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Dedicated to
(Late) Prof. Sukumar Dana
Formerly Professor in the Department of
Genetics and Plant Breeding of the Bidhan
Chandra Krishi Viswavidyalaya (Agricultural
University) who supervised my
Post-Graduate Thesis work on a leading
pulse crop, mungbean (green gram), and
during that period inculcated in my mind the
urge and habit of exploration, collection,
characterization and utilization of indigenous
varieties, local landraces and allied wild
species, and taught me the art and science of
‘talking’ to the plants.



Preface

The past 120 years have witnessed a remarkable evolution in the science and art of
plant breeding culminating in quite a revolution in the second decade of the
twenty-first century! A number of novel concepts, strategies, techniques and tools
have emerged from time to time over this period and some of them deserve to be
termed as milestones. Traditional plant breeding, immediately following the
rediscovery of laws of inheritance, has been playing a spectacular role in the
development of innumerable varieties in almost all crops during this entire period.
Mention must be made on the corn hybrids, rust-resistant wheat, and obviously the
high-yielding varieties in wheat and rice that ushered the so-called Green
Revolution. However, the methods of selection, hybridization, mutation and
polyploidy employed in traditional breeding during this period relied solely on the
perceivable phenotypic characters. But most, if not all, of the economic characters
in crops are governed by polygenes which are highly influenced by environmental
fluctuations and hence phenotype-based breeding for these traits has hardly been
effective.

Historical discovery of DNA structure and replication in 1953 was followed by a
series of discoveries in the 1960s and 1970s that paved the way for recombinant
DNA technology in 1973 facilitating the detection of a number of DNA markers in
1980 onwards and their utilization in construction of genetic linkage maps and
mapping of genes governing the simply inherited traits and quantitative trait loci
controlling the polygenic characters in a series of crop plants starting with tomato,
maize and rice. Thus, a new crop improvement technique called as molecular
breeding started in the later part of the twentieth century. On the other hand, genetic
engineering led to the modification of crops for target traits by transferring alien
genes, for example the Bt gene from the bacteria Bacillus thuringiensis. A large
number of genetically modified crop varieties have thus been developed starting
with the commercialization of ‘flavr Savr’ tomato in 1994.

Meantime, the manual DNA sequencing methodology of 1977 was being
improved with regard to speed, cost-effectiveness and automation. The
first-generation sequencing technology led to the whole genome sequencing of
Arabidopsis in 2000 and followed by rice in 2002. The next-generation sequencing
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technologies were available over time and used for sequencing of genomes of many
othermodels and crop plants. Genomes, both nuclear and organellar, ofmore than 100
plants have already been sequenced by now and the information thus generated are
available in public database for most of them. It must be mentioned here that bioin-
formatics played a remarkable role in handling the enormous data being produced in
each and every minute. It can be safely told that the ‘genomics’ era started at the
beginning of the twenty-first century itself accompanying also proteomics, metabo-
lomics, transcriptomics, and several other ‘omics’ technologies.

Structural genomics have thus facilitated annotation of genes, enumeration of
gene families and repetitive elements and comparative genomics studies across
taxa. On the other hand, functional genomics paved the way for deciphering the
precise biochemistry of gene function through transcription and translation path-
ways. Today, genotyping-by-sequencing of primary, secondary and even tertiary
gene pools; genome-wide association studies; and genomics-aided breeding are
almost routine techniques for crop improvement. Genomic selection in crops is
another reality today. Elucidation of the chemical nature of crop chromosomes has
now opened up a new frontier for genome editing that is expected to lead the crop
improvement approaches in near future.

At the same time, we will look forward to the replacement of transgenic crops by
cisgenic crops through transfer of useful plant genes and atomically modified crops
by employing nanotechnology that will hopefully be universally accepted for
commercialization owing to their human-friendly and environment-friendly nature.

