lymphoproliferative Disease	643
39	Herpes Simplex Viruses 1 and 2, Varicella Zoster Virus, andHuman Herpes Viruses 6, 7, and 8 in Transplant RecipientsRaymund R. Razonable	667
40	Respiratory Viral Infections in Transplant Recipients	679
41	Hepatitis A, B, and C Jonathan Merola, Alexander Z. Jow, and Samuel H. Sigal	697
42	Enterovirus Infection in Immunocompromised Hosts	711
43	Parvovirus B19	725
44	West Nile Virus in Immunocompromised Hosts Dora Y. Ho, Joanna M. D. Schaenman, and Lindsey R. Baden	735
45	Rare and Emerging Viral Infections in the Transplant Population Susanna K. Tan, Jesse J. Waggoner, and Stan Deresinski	753
46	Parasitic Infections in Transplant Recipients: Toxoplasmosis,Strongyloidiasis, and Other ParasitesBrian G. Blackburn and José G. Montoya	775
Par	t IV Diagnosis of Infectious Diseases in Special Host	
47	Impacts and Challenges of Advanced Diagnostic Assays forTransplant Infectious Diseases.N. Esther Babady, Yeon Joo Lee, Genovefa Papanicolaou, and Yi-Wei Tang	795
48	Diagnosis of Systemic Fungal Diseases Simon Frédéric Dufresne, Kieren A. Marr, and Shmuel Shoham	819
49	Viral Diagnostics . Robin K. Avery and Belinda Yen-Lieberman	841
Par	t V Therapeutics and Management of Patients Undergoing Transplantation	
50	Antibiotic Consideration in Transplant Recipients Jerry Altshuler, Samuel L. Aitken, Melanie Maslow, John Papadopoulos, and Amar Safdar	855

51	Pharmacokinetics and Pharmacodynamics of Antibiotics in Transplant Patients. 903 Kelly E. Schoeppler, Scott W. Mueller, and Gerard R. Barber
52	Antifungal Consideration for Transplant Recipients927Yanina Dubrovskaya, Man Yee Merl, David S. Perlin, and Amar Safdar
53	Immunomodulatory Properties of Antifungal Agents on ImmuneFunctions of the HostMaria Simitsopoulou and Emmanuel Roilides
54	Antiviral Consideration for Transplantation Including Drug Resistance 953 Sunwen Chou and Nell S. Lurain
55	Pharmacokinetics and Pharmacodynamics of Antiviral Drugs in Special Population 977 Marco R. Scipione and John Papadopoulos
56	Antimycobacterial Consideration in Transplantation Including DrugNon-susceptibility and Resistance: Tuberculosis and NontuberculousMycobacterial DiseaseJulie V. Philley and David E. Griffith
57	Adaptive Immunotherapy for Opportunistic Infections
58	Immunotherapy for Invasive Mold Disease in Transplant Patients: Dendritic Cell Immunotherapy, Interferon Gamma, Recombinant Myeloid Growth Factors, and Healthy Donor Granulocyte Transfusions 1031 William K. Decker, Matthew M. Halpert, Vanaja Konduri, Dan Liang, Christopher N. Hampton, and Amar Safdar
59	Antimicrobial Stewardship: Considerations for a Transplant Center 1041 Susan K. Seo and Graeme N. Forrest
60	The Use of Palliative Care in Organ Transplant Patients andEnd-of-Life IssuesJenny S. Ayala and Joseph Lowy
Par	t VI Infection Prevention
61	Infection Control Strategies in Transplant Populations
62	Travel and Transplantation
63	Vaccination in Organ Transplant Patients
64	Prevention of Fungal Disease
65	Antimicrobial Drug Prophylaxis: Challenges and Controversies
Ind	ex

xii

Contributors

Cybele Lara R. Abad Section of Infectious Diseases, Department of Medicine, University of the Philippines, Philippine General Hospital, Manila, Philippines

Peter Abrams MedStar Georgetown University Hospital, MedStar Georgetown Transplant Institute, Washington, DC, USA

Samuel L. Aitken Infectious Diseases, The University of Texas MD Anderson Cancer Center, Division of Pharmacy, Houston, TX, USA

Barbara D. Alexander Duke University Medical Center, Departments of Medicine and Pathology, Division of Infectious Diseases and International Health, Durham, NC, USA

Jerry Altshuler The Mount Sinai Hospital, Department of Pharmacy, New York, NY, USA

Donald Armstrong Infectious Disease Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA

Cornell University Medical College (ret), New York, NY, USA

Infectious Disease Society of America, Albuquerque, NM, USA

Robin K. Avery Division of Infectious Disease, Johns Hopkins, Baltimore, MD, USA

Jenny S. Ayala Hospice and Palliative Medicine, Hospital Medicine, White Plains Hospital, White Plains, NY, USA

N. Esther Babady Department of Laboratory Medicine, Clinical Microbiology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA

Lindsey R. Baden Division of Infectious Diseases, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA

Merav Bar Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA

Gerard R. Barber Department of Pharmacy Services, University of Colorado Hospital, University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA

Maura Barry University of Vermont College of Medicine, University of Vermont Medical Center, Division of Hematology & Oncology, Burlington, VT, USA

Brian G. Blackburn Stanford University Medical Center, Palo Alto, CA, USA

Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA

Emily A. Blumberg Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA

Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Philadelphia, PA, USA

Michael Boeckh Fred Hutchinson Cancer Research Center, University of Washington Medical Center, Washington, DC, USA

Justin M. Broyles Department of Plastic and Reconstructive Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA

Richard E. Champlin MD Anderson Cancer Center, Department of Stem Cell Transplantation and Cellular Therapy, Houston, TX, USA

Sunandana Chandra Northwestern University Feinberg School of Medicine, Division of Hematology & Oncology, Chicago, IL, USA

Pearlie P. Chong Division of Infectious Diseases, Department of Medicine, and the William J. von Liebig Transplant Center, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA

University of North Carolina at Chapel Hill, Division of Infectious Diseases, Chapel Hill, NC, USA

Sunwen Chou Oregon Health and Science University, Division of Infectious Diseases, Portland, OR, USA

Ana Ciurea Department of Dermatology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA

Heather E. Clauss Section of Infectious Diseases, Department of Medicine, Temple University School of Medicine, Philadelphia, PA, USA

Temple University, Philadelphia, PA, USA

Temple University Hospital, Department of Infectious Diseases, Philadelphia, PA, USA

Valerie Cluzet Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA

Health Quest Medical Practice, Department of Infectious Diseases, Poughkeepsie, NY, USA

Matthew Cooper MedStar Georgetown Transplant Institute, Washington, DC, USA

Scott Cutro Department of Infectious Disease, The Southeast Permanente Medical Group, Kaiser Permanente, Atlanta, GA, USA

Charles L. Daley Division of Mycobacterial and Respiratory Infections, National Jewish Health and University of Colorado, Denver, CO, USA

Lara Danziger-Isakov Pediatric Infectious Diseases, Immunocompromised Host Infectious Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA

William K. Decker Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA

Stan Deresinski Stanford University School of Medicine, Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford, CA, USA

Burton F. Dickey Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA

Yanina Dubrovskaya NYU Langone Medical Center, NYU Langone Health, Department of Pharmacy, New York, NY, USA

Simon Frédéric Dufresne Hôpital Maisonneuve-Rosemont, Université de Montréal, Department of Infectious Diseases and Medical Microbiology, Montréal, QC, Canada

Herbert L. DuPont, MD Baylor St. Luke's Medical Center, Department of Research, Houston, TX, USA

Program in Infectious Diseases, University of Texas School of Public Health, Houston, TX, USA

Kelsey Research Foundation, Houston, TX, USA

Baylor College of Medicine, Houston, TX, USA

University of Texas School of Medicine Houston, Houston, TX, USA

Marlene L. Durand Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA

Department of Medicine, Infectious Disease Unit, Massachusetts General Hospital, Boston, MA, USA

Infectious Disease Service, Massachusetts Eye and Ear Infirmary, Boston, MA, USA

Thomas M. Fishbein Georgetown University Hospital, Transplant Institute, Washington, DC, USA

Graeme N. Forrest Division of Infectious Diseases, Portland VA Medical Center and Oregon Health and Science University, Portland, OR, USA

Alison G. Freifeld Infectious Diseases Division, University of Nebraska Medical Center, Omaha, NE, USA

Benjamin E. Gewurz Brigham and Women's Hospital, Division of Infectious Diseases, Department of Medicine, Boston, MA, USA

Raffaele Girlanda Georgetown University Hospital, Department Transplant Surgery, Washington, DC, USA

Chad R. Gordon Department of Plastic and Reconstructive Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA

David E. Griffith University of Texas Health Science Center, Tyler, TX, USA Heartland National TB Center, Tyler, TX, USA

