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Preface

Nonlinear propagation of intense femtosecond laser pulses in bulk transparent
media produces a wealth of physical effects, whose combined action leads to a
specific propagation regime, termed femtosecond filamentation, which in turn
produces dramatic broadening of the pulse spectrum, termed supercontinuum
generation. Due to low cost, compactness, efficiency, robustness, and virtual
alignment insensitivity, femtosecond supercontinuum represents a unique and
versatile source of coherent ultrabroadband radiation, whose wavelength range
spans a considerable part of the optical spectrum. Altogether, these outstanding
properties make femtosecond supercontinuum highly suitable for diverse applica-
tions in time-resolved spectroscopy, photonics, femtosecond technology, and
lightwave engineering. During recent years, this research field has reached a high
level of maturity, both in understanding of the underlying physics and in
achievement of exciting practical results. In this book, we present the underlying
physical picture and overview the state of the art of femtosecond supercontinuum
generation in various transparent solid-state media, ranging from wide bandgap
dielectrics to semiconductor materials and in various parts of the optical spectrum,
from the ultraviolet to the mid-infrared. A particular emphasis is given to the most
recent experimental developments: multioctave supercontinuum generation with
pumping in the mid-infrared spectral range, spectral control, power and energy
scaling of broadband radiation, and the development of simple, flexible, and robust
pulse compression techniques, which deliver few optical cycle pulses and which
could be readily implemented in a variety of modern ultrafast laser systems. The
expected audience includes graduate students, professionals, and scientists working
in business and academia, in the field of laser–matter interactions and ultrafast
nonlinear optics.

Vilnius, Lithuania Audrius Dubietis
Paris, France Arnaud Couairon
January 2019
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Chapter 1
Introduction

Supercontinuum (SC) generation is one of the most spectacular and visually per-
ceptible effects produced by the nonlinear propagation of intense ultrashort laser
pulse in a transparent medium. The discovery of supercontinuum generation in a
bulk solid-state medium dates back to the early years of nonlinear optics, when
Alfano and Shapiro reported on white light generation, produced by self-focusing
of powerful picosecond pulses in a borosilicate glass sample [1]. The discovery was
immediately followed by observations of spectral broadening in various crystals and
glasses, confirming the universal nature of the phenomenon [2]. (See also [3] for a
complete historical account on the early developments of SC generation in various
optical media.)

SC generation in bulk media constitutes a compact, efficient, low cost, highly
robust, and virtually alignment-insensitive technique for the generation of coherent
ultrabroadband radiation at various parts of the optical spectrum [4]. The physical
picture of SC generation in transparent bulk media is unveiled in the framework of
femtosecond filamentation, which provides a universal scenario of nonlinear prop-
agation and spectral broadening of intense femtosecond laser pulses in bulk solids,
liquids, and gases [5–9]. SC generation in bulkmedia appears to be a complex process
that involves an intricate coupling between spatial and temporal effects: diffraction,
group velocity dispersion, self-focusing, self-phase modulation, and multiphoton
absorption or ionization. In the space domain, the interplay of these effects leads
to the formation of a narrow light channel, termed a “light filament” that is able to
propagate over extended distances much larger than the typical diffraction length
and which leaves a narrow luminous plasma trail in its wake. In the time domain,
the pulse undergoes dramatic transformations: pulse splitting or compression, pulse-
front steepening, and generation of optical shocks. These transformations altogether
produce a broadband, spatially, and temporally coherent emission with a low angular
divergence (supercontinuum), which is accompanied by the generation of colored
conical emission that is emitted at different angles with respect to the propagation

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019
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2 1 Introduction

axis, forming a beautiful array of concentric colored rings. Therefore, SC generation
in bulk is markedly different from SC generation in optical fibers, where the prop-
agation dynamics of the optical pulse is essentially one-dimensional and spectral
broadening arises from soliton generation and fission due to the interplay between
self-phase modulation and material dispersion [10].

SC generation with femtosecond laser pulses was first reported in 1983 [11],
long before the phenomenon of femtosecond filamentation was discovered [12]. In
that pioneering experiment, Fork and co-authors observed spectral broadening from
the deep ultraviolet to the near infrared by focusing intense 80-fs pulses at 627nm
from the dye laser into an ethylene glycol jet [11]. Apart from large-scale spectral
broadening, the authors underlined an improvement of pulse-to-pulse reproducibility
and spatial uniformity of the beam,which resulted from the short duration of the input
pulse; see also [13] and references therein for an account of SC generation in various
solid-state and liquid media using femtosecond dye lasers.