I wish to emphatically mention here that none of the technologies and tools of
plant breeding is too obsolete or too independent. They will always remain perti-
nent individually or as complimentary to each other, and will be employed
depending on the evolutionary status of the crop genomes, the genetic resources and
genomics resources available, and above all the cost–benefit ratios for adopting one
or more technologies or tools. In brief, utilization of these crop improvement
techniques would vary over time, space and economy scales! However, as we stand
today, we have all the concepts, strategies, techniques and tools in our arsenal to
practice genome designing, as I would prefer to term it, of crop plants not just
genetic improvement to address simultaneously food, nutrition, energy and envi-
ronment security, briefly the FNEE security, I have been talking about for the past
5 years at different platforms.

Addressing FNEE security has become more relevant today in the changing
scenario of climate change and global warming. Climate change will lead to
greenhouse gas emissions and extreme temperatures leading to different abiotic
stresses including drought or waterlogging on one hand and severe winter and
freezing on the other. It will also severely affect uptake and bioavailability of water
and plant nutrients and will adversely cause damage to physical, chemical and
biological properties of soil and water in cropping fields and around. It is also
highly likely that there will be emergence of new insects and their biotypes and of
new plant pathogens and their pathotypes. The most serious concerns are, however,
the unpredictable crop growth conditions and the unexpected complex interactions
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among all the above stress factors leading to drastic reduction in crop yield and
quality in an adverse ecosystem and environment. Climate change is predicted to
significantly reduce productivity in almost all crops. For example, in cereal crops,
the decline of yield is projected at 12–15%. On the other hand, crop production has
to be increased at least by 70% to feed the alarmingly growing world population,
projected at about 9.0 billion by 2050 by even a moderate estimate.

Hence, the unpredictability of crop growing conditions and thereby the com-
plexity of biotic and abiotic stresses warrant completely different strategies of crop
improvement from those practiced over a century aiming mostly at one of the few
breeding objectives at a time such as yield, quality, resistance to biotic tresses due
to disease-pests, tolerance to abiotic stresses due to drought, heat, cold, flood,
salinity, acidity or improved water and nutrient-use efficiency, etc. In the changing
scenario of climate change, for sustainable crop production, precise prediction
of the above limiting factors by long-term survey and timely sensing through biotic
agents and engineering devices and regular soil and water remediation will play a
big role in agriculture. We have been discussing on ‘mitigation’ and ‘adaptation’
strategies for the past few years to reduce the chances of reduction of crop pro-
ductivity and improve the genome plasticity of crop plants that could thrive and
perform considerably well in a wide range of growing conditions over time and
space. This is the precise reason for adopting genomic designing of crop plants to
improve their adaptability by developing climate-smart or climate-resilient
genotypes.

Keeping all these in mind, I planned to present deliberations on the problems,
priorities, potentials and prospects of genome designing for development of
climate-smart crops in about 50 chapters, each devoted to a major crop or a crop
group, allocated under five volumes on cereal, oilseed, pulse, fruit and vegetable
crops. These chapters have been authored by more than 250 of eminent scientists
from over 30 countries including Argentina, Australia, Bangladesh, Belgium,
Brazil, Canada, China, Egypt, Ethiopia, France, Germany, Greece, India, Ireland,
Japan, Malaysia, Mexico, New Zealand, Kenya, Pakistan, Philippines, Portugal,
Puerto Rico, Serbia, Spain, Sri Lanka, Sweden, Taiwan, Tanzania, Tunisia,
Uganda, UK, USA and Zimbabwe.

There are a huge number of books and reviews on traditional breeding, molecular
breeding, genetic engineering, nanotechnology, genomics-aided breeding and gene
editing with crop-wise and trait-wise deliberations on crop genetic improvement
including over 100 books edited by me since 2006. However, I believe the present
five book volumes will hopefully provide a comprehensive enumeration on the
requirement, achievements and future prospects of genome designing for
climate-smart crops and will be useful to students, teaching faculties and scientists in
the academia and also to the related industries. Besides, public and private funding
agencies, policymaking bodies and the social activists will also get a clear idea on the
road travelled so far and the future roadmap of crop improvement.