Chadi A. Hage Indiana University School of Medicine, Pulmonary-Critical Care, Thoracic Transplantation Program, Methodist Professional Center-2, Indianapolis, IN, USA

Morgan Hakki Oregon Health and Science University, Division of Infectious Diseases, Portland, OR, USA

Matthew M. Halpert Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA

Christopher N. Hampton Department of Pathology and Immunology, Baylor College of Medicine, Huffington Center on Aging, Houston, TX, USA

Stephen Harold, MD, MPH Baylor St. Luke's Medical Center, Department of Research, Houston, TX, USA

Andrés F. Henao-Martínez Division of Infectious Diseases, Department of Medicine, University of Colorado Denver, Aurora, CO, USA

Dora Y. Ho Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA

Harold W. Horowitz New University School of Medicine, Division of Infectious Diseases and Immunology, New York, NY, USA

Weill Cornell Medicine, New York—Presbyterian—Brooklyn Methodist Hospital, Department of Medicine, Division of Infectious Diseases, Brooklyn, NY, USA

Shirish Huprikar The Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA

Kenneth B. Hymes Hematology, Coagulation, and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA

Sharon Hymes Department of Dermatology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA

Samantha E. Jacobs Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA

Transplant Infectious Diseases Program, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, Department of Medicine, New York, NY, USA

Alexander Z. Jow Division of Gastroenterology, Mid-Atlantic Kaiser Permanente Medical Group, Springfield, VA, USA

Aspasia Katragkou Transplantation-Oncology Infectious Diseases Program, New York-Presbyterian/Weill Cornell Medical Center, New York, NY, USA

3rd Department of Pediatrics, Aristotle University, Hippokration Hospital, Thessaloniki, Greece

Nationwide Children's Hospital, Department of Pediatric Infectious Diseases, Columbus, OH, USA

Carol A. Kauffman University of Michigan Medical School, Infectious Diseases Section, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA

Partow Kebriaei MD Anderson Cancer Center, Department of Stem Cell Transplantation and Cellular Therapy, Houston, TX, USA

Vanaja Konduri Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA

Robert M. Kotloff Department of Pulmonary Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA

Camille Nelson Kotton Transplant and Immunocompromised Host Infectious Diseases, Division of Infectious Diseases, Massachusetts General Hospital, Travelers' Advice and Immunization Center, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

Carrie L. Kovarik Departments of Medicine and Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA

Yeon Joo Lee Department of Internal Medicine, Infectious Diseases Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA

Weill Cornell Medical College, Cornell University, New York, NY, USA

Dan Liang Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA

Catherine Liu Fred Hutchinson Cancer Research Center, University of Washington Medical Center, Washington, DC, USA

Ann-Marie Lobo Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA

Bennett Lorber Section of Infectious Diseases, Department of Medicine, Temple University School of Medicine, Philadelphia, PA, USA

Temple University, Philadelphia, PA, USA

Temple University Hospital, Department of Infectious Diseases, Philadelphia, PA, USA

Joseph Lowy NYU Langone Health, NYU Medical School, Department of Medicine, New York, NY, USA

Nell S. Lurain Rush University Medical Center, Department of Immunology/Microbiology, Chicago, IL, USA

Johan Maertens Department of Hematology, Acute Leukemia and Stem Cell Transplantation Unit, University Hospital Gasthuisberg, K. U. Leuven, Leuven, Belgium

Dennis G. Maki Section of Infectious Diseases, Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, and the William S. Middleton Memorial Veterans Hospital, Madison, WI, USA

Kieren A. Marr Johns Hopkins University, Department of Medicine, Baltimore, MD, USA

Melanie Maslow New York University School of Medicine, New York, NY, USA

Matthew W. McCarthy Weill Cornell Medicine, Department of General Internal Medicine, New York, NY, USA

Man Yee Merl Smilow Cancer Hospital at Yale-New Haven Health, Department of Pharmacy, New Haven, CT, USA

Jonathan Merola Department of Surgery, Yale School of Medicine, Yale-New Haven Hospital, New Haven, CT, USA

Robert G. Micheletti Departments of Medicine and Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA

Benjamin A. Miko Columbia University Medical Center, Division of Infectious Diseases, Department of Medicine, New York, NY, USA

Elizabeth Ann Misch University of Wisconsin Hospital, Department of Medicine, Division of Allergy and Infectious Disease, Madison, WI, USA

University of Wisconsin-Madison, School of Medicine and Public Health, Department of Medicine, Madison, WI, USA

Sheila Mitsuma Massachusetts General Hospital, Division of Infectious Diseases, Boston, MA, USA

Robert M. Mocharla Division of Gastroenterology, NYU School of Medicine, Department of Internal Medicine, New York, NY, USA

B. Sharmila Mohanraj MedStar Georgetown University Hospital, Department of Infectious Diseases and Travel Medicine, Washington, DC, USA

José G. Montoya Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA

Palo Alto Medical Foundation Toxoplasma Serology Laboratory, National Reference Center for the Study and Diagnosis of Toxoplasmosis, Palo Alto, CA, USA

Stanford University Medical Center, Palo Alto, CA, USA

Megan K. Morales University of Maryland School of Medicine, Institute of Human Virology/ Department of Infectious Diseases, Baltimore, MD, USA

Scott W. Mueller Department of Clinical Pharmacy, University of Colorado Hospital, University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA

Lior Nesher Infectious Disease Institute, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheba, Israel

Soroka University Medical Center affiliated with Faculty of Health Sciences Ben-Gurion University of the Negev, Infectious Disease Institute, Beer Sheba, Israel

Marcio Nucci University Hospital, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil

Hospital Universitário Clementino Fraga Filho, Department of Internal Medicine – Hematology, Rio de Janeiro, RJ, Brazil

Lucy O'Connor Transplantation-Oncology Infectious Diseases Program, New York-Presbyterian/Weill Cornell Medical Center, New York, NY, USA

University of Manchester School of Medicine, Manchester, UK

John Papadopoulos Department of Pharmacy, Division of Pharmacotherapy, NYU Langone Medical Center, New York, NY, USA

Genovefa Papanicolaou Department of Internal Medicine, Infectious Diseases Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA

Weill Cornell Medical College, Cornell University, New York, NY, USA

Memorial Sloan Kettering Cancer Center, Memorial Hospital, Department of Medicine, New York, NY, USA

Marcus R. Pereira Department of Medicine – Infectious Diseases, Columbia University Medical Center, New York, NY, USA

John R. Perfect Duke University Medical Center, Departments of Medicine and Pathology, Division of Infectious Diseases and International Health, Durham, NC, USA

David S. Perlin Public Health Research Institute, Rutgers Biomedical and Health Sciences, Rutgers New Jersey Medical School, Newark, NJ, USA

Jennifer A. Philips Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA

Julie V. Philley University of Texas Health Science Center at Tyler, Department of Pulmonary and Critical Care Medicine, Tyler, TX, USA

Michael Phillips New University School of Medicine, Division of Infectious Diseases and Immunology, New York, NY, USA

Didier Pittet Infection Control Programme and WHO Collaborating Centre on Patient Safety, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland

Michelle Limei Poon National University Hospital, Department of Hematology Oncology, Singapore, Singapore

Cynthia Portal-Celhay Division of Infectious Diseases, Department of Medicine, NYU Langone Medical Center, NYU School of Medicine, New York, NY, USA

Stephanie M. Pouch Division of Infectious Diseases, Emory University, Atlanta, GA, USA

Amol S. Rangnekar MedStar Georgetown University Hospital, MedStar Georgetown Transplant Institute, Washington, DC, USA

Raymund R. Razonable Division of Infectious Diseases, Department of Medicine, and the William J. von Liebig Center for Transplantation and Clinical Regeneration, College of Medicine, Mayo Clinic, Rochester, MN, USA

Emmanuel Roilides 3rd Department of Pediatrics, Hippokration Hospital, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece

Kenneth V. I. Rolston Department of Infectious Diseases, Infection Control & Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Axel Rosengart Cedars-Sinai Medical Center, Departments of Neurology, Neurosurgery and Biomedical Sciences, Los Angeles, CA, USA

Amar Safdar Clinical Associate Professor of Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, USA

Nasia Safdar Section of Infectious Diseases, Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, and the William S. Middleton Memorial Veterans Hospital, Madison, WI, USA

Michael J. Satlin Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA

Jennifer L. Saullo Duke University Medical Center, Department of Medicine, Division of Infectious Diseases and International Health, Durham, NC, USA

Joanna M. D. Schaenman Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA

Kelly E. Schoeppler Department of Pharmacy Services, University of Colorado Health, University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA

Marco R. Scipione Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, NY, USA

Brian Scully Columbia University Medical Center, Division of Infectious Diseases, Department of Medicine, New York, NY, USA

Susan K. Seo Department of Medicine, Infectious Disease Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA

Shmuel Shoham Johns Hopkins University School of Medicine, Department of Infectious Diseases, Baltimore, MD, USA

Amy Sievers Dana-Farber Cancer Institute, Division of Medical Oncology, Boston, MA, USA

Samuel H. Sigal Division of Gastroenterology and Hepatology, Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA

Maria Simitsopoulou Research Infectious Disease Laboratory, 3rd Department Pediatrics, Aristotle University School of Medicine, Hippokration Hospital, Thessaloniki, Greece

Lucia Sobrin Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA

Kevin M. Soriano Georgetown University Hospital, Department of Infectious Diseases, Washington, DC, USA

Brad Spellberg Los Angeles County+University of Southern California (LAC+USC) Medical Center, Los Angeles, CA, USA

Division of Infectious Diseases, Keck School of Medicine at USC, Los Angeles, CA, USA

Lynne Strasfeld Oregon Health and Science University, Division of Infectious Diseases, Portland, OR, USA

Susanna K. Tan Stanford University School of Medicine, Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford, CA, USA

Yi-Wei Tang Department of Laboratory Medicine, Clinical Microbiology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA

Weill Cornell Medical College, Cornell University, New York, NY, USA

Joseph G. Timpone Jr. MedStar Georgetown University Hospital, Division of Infectious Diseases and Travel Medicine, Washington, DC, USA

Gaurav Trikha Division of Infectious Diseases, University of Florida College of Medicine, Gainesville, FL, USA

University of Florida Health Shands Hospital, Division of Hematology/Oncology, Department of Medicine, Gainesville, FL, USA

Nicholas Vander Els Pulmonary Service, Memorial Sloan- Kettering Cancer Center, New York, NY, USA

Pascalis Vergidis University Hospital of South Manchester, University of Manchester, Department of Medicine, Manchester, UK

Jesse J. Waggoner Emory University School of Medicine, Department of Medicine, Division of Infectious Diseases, Atlanta, GA, USA

Thomas J. Walsh Transplantation-Oncology Infectious Diseases Program, New York-Presbyterian/Weill Cornell Medical Center, New York, NY, USA

Department of Pediatrics, New York-Presbyterian/Weill Cornell Medical Center, New York, NY, USA

Department of Microbiology and Immunology, New York-Presbyterian/Weill Cornell Medical Center, New York, NY, USA

Transplant Infectious Diseases Program, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA

David M. Weinstock Dana-Farber Cancer Institute, Harvard Medical School, Division of Medical Oncology, Boston, MA, USA

L. Joseph Wheat MiraVista Diagnostics, Indianapolis, IN, USA

Kathryn Whitaker Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA

Hospital at the University of Pennsylvania, Philadelphia, PA, USA

John R. Wingard University of Florida, Division of Hematology/Oncology, Department of Medicine, Gainesville, FL, USA

Belinda Yen-Lieberman Pathology and Laboratory Medicine Institute, Cleveland Clinic, Department of Laboratory Medicine, Cleveland, OH, USA

Jasmine Zain City of Hope National Medical Center, Department of Hematology/ Hematopoietic Cell Transplantation, Duarte, CA, USA

Sara A. M. Zerbel UnityPoint Health-Meriter, Department of Performance Improvement, Madison, WI, USA

Walter Zingg Infection Control Programme and WHO Collaborating Centre on Patient Safety, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland

Part I

Principles of Transplantation and Overview of Infectious Diseases Amar Safdar

1

Transplantation remains a pioneering scientific innovation that has a significant impact on restoring well-being for patients and benefit society as a whole. Blood and marrow hematopoietic stem cells have become accepted and, in some instances, established approach to treat incurable neoplastic diseases and congenital disorders of immune system [1]. Similarly, use of allografts in patients with end-stage organ disease involving the liver, kidneys, intestines, heart, and lungs has provided a possibility for continuation of life and a potential for patients to integrate and resume participation in their communities [2]. Recent advances in limb, integument, and face transplantation underscore the substantial leap forward in restoring normalcy for individuals with devastating and often catastrophic physical encumbrance [3, 4].

In patients undergoing solid organ transplantation, advancement in understanding the complex interplay within various facets of immune response against the transplanted allogeneic tissue that recipients' immune system fails to recognize as "self" has resulted in encouraging long-term outcomes [5]. These achievements in decoding higher mammalian immunity underscore the recent progress made in development and implementation of refined strategies to harness potentially devastating immune rejection of the implanted solid organ allograft [6]. The antirejection strategies, as expected, involve a delicate balance that favors preservation of a functioning allograft and aims at limit severity of drug-induced suppression of recipients' immune function, which is crucial for the surveillance against various neoplastic processes; conventional and opportunistic infections.

A. Safdar (🖂)

A similar, albeit an opposing role of undesired immune response comes into play in patients undergoing hematopoietic blood and marrow stem cell transplantation from a foreign donor. The conflict arises from aforementioned disconnect between immune recognition of self versus nonself [7, 8]. These transplanted stem cells install foreign effector immune cells in the recipient, and if remain unabated, the resulting graft-versus-host disease is capable of unleashing potentially ruinous systemic inflammation resulting in irreversible tissue damage and death [7]. The stem cell graft restores immunity and functional marrow in patients in need for myeloablative antineoplastic therapy. Furthermore, it is the foreign, graft-mediated, adaptive cancer immune surveillance that has now been widely recognized as the pivotal feature that sustains cancer in remission following successful allogeneic hematopoietic stem cell transplantation. This feature of stem cell graft-assisted antitumor response is recognized as "graftversus-leukemia or graft-versus-tumor effect." Donorderived adaptive antitumor immunity is an important objective of allogeneic stem cell transplantation, especially in patients with hematologic malignancies, and forms the bases for donor lymphocyte infusions to treat cancer recurrences during posttransplant period [9]. As in patients following solid organ transplants, in recipients of allogeneic HSCT, anti-GVHD therapy is assessed and continuously refined to achieve the lowest possible cumulative iatrogenic immune suppression required to prevent or treat GVHD, whereas an earnest attempt is made for preservation of recipients' immune function such that the risk of conventional and opportunistic infections and malignancies do not overwhelm the projected efficacy and feasibility of these lifesaving procedures.

A number of agents have been successfully used for prevention and treatment of graft-versus-host disease and solid organ allograft rejection [8, 10]. Severity of immune dysfunction is in most instance a direct consequence of treatment with these agents that are commonly prescribed

Infections in Transplantation: Introduction and Overview

Clinical Associate Professor of Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, USA e-mail: amar.safdar@cidimmunology.com

[©] Springer Science+Business Media, LLC, part of Springer Nature 2019

A. Safdar (ed.), Principles and Practice of Transplant Infectious Diseases, https://doi.org/10.1007/978-1-4939-9034-4_1

as combination drug regimens. Cyclosporine was the first major breakthrough in this regard; subsequent generation calcineurin inhibitors (CNI) have improved therapeutic index although resultant severe immune suppression and the risk for opportunistic infection like CMV, BK virus, and certain posttransplant cancers question the therapeutic feasibility for agents such as tacrolimus, especially in patients with low risk for allograft-related complications. Serious infections due to cytomegalovirus including viremia and end-organ disease, BK virus viremia, viruria, and BK virus allograft nephropathy with risk for potential graft compromise, rare progressive multifocal leukoencephalopathy due to polyomavirus, higher potential for opportunist cancers such as Kaposi's sarcoma, EBV lymphoproliferative disorders among others, are well-recognized limitations in individuals given tacrolimus for extended duration with doses leading to prolong high serum drug concentration [11]. Experience with sirolimus, a macrolide xenobiotic that induces potent immune suppression via inhibition of mechanistic target of rapamycin (mTOR; a conserved threonine and serine protein kinase) was associated with lower incidence of CMV infection in solid organ transplant recipients. This protective antiviral effect of mTOR inhibitors against BK virus nephropathy after renal transplantation has not been noted consistently. Additionally, antitumor properties of mTOR inhibitors may favorably influence the lower incidence and risk for posttransplant malignancies in recipients of solid organ allografts, especially those with a profile that indicates low risk for graft rejection [12].

Monoclonal antibodies against T- and B-cell pathways have also gained prominence, as potential treatment options. Alemtuzumab (Campath) is a monoclonal antibody that targets C52 antigen expressed on all lymphocytes. Treatment with Campath results in profound lymphocyte depletion. The drug-induced immune suppression may last for up to 9 months, although maximum degree of lymphopenia is noted between 8 and 9 weeks after therapy. As part of HSCT preparatory condition regimen, treatment with alemtuzumab was associated with reduced risk for GVHD following allogeneic hematopoietic stem cell transplantation [13].

In kidney transplant recipients, the risk for organ rejection was low in patients given alemtuzumab; however, this benefit was mainly observed in patients that were at a low risk for allograft rejection [14]. Other trials are underway with the aim to explore regimen(s) that may spare CNI (tacrolimus) for the prevention of allograft rejection.