A major breakthrough in femtosecond solid-state laser technology was inspired
by the groundbreaking invention of chirped pulse amplification (CPA) technique by
D. Strickland and G. Mourou [14], which was awarded the Nobel Prize in Physics
in 2018. The CPA concept solved the long-standing problem of safe and efficient
amplification of ultrashort optical pulses without the onset of optical damage of the
amplifier material and other optical components, enabling a tremendous leap in the
peak power and intensity of laser pulses. Shortly after that, the discovery of Kerr lens
mode locking has led to the invention of femtosecond Ti:sapphire laser oscillator in
1991 [15]. Demonstration of the CPA technique-based regenerative amplification
of the Ti:sapphire oscillator pulses, constituted a significant breakthrough in solid-
state laser technology and marked a new era in femtosecond SC generation [16].
The amplified Ti:sapphire lasers outperformed then widely spread femtosecond dye
lasers in all essential parameters of operation, setting a new standard for the entire
femtosecond solid-state laser technology [17].

The commercial availability of novel femtosecond laser sources as combined
with a growing practical knowledge of femtosecond SC generation in transparent
condensed media [18–20], boosted the development of femtosecond optical para-
metric amplifiers (OPAs). In that regard, the SC radiation was recognized as an
indispensable seeding source for these devices, which produced femtosecond pulses
with unprecedented wavelength tunability well exceeding the tuning range afforded
by conventional laser sources [21]. Broad spectral bandwidth and high temporal
coherence of the SC radiation allowed compressibility of the pulses down to the
Fourier transform limit, contributing to the invention of ultrabroadband noncollinear
optical parametric amplifiers, the so-called NOPAs [22], which currently deliver few
optical cycle pulses at various parts of the optical spectrum, ranging from the visible
to the mid-infrared [23].

The advances in the optical parametric amplification techniques fostered exciting
developments in the optical parametric chirped amplification (OPCPA). The general
idea of the OPCPA was to replace the laser amplifier by the OPA and was origi-
nally proposed as an alternative to existing laser amplifiers in 1992 [24]. At present,
OPCPA is deservedly regarded as an important offspring of the CPA technique, since
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as compared to the laser amplifier, the OPA offers the advantages of very high gain,
broad amplification bandwidth, great wavelength flexibility, low thermal effects and
superior intensity contrast of the amplified pulses, offering unique possibilities for
the amplification of ultrashort laser pulses [25–27]. Interestingly, the first demonstra-
tions of both, CPA and OPCPA, used an optical fiber to broaden the pulse spectrum
before the amplification and compression stages. In that regard, SC generation in
condensed bulk media offered a number of advantages due to its robustness and
compactness, enabling to elaborate novel and compact architectures of tabletop SC-
seeded OPCPA systems [28]. In particular, a considerable effort is currently directed
to the development of the SC-seeded OPCPA systems that deliver intense few optical
cycle pulses in the mid-infrared spectral region, see, e.g., [29], which is out of the
grasp for existing mid-infrared solid-state lasers and laser amplifiers, see, e.g., [30].

These developments in turn facilitated experimental studies ofSCgeneration in the
region of anomalous group velocity dispersion (GVD) of dielectric solid-statemedia,
yielding ultrabroadband, multioctave SC with unprecedented wavelength coverage,
see, e.g., [31–33]. Moreover, using long-wavelength ultrashort pulses, SC generation
was made possible in various highly nonlinear materials, such as narrow bandgap
dielectric crystals, soft glasses, and semiconductors to produce octave-spanning SC
spectra extending into far infrared. From a future perspective, SC generation rep-
resents one of the fundamental building blocks of the emerging third-generation
femtosecond technology, which foresees boosting the peak and average powers of
few optical cycle pulses simultaneously to the multiterawatt and hundreds of watts
range, respectively, thereby paving the way for the generation of powerful sub-cycle
pulses with full control over the generated light waves [34]. Finally, within the past
decade, the term “supercontinuum generation” has been extended well beyond the
optical range, to include high-order and nonperturbative nonlinear optical processes,
such as high harmonic generation in the vacuum ultraviolet and X-ray ranges [35].
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