I must confess that it has been quite a difficult task for me to study critically the
different concepts, strategies, techniques and tools of plant breeding practiced over
the past 12 decades that also on diverse crop plants to gain confidence to edit the
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chapters authored by the scientists with expertise on the particular crops or crop
groups and present them in a lucid manner with more or less uniform outline of
contents and formats. However, my experience gained over the past 7 years in the
capacity of the Founding Principal Coordinator of the International Climate-
Resilient Crop Genomics Consortium (ICRCGC) was highly useful while editing
these books. I have the opportunity to interact with a number of leading scientists
from all over the world almost on regular basis. Organizing and chairing the annual
workshops of ICRCGC since 2012 and representing ICRCGC in many other sci-
entific meetings on climate change agriculture offered me a scope to learn from a
large number of people from different backgrounds including academia, industries,
policymaking, and funding agencies and social workers. I must acknowledge here
the assistance I received from all of them to keep me as a sincere student of
agriculture specifically plant breeding.

This volume entitled Genomic Designing of Climate-Smart Pulse Crops includes
9 major crops including Common Bean, Pigeonpea, Chickpea, Lentil, Mungbean,
Pea, Fava Bean, Bambara Groundnut and Grass Pea. These chapters have been
authored by 80 scientists from 12 countries including Australia, Argentina, Brazil,
China, Egypt, India, Malaysia, Pakistan, Puerto Rico, Spain, UK and USA. I place
on record my thanks for these scientists for their contributions and cooperation.

My own working experience on pulse crops dates back to late 70s in the lab-
oratory of (Late) Prof. Sukumar Dana in the Department of Genetics and Plant
Breeding in the Bidhan Chandra Krishi Viswavidyalaya (Agricultural University),
West Bengal, India. While working as a postgraduate student with him on genetics
of mungbean also known as green gram, I learnt for the first time the importance of
collection, characterization and utilization of indigenous varieties, local landraces
and wild allied species in crop improvement. It is him who inculcated in me the
‘love’ for the plants and the art to ‘care’ them and ‘talk’ to them and guided me to
become a plant breeder one day. Hence, I have dedicated this book to (Late) Prof.
Dana as a token of my respect, thanks and gratitude.

New Delhi, India Chittaranjan Kole
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Chapter 1
Common Bean Genetics, Breeding,
and Genomics for Adaptation
to Changing to New Agri-environmental
Conditions

A. M. De Ron, V. (K.) Kalavacharla, S. Álvarez-García, P. A. Casquero,
G. Carro-Huelga, S. Gutiérrez, A. Lorenzana, S. Mayo-Prieto,
A. Rodríguez-González, V. Suárez-Villanueva, A. P. Rodiño, J. S. Beaver,
T. Porch, M. Z. Galván, M. C. Gonçalves Vidigal, M. Dworkin,
A. Bedmar Villanueva and L. De la Rosa

Abstract Common bean (Phaseolus vulgaris L.) has become, over the last 20 years,
a competitive crop in national, regional, and international markets. This situation
presents a dynamic environment for producers and researchers of this crop and
requires a rethinking of current strategies against research and production needs,
the opportunities and challenges of the future, and adaptation to changing agri-
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environmental conditions. Improvement of the common bean means possessing in-
depth knowledge of its genetic diversity, the genome and gene functions, to enable
the analysis of pathways and networks in response to fluctuating environmental con-
ditions. An important long-term challenge is the discovery of the gene(s) that control
important production traits such as pest and disease resistance, abiotic stress toler-
ance, and biological fixation of nitrogen. Thiswill need to be a cooperativeworldwide
effort that involves breeders, geneticists, and genomic and bioinformatics experts.
Currently, new technologies built around the recently released common bean genome
sequence are now being developed, and various genomic resources for common bean
are available and include physical maps, bacterial artificial chromosome libraries,
anchored physical and genetic maps, and expressed sequence tags. However, these
approaches require precise phenotypic data. Complex interactions between the com-
mon bean crop genotype, environmental factors in combinationwith plant population
dynamics and crop management greatly affect plant phenotypes in field experiments
and are the key for the expansion of the productivity of this crop in traditional and
nontraditional growing areas.