Humanized monoclonal antibody rituximab that targets CD20 antigen expressed prominently and selectively on B lymphocytes forms the cornerstone for treatment of solid organ antibody-mediated renal allograft rejection. It is also considered the standard of care for the treatment of posttransplant B-cell lymphoproliferative disorders [15].

Systemic glucocorticoids have maintained relevance in drug cocktails given to prevent and treat solid organ graft rejection and GVHD. Since the early observation enabled addition of corticosteroids to successfully reduce cyclosporine dose that was traditionally needed to prevent rejection of transplanted allograft, this observation was regarded as a major breakthrough and forged the path for preservation of transplanted organs without serious, lifethreatening CNI toxicity. Detailed discussion regarding immunosuppressive agents for prevention and treatment of allograft rejection is provided in chapters throughout this book.

A keen understanding of patients' underlying immune defect(s) is the knowledge cornerstone, essential for optimizing infection risk stratification, assessing need for preventive, preemptive or empiric antimicrobial therapy. This information serves as an imperative in establishing meaningful patient-centered management and infection prevention paradigm [16, 17]. Table 1.1 provides an outline for such a relationship between underlying immune defects and susceptibility for particular group of pathogens. It is also important to note that a combination of unrelated immune defects may overlap. Furthermore, such patients may present with multiple infections concurrently, sequentially, or in close proximity to a primary infection episode, with a variety of conventional and opportunistic microorganisms.

An extensive exposure to hospital environment poses risk for transplant recipients to acquire infections that may not respond to conventional antimicrobial drugs. The recent interest in exploring the potential influence of perturbation and reorganization of hosts' microbial flora or microbiota resulting from extensive exposure to healthcare environment, broad-spectrum antimicrobial drugs among other factors, has yielded greater insight into a field that was largely underappreciated for decades. Altered orointestinal microbiota has been proposed in limited observational studies to influence the risk for acquiring infection, recurrence of previously resolved infection, suboptimum response to antimicrobial therapy, and importantly, long-term viability of the transplanted allograft [18-20]. The possibility of noninfectious complications and their potential relationship with altered hosts' microbiota are currently under investigation.

An important approach in the assessment of transplant patients lends from the understanding and knowledge of temporal relationship for the risk of infection that may occur during various clinical phases after transplantation procedure (Table 1.2, with Figs. 1.1, 1.2, 1.3, 1.4, 1.5, and 1.6). For example, patients with long-standing chronic GVHD are

Table 1.1	Infections in transplant patients in relationship with the underlying immune defects

		Vecete and dimembie			
Immune defect	Bacteria	Yeasts and dimorphic fungi	Filamentous molds	Viruses	Parasites
Granulocytopenia	Staphylococcus aureus	Candida spp.	Hyalohyphomycetes (hyaline or clear wall)	Herpes simplex virus type I and II	
[ANC < 500 cell/ml]	Streptococcus pneumoniae	Candida albicans ^a	Aspergillus fumigatus	Varicella zoster virus	
	<i>Streptococcus</i> gp A, and gp B	Non- <i>albicans</i> <i>Candida</i> spp.	Aspergillus flavus		
	<i>Enterococci</i> including VRE ^b	Candida glabrata ^c	Aspergillus niger		
	Coagulase-negative Staphylococcus ^d	Candida krusei ^e	Aspergillus terreus ^t		
	Enterobacteriaceae	Candida parapsilosis ^g	Aspergillus nidulans		
	Escherichia coli	Candida guilliermondii ^g	Non-Aspergillus hyalohyphomycetes		
	Klebsiella species	Non-Candida yeastsh	Fusarium spp. ⁱ		
	Enterobacter spp.	Trichosporon asahii	Paecilomyces		
	Proteus spp.	Saprochaete	Mucormycoses		
		capitata ^j			
	Citrobacter spp.	Saccharomyces	Mucorales species ^k		
	Serratia spp.	Magnusiomyces capitatus	Dematiaceous (black or melanin pigmented) molds		
	Nonfermentative gram-negative bacteria	Rhodotorula mucilaginosa	Alternaria, Bipolaris, G spp.	Curvularia, Exserohilum	
	Pseudomonas aeruginosa	Wickerhamomyces anomalus	Pseudallescheria boydii		
	Stenotrophomonas maltophilia	Pichia kudriavzevii	Scedosporium apiospermum		
	Acinetobacter species	Cyberlindnera fabianii	Scedosporium prolificans		
	Achromobacter spp.	Kodamaea ohmeri			
		Lodderomyces			
		elongisporus Pseudozyma			
Cellular immune defects	Nocardia asteroides complex	Cryptococcus neoformans	Aspergillus spp.	Human cytomegalovirus	Toxoplasma gondii
	Salmonella typhimurium	Endemic mycoses	Non-Aspergillus hyalohyphomycetes	Respiratory viruses	Strongyloides stercoralis ¹
	Salmonella enteritidis	Histoplasma capsulatum	Pneumocystis jirovecii	Influenza A and influenza B	<i>Microsporidium</i> spp.
	Rhodococcus equi	Coccidioides immitis	Dematiaceous (black pigmented wall) molds	Respiratory syncytial virus	Cryptosporidium
	Rhodococcus bronchialis	Blastomyces dermatitidis	Mucormycoses	Parainfluenza type-3	Microspora spp.
	Listeria monocytogenes	Paracoccidioides brasiliensis	Cryptococcus neoformans	Adenovirus	Cyclospora spp.
	Mycobacterium tuberculosis		Endemic mycoses	Human coronavirus HKU1, NL63, OC43 and C229E ^m	Leishmania donovani ⁿ
	Nontuberculous mycobacteria		Histoplasma capsulatum	Corona virus, SARS, MERSº	Leishmania infantum ^p
	Legionella spp.		Coccidioides immitis	Human metapneumovirus ^q	
	Yersinia spp.		Blastomyces dermatitidis	Varicella	
	Campylobacter jejuni ¹		Paracoccidioides brasiliensis	Varicella zoster virus	
				Human herpes virus 6	
				Parvovirus B19	
				Hantavirus	

Table 1.1 (continued)

		Yeasts and dimorphic			
Immune defect	Bacteria	fungi	Filamentous molds	Viruses	Parasites
Humoral immune	Encapsulated bacteria			Varicella zoster virus ^s	Giardia lamblia
defects	Streptococcus			Echovirus and other	Babesia microti
	pneumoniae			enteroviruses	
	Haemophilus				
	influenzae				
	Neisseria				
	meningitidis Campylobacter jejuni				
Splenectomy and	Encapsulated bacteria				Giardia lamblia
functional	Streptococcus				Babesia microti
hyposplenism	pneumoniae				Babesia microii
	Haemophilus influenzae				
	Neisseria meningitidis				
	Capnocytophaga canimorsus				
Mixed immune defects	Streptococcus pneumoniae		Pneumocystis jirovecii	Respiratory viruses	Toxoplasma gondii
	Staphylococcus aureus		Aspergillus spp.	Adenovirus	Strongyloides stercoralis
	Haemophilus influenzae		Candida spp.	Varicella zoster virus	
	Klebsiella pneumonia		Cryptococcus neoformans		
	Pseudomonas aeruginosa		Mucormycoses		
	Acinetobacter spp.		Endemic mycoses		
	Enterobacter spp.		Dematiaceous (black) molds		
	Stenotrophomonas maltophilia Nocardia asteroides complex				
	Listeria monocytogenes				
	Legionella spp.				
	Campylobacter jejuni				

Patients with mixed immune defects include recipients of allogeneic hematopoietic stem cell transplant; patients receiving treatment for acute or chronic graft-versus-host disease; acute or chronic solid organ allograft rejection

Abbreviations: VRE vancomycin-resistant enterococci, SARS severe acute respiratory syndrome, MERS Middle East respiratory syndrome

^aIn the past two decades, the prevalence of non-albicans invasive candidiasis is seen in excess of *Candida albicans* infections; the emergence of invasive disease due to *Candida auris* with limited susceptibility to currently used antifungal drugs is a challenge

^bCertain transplant units across the USA have seen a high level of VRE colonization and subsequent risk for invasive disease; these infections are often a surrogate and reflect hosts' high-risk status

^cIncreasing reports of echinocandin resistance among clinical isolates of *C. glabrata* is an alarming trend, where this to become more prominent in the future

^dAmong CoNS group of bacteria, an emerging and recently described highly virulent *Staphylococcus lugdunensis* causes tissue-destructive infections similar to *S. aureus* with an emphasis on necrotizing and difficult-to-treat endocarditis

^eCandida krusei is intrinsically nonsusceptible to fluconazole and to some extent itraconazole; these yeasts are uniformly susceptible to the broadspectrum triazoles such as voriconazole, posaconazole, and isavuconazonium sulfate