Keywords Abiotic stress tolerance · Agronomy · Diseases and pest resistance ·
Food legumes · Genetic resources · Genetic mapping · Molecular breeding ·
Phaseolus vulgaris L.
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1.1 Challenges, Priorities, and Prospects of Recent Plant
Breeding

1.1.1 Background

Understanding the effects of domestication on genetic diversity of common bean
(Phaseolus vulgaris L.) is of great importance, not only for crop evolution but also
for possible applications, such as the implementation of appropriate biodiversity
conservation strategies, and the use of genetic variability in breeding programs.
One of the most important and generalized features of plant domestication is the
reduction in genetic diversity, not only during the initial domestication process but
also during dispersion and adaptive radiation from the centers of domestication to
other areas. The reduction of genetic diversity is usually more drastic in autoga-
mous species such as common bean, which have restricted genetic recombination
and presents a higher population structure as compared with allogamous species
(Jarvis and Hodgkin 1999). This reduction is caused by both stochastic events (i.e.,
a bottleneck and genetic drift due to a reduction in the population size) and selection
(i.e., adaptation to a novel agrosystem) (Vigouroux et al. 2002).

A recent hypothesis for the origin of the common bean defended a Mesoamerican
origin (Bitocchi et al. 2012, 2013), based on the extensive diversity and population
structure within theMesoamerican gene pool, and the signature of pre-domestication
bottlenecks in the south of the Andes detected in five gene fragments across 102 wild
bean accessions. This novel structure of population not only evidences a Mesoamer-
ican origin but also excludes an Andean origin of common bean. Additionally, these
authors suggested that the wild common bean from northern Peru and Ecuador repre-
sents an old relict germplasm including a part of the genetic diversity of the ancestral
common bean populations, displaying a type I phaseolin that probably was extinct
in Mesoamerica. The resequencing of the genome of the common bean by Schmutz
et al. (2014) recently confirmed this hypothesis.

Domestication took place after the formation of the Mesoamerican and Andean
gene pools, and thus their structure is evident in both the wild and the domesticated
forms (Papa and Gepts 2003; Papa et al. 2005, 2007, Rossi et al. 2009). This clear
subdivision of the common bean germplasm is well documented, and it has been
defined through several studies (Papa et al. 2007; Angioi et al. 2009; Bitocchi et al.
2012, 2013). However, the number of domestication events within each pool is still
debated. Bitocchi et al. (2013) hypothesized a single domestication event within each
gene pool and indicated the Oaxaca valley in Mesoamerica and southern Bolivia and
northern Argentina as geographical areas of common bean domestication.

The exploration of TheAmericas by the Europeans, from the 15th century,marked
the arrival into the Old World of many plant species such as common bean (Phaseo-
lus vulgaris L.), peanuts (Arachis hypogaea L.), cocoa (Theobroma cacao L.), corn
(Zea mays L.), potato (Solanum tuberosum L.), tomato (Solanum lycopersicum L.),
etc. The introduction of these exotic species in a new agricultural area under differ-
ent environmental conditions raises relevant questions about adaptation, taking into
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account the requirements of tolerance to several stresses, as well as competitiveness
with other indigenous crops in production and economic value (De Ron et al. 2016).