^fAspergillus terreus is the only clinically relevant Aspergillus species that exhibit variable degree of resistance to amphotericin B, thereby increasing the probability of failure to amphotericin-based therapy

^gCandida parapsilosis and C. guilliermondii have demonstrated less inherent in vitro susceptibility to the echinocandins; alternative antifungal agents are suggested to treat such infections

^hNon-*Candida* and non-Cryptococcal yeasts are rare cause of fungemia seen mainly in patients with severe immune dysfunction and those with chronic lung disease

ⁱ*Fusarium* spp. infections are now increasingly attributed to food-related intestinal tract colonization and invasive disease during periods of severe immune suppression, such as profound and prolonged neutropenia, especially in patients with extensive orointestinal mucosal disruption; other filamentous fungal pathogens from food are *Aspergillus* and *Mucor* spp. Rare organisms linked to food and food products include *Lichtheimia*, *Curvularia*, *Phoma*, *Trichoderma*, *Alternaria*, *Acremonium*, *Paecilomyces*, *Penicillium*, *Achaetomium*, *Amesia*, *Botryotrichum*, *Chaetomium*, *Dichotomopilus*; *Microascus*, *Scopulariopsis*, and *Wallemia*. *Mucor* circinelloides was isolated from yogurt samples and presumed to cause illness in >200 consumers

Table 1.1 (continued)

^jGeotrichum capitatum is now named Saprochaete capitata

^kMucormycoses in transplant recipients remain an uncommon cause of invasive fungal disease, although patients with voriconazole breakthrough mold disease have significantly higher probability of mucormycosis

¹Strongyloides stercoralis may lead to serious, life-threatening hyperinfection syndrome in patients with marked cellular immune defects following allogeneic allograft transplantation, albeit, this remains a rare complication in patients undergoing transplantation even in the endemic regions ^mThese strains of human coronavirus may cause potentially serious lower respiratory tract disease in the immunocompromised host

"L. donovani and L. infantum may lead to serious visceral leishmaniasis in patients with profound cellular immune defects; L. donovani is seen in Africa and Asia

^oThese novel outbreak stains of coronavirus have been observed to cause serious illness in immunosuppressed patients and those with diabetes mellitus, ischemic heart disease, or end-stage kidney disease

PL. infantum is seen in Africa, Europe, Mediterranean, Central and South America

^qSystemic extrapulmonary infection including viral encephalitis along with viral pneumonitis in allogeneic stem cell transplant recipients has been noted to cause devastating and life-threatening illness

^rThe incidence of campylobacter disease in AIDS patients is 40-fold higher than in the general population; patients with humoral and cellular immune defects are considered susceptible; it is important to recognize the serious sequelae such as Guillain-Barre syndrome, and reactive arthritis may follow acute infection episode in a small group of patients

⁵VZV is rarely associated with systemic dissemination in patients with humoral immune defects or even those with mixed immune dysfunctions

Pathogens	Pretransplant disease or high-risk exposure-related infections	Pre-engraftment during neutropenia (0–30 days)	Post-engraftment including acute GVHD (30–100 days)	Posttransplant including chronic GVHD (>100 days)	Posttransplant seasonal community-onset infections
Bacteria	Streptococcus pneumoniae ^a	Staphylococcus aureus ^b	GPB and GNB bacteremia ^c	Encapsulated bacteria ^d	Community acquired pneumonia
	Staphylococcus aureus ^b	Coagulase-negative staphylococcus ^e	Listeria monocytogenes ^f	GPB and GNB bacteremia ^c	Community onset sinusitis
	Coagulase-negative staphylococcus ^e	Enterobacteriaceae ^g	Nocardiosis ^h	Listeria monocytogenes	Community onset or travel-related enterocolits
	Enterobacteriaceae ^g	Escherichia coli		Nocardiosis	Community onset urinary tract infection including pyelonephritis
	Escherichia coli	Klebsiella pneumoniae and Klebsiella oxytoca			Community onset <i>Clostridium</i> <i>difficile</i> -associated diarrhea
	Klebsiella pneumoniae and Klebsiella oxytoca	Nonfermentative gram-negatives ⁱ			
	Nonfermentative gram-negatives ⁱ	Pseudomonas aeruginosa			
	Pseudomonas aeruginosa	Stenotrophomonas maltophilia			
	Stenotrophomonas maltophilia	<i>Clostridium difficile</i> -associated diarrhea ^j			
	Clostridium difficile- associated diarrhea ^j				
Mycobacteria	<i>M. tuberculosis</i> ^k			Reactivation of latent tuberculosis	
	M. kansasii ¹			Relapse of previously treated <i>M. kansasii</i> infection	
	Nontuberculous mycobacteria			New or relapse MAC infection ^m	
	Rapid-growing mycobacteria				
	Slow-growing mycobacteria				

Table 1.2 Infections in recipients of allogeneic hematopoietic stem cell transplantation

(continued)

Table 1.2 (continued)

Pathogens	Pretransplant disease or high-risk exposure-related infections	Pre-engraftment during neutropenia (0–30 days)	Post-engraftment including acute GVHD (30–100 days)	Posttransplant including chronic GVHD (>100 days)	Posttransplant seasonal community-onset infections
Viruses	Herpes simplex type 1 and II	Herpes simplex type I and II	Cytomegalovirus ⁿ	Cytomegalovirus ^o	Influenza A and B ^p
	Human cytomegalovirus ^q	Varicella zoster virus ^r	Human herpesvirus ^s	Human herpesvirus 6 ^s	Parainfluenza
	Varicella zoster virus	Cytomegalovirust	Adenovirus ^u	Adenovirus ^u	RSV ^v
		Human herpesvirus 6 ^s	BK virus cystitis ^w	Epstein-Barr virus PTLD ^x	hMPV ^y
		Adenovirus ^u	Epstein-Barr virus PTLD ^x	Parvovirus B 19 ^z	hCoV ^{aa}
				BK virus cystitis ^w	
				JC virus PML ^{ab}	
Molds and	Invasive aspergillosis	Candida fungemia ^{ac}	Invasive aspergillosisad	Invasive aspergillosis ^{ae}	
yeasts	Endemic mycosis	Invasive aspergillosis and rare molds ^{af}	Invasive candidiasis ^{ag}	Invasive candidiasis ^{ah}	
	Cryptococcal disease		Pneumocystis jirovecii ^{ai}	Pneumocystis jirovecii	
	Invasive candidiasis		Zygomycosis ^{aj}	Zygomycosis ^{aj}	
			Fusariosis ^{ak}	Fusariosis ^{ak}	
			Dematiaceous (melanin pigmented) molds ^{al}	Dematiaceous (melanin pigmented) molds ^{al}	
			Cryptococcal diseaseam	Cryptococcal diseaseam	
Parasites	Toxoplasma gondii		Toxoplasma gondii ^{an}	Toxoplasma gondii ^{an}	
	Strongyloidiasisao		Strongyloidiasisap	Strongyloidiasisap	
	Chagas diseaseaq		Chagas disease	Chagas disease	
	Leishmaniasisar		Leishmaniasis	Leishmaniasis	

^aPneumococcus is the leading cause of community-onset bacterial pneumonia, and patients with hematologic malignancies, especially those with cancer or antineoplastic therapy-related humoral immune dysfunction and various other medical comorbid conditions such as diabetes mellitus, chronic structural lung diseases like emphysema, end-stage kidney disease, and cirrhosis of liver to name a few, are at risk for potentially severe systemic disease

^bThe emergence and global spread of community-acquired methicillin-resistant *S. aureus* has made empiric use of anti-staphylococcal penicillin's obsolete

^cCatheter-related bloodstream infection, extensive healthcare environment exposure and hospital-acquired pathogens, persistent mucositis, orointestinal or cutaneous hyper-acute and acute GVHD, and accelerated iatrogenic immune suppression including need for high-dose corticosteroids are salient factors that promote invasive bacterial infections during this period. Pretransplant colonization due to VRE, MRSA, or MDR GNB including MRD Pseudomonas, ESBL-producing *Enterobacteriaceae*, and some food-borne fungi such as Fusarium spp., especially in transplant unit located in certain geographic areas, are thought to promote infections due to these pathogens

^dHyposplenism after HSCT is a late complication and commonly attributed to late-onset acute GVHD, most frequently noted in patients with chronic GVHD. It is however important to recognize that a number of allogeneic HSCT recipients without clinical diagnosis of GVHD may have functional hyposplenism and are at risk for severe, systemic infection due to encapsulated bacteria

^eIndwelling prosthetic devices including intravascular access catheters; surgical drains; implanted prosthesis such as heart valves, joints, biliary, bronchial, urinary tract stents; and other various implantable surgical devices promote infections due to CoNS and *Candida* spp. that commonly colonizes the skin and genitourinary and orointestinal tracts

¹Listeria bacteremia and meningitis are rare complications in patients receiving TMP-SMX prophylaxis for PCP. The incidence of bacterial meningitis is 30-fold higher in HSCT recipients compared with persons without HSCT. As expected, patients undergoing allograft stem cell transplant are at a significant higher risk compared with those undergoing autologous HSCT (70 vs. 16 per 100 000 patients per year). In HSCT recipients *Streptococcus pneumoniae* is the most common pathogen associated with bacterial meningitis, *Neisseria meningitidis*, *Streptococcus mitis*; listeriosis may be rarely seen

^gIncreasing frequency of multidrug-resistant strains to fluorinated quinolones and regional high prevalence of extended-spectrum beta-lactamases producing GNB including carbapenem-resistant *Enterobacteriaceae* has seriously curtailed treatment options for such infections. *Enterobacteriaceae* include *Salmonella* spp., *Escherichia coli*, *Yersinia pestis*, *Klebsiella* spp., *Shigella*, *Proteus*, *Enterobacter*, *Serratia*, and *Citrobacter*

^hCNS nocardiosis is difficult to distinguish from brain toxoplasmosis, tuberculosis, aspergillosis and other neurotropic clear (hyaline) and black mold infections, and CNS lymphoma

Nonfermentative gram-negatives include *Pseudomonas aeruginosa*, *Burkholderia cepacia*, *Stenotrophomonas maltophilia*, *Acinetobacter baumannii*, other *Acinetobacter* spp., *Alcaligenes* and *Achromobacter* spp., and emerging cases of *Sphingomonas paucimobilis*. Inherent or acquired drug resistance is a major concern in selection of effective empiric therapy for pathogens in this group, which may either lack the drug target site or produce extended-spectrum hydrolyzing enzymes aginst a variety of commonly used antimicrobials; these bacteria may also exhibit phenotypes with reduced expression of outer membrane porins and/or heightened expression of efflux pumps among other mechanisms for antimicrobial drug resistance

^jOrointestinal mucositis increases the risk of CDAD and so does exposure to broad-spectrum antimicrobials and possibly antineoplastic chemotherapy-induced alteration in hosts' intestinal protective anaerobic microbiota

Table 1.2(continued)

^kIt now considered standard of care to perform interferon-gamma release assays for diagnosis of latent tuberculosis infection; treatment with isoniazid is considered gold standard and should be administered for a minimum of 6 months prior to the transplantation procedure, with the aim to prevent active tuberculosis infection during the post-transplant period. Such infections tend to be more serious and, due to potential drug toxicity and drug-drug interaction, often difficult to treat after allograft transplantation

¹*M. kansasii* leads to clinical disease indistinguishable from *M. tuberculosis* infection; risk for infection relapse, drug resistance, and infection recalcitrance are reason for longer duration of therapy

"In a recent study from South Korea, in 7342 SOT and 1266 HSCT recipients, 22 patients developed NTM after a median 2 years following transplantation. *Mycobacterium avium-intracellulare* complex was the most common pathogen isolated; nodular bronchiectasis (~80%) was common presentation. A near 70% response to antimicrobial therapy in this group was encouraging. However, disseminated NTM including MAC disease in severely immunosuppressed patients following high-risk allogeneic HSCT may occasionally present as salvage therapy-refractroy recalcitrant bacteremia with high fatality

ⁿRisk of CMV infection is highest in CMV-seronegative recipients in whom allograft is given from a CMV-seropositive donor. Ganciclovir prophylaxis effectively prevents CMV disease in high-risk patients during the first 100 days after allogeneic HSCT

^oLate CMV disease is associated with high mortality rate nearing 45% and seen 170 median days after HSCT. It is important to recognize that close to 40% of patients that respond to the initial episode of late posttransplant CMV infection will develop a second CMV episode within a median of 11–12 weeks. Three months after HSCT, patients with positive CMV-pp65 antigenemia; post-engraftment severe lymphopenia of less than 100 lymphocytes/mm³, especially those with helper T-cell lymphocytopenia of less than 50 cells/mm³; presence of GVHD; and those with undetectable CMV-specific T-cell responses are at higher risk for late CMV end-organ disease. Furthermore, after 100 days following transplantation, presence of CMV viremia or pp65 antigenemia and severe lymphopenia endorsed by less than 300 lymphocytes/mm³ is considered strong predictors for late CMV disease and death

^pMost frequently detected viruses in symptomatic HSCT or SOT recipients with URTI are picornaviruses (~40%), such as rhinovirus and enterovirus, whereas coronavirus and influenza are isolated in nearly 20% of such patients, each. Influenza URTIs similar to RSV and unlike parainfluenza virus infections have the potential for progression to the lower respiratory tract. Viral pneumonitis is a serious complication in patients following allogeneic stem cell transplantation. It is important to recognize that hosts' immune response to influenza infection garners a high IFNgamma state resulting in a transient increased susceptibility for secondary bacterial infections like pneumococcus, *S. aureus*, and *Pseudomonas* spp. The resulting superimposed bacterial pneumonia may precipitate life-threatening sepsis and respiratory failure. Furthermore, RTVIs are recognized as fostering enhanced susceptibility for invasive fungal lung disease during early and late transplant periods

^qSerologic evaluation of the donor and recipient for latent CMV infection is the cornerstone during pretransplant assessment. Dissonance between D+ and R- CMV serology is the most important complicating factors during early and late posttransplant period. Antiviral prophylaxis, preemptive and empiric therapy approaches are based on CMV serologic disparities

'It is standard to provide prophylaxis for HSV and VZV during preparatory conditioning regimen and continue during the early post-HSCT period. Prophylaxis may have to be extended in patients with acute GVHD, cancer recurrence, patients undergoing high-risk transplantation procedure, and those with primary or secondary allograft compromise

^sHHV-6 high-grade viremia by DNA analysis has been associated with central nervous system (CNS) dysfunction, although viral interstitial/alveolar pneumonitis is not an uncommon disease attributed to HHV6 infection following allogeneic HSCT. HHV6 may also present as limbic encephalitis with subcortical temporal lobe seizure activity presenting as memory loss and insomnia. Febrile partial or complete myelosuppression and/or skin rash should alert the physicians regarding HHV6 as a potential treatable cause of secondary stem cell allograft loss. Viral gastroduodenitis, colitis, and pericarditis are other clinical manifestations attributed to HHV6 infection in this vulnerable population. An association with post-HSCT HHV6 viremia with delayed monocyte and platelet engraftment, increased platelet transfusion requirements, risk for high-grade GVHD, and allcause mortality needs further evaluation

'Early CMV low-grade viremia was observed by the use of ultrasensitive nucleic assays, within 3–4 weeks after high-risk allogeneic stem cell graft transplantation

"The incidence of adenovirus disease ranges from 3% to as high as 47% in high-risk pediatric allogeneic HSCT recipients. Patients undergoing T-cell-depleted stem cell grafts and those with acute graft-versus-host disease are also at increased risk for severe life-threatening adenovirus disseminated disease, which is a well-recognized complication in patients with persistent peripheral blood lymphocyte counts of <300 cells/mm³. Infection involves respiratory (viral pneumonitis), gastrointestinal (colitis, including hemorrhagic colitis) tracts, and hepatitis; patients may present with posttransplant hemorrhagic cystitis. Adenovirus dissemination represents severity of underlying immune defect and is seen in 10–20% of patients with end-organ viral disease, except in patients with adenovirus cystitis, where disseminated adenoviral disease is seldom observed

^vLong-term (>30 days) viral shedding is not uncommon in patients following allogeneic HSCT; RSV is notable RTVI in this regard. The 80 days of median duration of viral shedding may extend to just under a year in some allogeneic transplant recipients. This potential for pronged viral shedding warrants heightened awareness and strict adherence to appropriate precautions to prevent nosocomial RSV transmission to other vulnerable hospitalized patients. In the pediatric HSCT recipients, RSV infection within 60 days after transplant, patients given systemic corticosteroids within a week prior to the onset of RSV infection and the need for assisted mechanical ventilation were significant predictors for subsequent complications and death

"The BK virus was first isolated in 1971; after primary childhood infection, persistent BKV infection occurs within renal tubular cells and the urothelium. Viral reactivation in the recipients of kidney and allogeneic HSCT usually presents as allograft nephropathy and hemorrhagic cystitis, respectively. Presently, reduction in drug-induced immune suppression, when possible, and supportive care are the only viable treatment option; direct antiviral drug against BKV remains elusive

*EBV influence over B-cell malignant clones may act through different mechanisms of transcriptional regulation and possibly variance in genetic mechanisms that eventually determined viral latency during early EBV infection and EBV-host interaction

^yThe incidence of hMPV infection was similar to the incidence of RSV or parainfluenza virus UTRIs in patients undergoing HSCT. hMPV infections are notable for low risk of progression to the LRT. Serious systemic hMPV disease including viral encephalitis has been reported. Overall, these infections are well-tolerated, albeit hMPV pneumonitis in severely immunosuppressed stem cell allograft recipients may result in serious life-threatening lung disease

Table 1.2(continued)

^zParvo B19 infection may present as pure red cell aplasia after allogeneic HSCT

^{aa}hCoV similar to hMPV is a common RTV. Serotypes associated with disease in transplant population include hCoV-OC43 followed by NL63, HKU1; 229E is less common. Unlike hMPV, these infections have a higher likelihood for progressing to the LRT, which often presents as subclinical, mild to moderate viral illness. In an observation among HSCT recipients, hCoV infection resulted in a notable number (~20%) of hospitalizations. In concert with hMPV infection, despite presence of severe immune suppression, hCoV-related confirmed deaths in allogeneic HSCT recipients remain less than 5%. Approximately one-third of transplant patients with hCoV infection may have infection due to other RTVs such as human bocavirus (HBoV). HBoV is an uncommon RTV in transplant patients and often (>80%) seen with other RTVs. HBoV rarely causes LRTI; most infections are well-tolerated despite, transplant-related severe immune suppression

^{ab}John Cunningham virus (JCV)-associated progressive multifocal leukoencephalopathy (PML) is an uncommon disease in patients undergoing allogeneic HSCT. In a report from Israel, 20 of 40 patients (24%) with JCV reactivation had persistent viremia after receiving myeloablative and nonmyeloablative pretransplant conditioning. PML was diagnosed in two patients with persistent JCV viremia, 96 and 127 days after HSCT. Advanced age was a significant predictor of JCV reactivation; 70% of these allogeneic HSCT recipients with persistent viral reactivation had died. Identifying high-risk patients with persistent JCV reactivation, especially those with incremental levels of viremia, may benefit from reduced drug-induced immune suppression for prevention of JCV leukoencephalopathy. PML continues to remain a devastating, albeit rare posttransplant infectious complication. *Artesunate*, an antimalarial drug that showed potent ex vivo activity against HHV-6, however, clinical response to artesunate in HSCT recipients with JCV-PML, has not been encouraging

^{ac}Candidemia is seen in patients with severe pre-engraftment neutropenia (absolute neutrophil count <500 cell/microliter) that extends longer than 5 days. The increase in non-*albicans Candida* spp. is mainly due to *C. glabrata*, although patients following HSCT are also at risk for *C. krusei* infection. Emergence of echinocandin resistance among clinical *C. glabrata* isolates is concerning. For patients with *C. parapsilosis* infection, it is recommended to use antifungal drugs other than echinocandin class. The emergence of MDR *Candida auris* infections in transplant population makes selection of empiric anti-yeast therapy more challenging

^{ad}Genetic susceptibility for IA include mutations in Dectin-1 and DC-SIGN among other well recognized risk factors such as high-risk allogenetic HSCT, CMV and respiratory virus infection, and positive *Aspergillus* PCR. It was recently noted that presence of three of the aforementioned factors generated a 57% probability for developing IA. In patients with no risk factors, the probability of IA was 2%, compared to ~80% in patients with four or more such risk factors

^{ac}CMV reactivation after stem cell allograft transplantation increases the risk for IFD during the late transplant period. Unlike the risk factors for early IFD such as AML (HR 3), HLA antigen-mismatched donor graft (HR 3.4); HSCT recipients with lymphoma (HR 8.5), CMV reactivation (HR 5.5), and severe neutropenia (HR 3.5) are considered prominent risk factors for late-onset IFD. Patients with pretransplant IgG responses against *Aspergillus* proteins indicating significant fungal colonization or ongoing subclinical *Aspergillus* infections before preparatory conditioning regimen has commenced needs further clinical validation. Evaluation of 5589 HSCT recipients at a comprehensive cancer center between 1985 and 1999 showed increased incidence of IA after 1992 and remained high during that decade. The authors also reported increasing frequency of non-*Aspergillus* molds such as *Fusarium* spp. and mucormycosis in the late 1990s. These non-*Aspergillus* molds were prominent in patients undergoing multiple transplants. Most cases of mucormycosis were seen during the late transplant period, especially in patients with chronic GVHD. In patients undergoing nonmyeloablative HSCT, presence of severe acute GVHD, chronic extensive GVHD, and CMV infection are prominent risk factors for IFD

^{af}Invasive aspergillosis is a complication seen in patients with delayed (>2 weeks) recovery of peripheral blood granulocyte count. Patients receiving high-dose systemic corticosteroids are also at an increased risk. *Aspergillus fumigatus* remains the most prevalent mold to cause invasive human disease, including in patients undergoing HSCT. Infections caused by *Scedosporium* and *Fusarium* spp. are occasionally seen in hematopoietic stem cell allograft recipients and commonly present during the period(s) of severe and prolonged neutropenia

^{ag}Routine blood cultures have low sensitivity for diagnosis of fungemia. Carbohydrate biomarker (1, 3)- β -d-glucan has emerged as a useful laboratory test for the diagnosis of invasive yeast and mold disease. Furthermore, it may be used to monitor response to systemic antifungal therapy and infection relapse

^{ah}Post-HSCT recovery of antigen-specific T lymphocyte-mediated immune response against CMV and *Candida albicans* is regarded as critical during the early and the late transplant period. Most patients develop antigen-specific T-cell response early in the transplant period which is derived from clones of both donor and recipient stem cell origin. Reconstitution of immune response via antigen-specific T lymphocytes of recipient origin is weakened in patients with GVHD. Incidence of IC during the 1st year after nonmyeloablative (5%) and myeloablative transplant conditioning is lower than that for IA (14%). Echinocandin nonsusceptible *Candida* spp. infection has been recently recognized as an emerging challenge in providing care for these highly vulnerable patients

^{ai}PCP is a serious OI in transplant patients with severe cellular immune defect(s). Routine anti-PCP prophylaxis breakthrough infections are rare; although in patients receiving aerosolized pentamidine, atypical upper lung PCP may occasionally occur

^{aj}Invasive zygomycosis or mucormycosis may occur disproportionally more frequently in patients on voriconazole prophylaxis and those with sinuorbital invasive mold disease. In transplant patients, the overall prevalence is less than 8% among all invasive fungal infections

^{ak}Nearly half of the patients with disseminated fusariosis have evidence of fungemia, and close to 80% may exhibit multiple (>10–15) papular skin lesions with a necrotic center that is indistinguishable from ecthyma gangrenosum due to *Staphylococcus aureus* or disseminated *Pseudomonas* spp. infection

^{al}Dematiaceous or melanin pigmented molds are associated with chronic localized infections and prevalent in certain geographic regions. In transplant patients, disseminated infections may occur; neurotropism is an important feature of these infections, and treatment with older antifungal drugs such as amphotericin B and early generation triazole-based compounds was associated with high rates of treatment failure

^{am}The cumulative incidence of CNS infection following HSCT is <1% within first 30 days, 2% within 3 months, and 5% after 5 years following transplantation. Significantly high risk of CNS infection 5 years after CBT (8%) vs. matched related HSCT (2%) is important to note for the purpose of risk stratification. CNS fungal (35%) and viral (32%) infections are prominent, whereas toxoplasmosis and bacterial infection are seen in just over 10% of the patients. Aspergillosis is common (67%) followed by *Cryptococcus neoformans* (17%). CNS infection in transplant population is associated with high mortality (59%), and low (20%) 5-year overall survival

Table 1.2 (continued)

^{an}Donor-derived toxoplasmosis has been reported along with cases of brucellosis in the endemic regions, along with West Nile virus infection, rabies, Chagas disease, and rare cases of lymphocytic choriomeningitis virus infection

^{ao}*Strongyloides stercoralis* (pinworm or threadworms and *Enterobius vermiculari*) in the underdeveloped countries where fecal contamination of soil and water is common; evaluation of allogeneic transplant candidates requires serologic evaluation for exposure and if present, appropriate treatment should be completed for intestinal subclinical parasitic infestation prior to the transplantation procedure

^{ap}In patients with extensive T-cell immune defects, *Strongyloides stercoralis* may cause accelerated autoinfection. Hyperinfection pulmonary syndrome in such patients is almost always fatal. Screening serology tests for the presence of strongyloidiasis by enzyme-linked immunosorbent assay after allogeneic HSCT may be falsely negative; and stool ova and parasite examination, in the absence of accelerated autoinfection during the pretransplant, is also riddled with low sensitivity

^{aq}American trypanosomiasis caused by *Trypanosoma cruzi* needs to be assessed in patients planned to undergo allograft transplant procedure from endemic regions

^{ar}Leishmania is transmitted by the bite of certain species of sand flies and presents as cutaneous (common) and visceral (uncommon and severe) disease; pretransplant evaluation should include serologic testing for prior exposure to these parasites in appropriate patients with high risk for prior exposure

Abbreviations: GVHD graft-versus-host disease, HSV herpes simplex virus 1 and 2, CMV cytomegalovirus, VZV varicella zoster virus, HHV6 human herpesvirus 6, EBV Epstein-Barr virus, CoNS coagulase-negative Staphylococcus, CDAD Clostridium difficile-associated diarrhea, GPB gram-positive bacteria, GNB gram-negative bacteria, HSCT hematopoietic stem cell transplantation, RSV respiratory syncytial virus, hMPV human metapneumovirus, hCoV human coronavirus hypervirulent subtypes NL63 and HKU1, PML progressive multifocal leukoencephalopathy, EBV-PTLD Epstein-Barr virus-associated B-cell lymphoproliferative disorder, HR hazard ratio, IFD invasive fungal disease, IA invasive aspergillosis, IC invasive candidiasis, SOT solid organ transplant, URTI upper respiratory tract infection, LRTI lower respiratory tract infections, RTV respiratory tract virus, RTVIs respiratory tract virus infections, hCoV human coronavirus

Fig. 1.1 CT scan of lungs without intravenous contrast showing necrotizing left lung *Pseudomonas* infection in a patient following HSCT. The differential for this thick-walled irregular cavitary lesion is broad and includes other bacterial infection such as *Klebsiella* spp., *Stenotrophomonas maltophilia*, *Staphylococcus aureus*, *Streptococcus pneumoniae*, *Escherichia coli*, *Nocardia* spp.; *Mycobacterium tuberculosis* and nontuberculous mycobacterial infections. Cavitary rapidly growing cancers may have similar presentation, whereas viral infections including cytomegalovirus and adenovirus seldom present with such features. Other than suppurative necrosis of the lung, ischemic necrosis, i.e. pulmonary infarction, should also be considered. Tissue invasive mold lung disease may also have comparable radiographic presentation

Fig. 1.2 CT scan of lungs without intravenous contrast showing treein-bud appearance due to pulmonary *Mycobacterium avium* complex disease mostly involving the right lung demonstrating multiple areas of centrilobular nodules with a linear branching pattern. Endobronchial tuberculosis may present with such a radiographic finding, wherein patients with acutely developed tree-in-bud infiltrates bacterial or viral (CMV) etiology may also be entertained. It is important to note that bronchiectasis is the prominent radiographic presentation of *Mycobacterium avium* complex infection in patients undergoing transplantation. Rarely carcinomatous endarteritis due to breast or gastric cancer; bronchovascular interstitial infiltration due to lymphoma, leukemia, and sarcoidosis may have similar presentation. Scedosporium lung disease and pulmonary fusariosis may occassionally have nodular peribrochovascular distribution

Fig. 1.3 CT scan of lungs without intravenous contrast showing right lung *Mycobacterium kansasii* pneumonia with peribronchial thickening that could be mistaken for CMV pneumonitis and *Mycobacterium tuberculosis*, among other lung infections in a patients following allogeneic HSCT

Fig. 1.4 CT scan of lungs without intravenous contrast showing bilateral nodular zygomycosis in a patient following allogeneic HSCT while receiving voriconazole prophylaxis. The right lung nodule with a central cavity cannot be radiographically excluded from other causes of nodular pneumonia such as invasive pulmonary aspergillosis, *Fusarium* spp., and other mold lung disease. Among bacteria, *Nocardia* spp. is a concern in allograft transplant recipients with such radiographic presentation. Primary lung lymphoma may have similar presentation. Rarely, patients with relapse acute leukemia in the post HSCT period may present with atypical pulmonary infiltrates

Fig. 1.5 CT scan of lungs without intravenous contrast showing cavitary pneumonia with dense consolidation involving both lower lobes in a patient with GVHD, who developed infection due to dematiaceous mold following allogeneic HSCT. In the differential diagnosis, necrotizing bacterial, clear (hyaline) and black (melanin pigmented) mold infections should also be considered along with multifocal pulmonary nocardiosis

at an additional risk for infections that are often seen in asplenic patients or those with functional hyposplenism. Patients with chronic GVHD are not only at an increased risk for systemic fungal disease like invasive aspergillosis or herpes virus reactivation herald by CMV viremia; additionally, encapsulated bacteria such as outlined in Table 1.1 may also be included in the risk profile during evaluation of such patients.

Patients receiving treatment for acute GVHD after allogeneic HSCT have heightened risk for invasive aspergillosis and infections due to other filamentous molds. Unlike the first risk period for invasive mold disease in allogeneic stem cell recipients, which coincides with the period of preengraftment severe neutropenia, patients with acute and chronic GVHD are seldom neutropenic.

Table 1.3 illustrates the salient features of infection risk and their association with the type of stem cell graft, pretransplant conditioning preparatory regimens, and drugs commonly used in the prevention of GVHD. Cord blood stem cells are regarded as a major breakthrough for source that yields a steady supply of hematopoietic stem cells, especially among patients with difficult to find, immunologically (HLA-matched) compatible hematopoietic stem cell graft [18]. Cord blood stem cells have a limited number of nucleated cells that are adequate for children. In adults

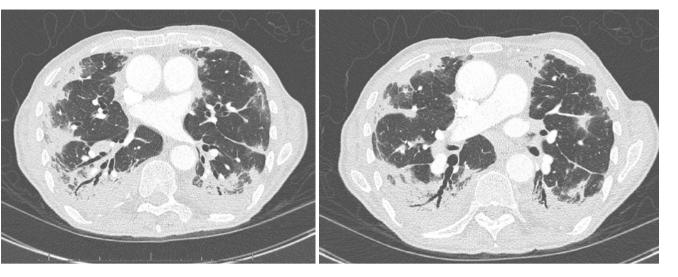


Fig. 1.6 CT scan of lungs without intravenous contrast showing cryptogenic organising pneumonia in a patient following allogeneic HSCT

that may be mistaken for fibrosing subacute infection due to endemic mycosis among other causes of subacute lung infection

due to larger body surface area, transplantation with less than optimum number of stem cells complicate posttransplant period with issues such as inadequate and delayed neutrophil engraftment and peripheral blood cell count recovery, precarious graft stability, and, similar to recipients of T-cell-depleted grafts, a higher risk for infections associated with severe and prolonged neutropenia or those observed during GVHD (Tables 1.1 and 1.2). Various strategies are being explored to assuage this limitation including transplantation with cord blood grafts from more than one donor and ex vivo expansion of a single donor cord blood graft to increase the yield of nucleated cells [21]. In a review of 100 cord blood transplants at a comprehensive cancer center in Houston, Texas, the infection incidence rate ratio, which was total infection episodes per days at risk (survival after CBT) \times 100, was 2.4 times higher in adult patients compared with children [22]. It was important to note that risk of infection was even greater (three times higher) in adults with neutropenia and was 1.9 times higher in patients with GVHD when compared with children undergoing CBT procedure [22].

It is considered essential to create a comprehensive infection assessment strategy that takes into account and recognizes the local issues at a particular transplant unit and its unique patient population. Such an approach requires cognizance of existing influences that may promote risk for infection including local and regional infection trends, patterns in pathogen prevalence and drug susceptibility profiles. Continued vigilance regarding emergent pathogens and everchanging infection risk profile with advances in transplant procedures and drug-induced immune suppression are of paramount importance in providing care for the highly vulnerable transplant population.

A variety of noninfectious conditions may clinically and radiographically emulate an infectious process. Among these noninfectious maladies, those involving the skin and the lungs are the great imitators; when present, they are difficult to clinically distinguish from infections such as cellulitis or pneumonia. Two chapters in this volume are dedicated to provide an in-depth discussion on these topics.

An approach for establishing correct diagnosis for opportunistic infections is based on the maxim "when uncertain, obtain a tissue sample." A diligent adjudication is the central tenet in establishing accurate diagnosis for the immunologically vulnerable patients, in whom proclivity for atypical disease presentation further complicates ascertaining correct and timely diagnosis. Inaccurate diagnosis under the old dispensation of serologic and culture-based system may lead to inappropriate and ineffective treatment, worsening patients' morbidity, risk for further complications, and death. Therefore, focused yet comprehensive differential diagnoses, which encompasses etiology of infections and noninfectious causes that may mimic an infectious process including but not limited to drug toxicity; de novo malignancies or post transplant cancer recurrence; typical or atypical presentation of lymphoproliferative disorders; immune-inflammatory diseases like GVHD; and tissue infiltrative processes such as solid allograft rejection among others may greatly improve the guidance for an optimized management approach in patients undergoing lifesaving, stem cell and solid organ allograft transplantation.