No records of common bean earlier than 1543 have been found in European
herbariums; however, as reported by Zeven (1997), in 1669 it was widely grown in
many areas of Europe. The dispersion of the common bean to Europe probably started
from the Iberian Peninsula (Spain and Portugal), where the species was introduced
mainly from Central America around 1506 and from the southern Andes after 1532,
through sailors and traders who brought with them the nicely colored and easily
transportable seeds as a curiosity (Brücher and Brücher 1976; Debouck and Smartt
1995). The pathways of dissemination of the crop across Europe were very complex,
with several introductions from America combined with direct exchanges between
European and other Mediterranean countries (Papa et al. 2007). Over time, the dis-
semination across Europe surely occurred through seed exchanges among farmers
being facilitated by territorial contiguity and similarity of environments. The protein
marker phaseolin was used as a marker in describing the worldwide dissemination
of common bean (Gepts 1988). A higher frequency of Andean types (T, C, H, and
A) was recorded with respect to Mesoamerican ones (S, B, M) (Lioi 1989; Santalla
et al. 2002).

As mentioned before, the common bean originated and was domesticated in trop-
ical highlands. This means that abiotic and biotic conditions had an influence on the
development of European varieties (Rodiño et al. 2006, 2007). In some cases, bean
breeders have had to incorporate tolerances to abiotic stresses from sources outside
the primary gene pool of common bean. For example, tepary bean could also provide
tolerance to heat or drought, and runner bean, tolerance to low soil fertility (Miklas
et al. 2006a, b). In the case of rhizobia symbiotic system, it is possible that migration
of the species had not been parallel, so additional efforts are underway to achieve
efficient symbiotic genotypes of common bean and rhizobia (Rodiño et al. 2011). As
a result of plant-rhizobia coevolution, a spectrum of compatible specific rhizobia is
recognized for one or more legume species.

1.1.2 The Common Bean as a Food Resource

Grain legumes (pulses) are considered an essential source of nutrients and are also
recognized as poor man’s meat, showing their importance for people of developing
countries, where the consumption of animal protein is limited by nonavailability or
is self-imposed because of religious or cultural habits. Furthermore, legume seeds
contain many bioactive and/or antinutritional compounds, such as phytate, oligosac-
charides, phenolic compounds, nonprotein amino acids, lectins, enzyme inhibitors
that play metabolic roles in humans or animals that frequently assume these seeds.
These effects may be regarded as positive, negative, or both (Champ 2002).

From a nutritional point of view, the amino acid profile of legume storage proteins
reveals low amounts of the essential sulfur-containing amino acids (i.e., methionine
and cysteine) and tryptophan, while lysine, another essential amino acid, is quite
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abundant. Legume proteins complement very well those of cereals, which are nor-
mally rich in sulfur amino acids and poor in lysine and threonine. Besides the compo-
sition in essential amino acids, the nutritional quality of seed proteins is also largely
determined by their digestibility. In fact, amino acids composition only represents
the potential nutritional quality of a protein, being their bioavailability critical for
the supply of amino acids in the diet (Sparvoli et al. 2015).

The common bean is the third most important food legume crop worldwide,
surpassed only by soybean (Glycine max (L.) Merr.) and peanut (Arachis hypogea
L.), and it is the first one for direct human consumption. Beans are produced and
consumed mainly as a dry food legume, due to the high protein content of the grain,
but the use of the fresh pod (snap bean) is common in many countries. Common
bean is highly consumed in many areas of Africa and Latin America (as the most
important source of plant protein), as well as in traditional diets of the Middle East
and Europe (Broughton et al. 2003; Casquero et al. 2006). This legume is part of
the healthy diet of the European Mediterranean basin and gaining importance in the
USA where consumption has been increasing due to public interest in ethnic and
healthy foods (Blair and Izquierdo 2012).

Recently the role of bean in human diet is being focused not only in its protein con-
tent but in the functional properties also and some authors have reported that its con-
sumption could contribute to reduce the risk of obesity, diabetes, cardiovascular dis-
eases and colon, prostate, and breast cancer (Hangen and Bennink 2003; Thompson
et al. 2009). These health benefits could be due to the fiber content in the grain but also
to antioxidant compounds as the phenolic ones. All the molecules present in legumes
having anticancer properties are soluble in aqueous-alcohol extracts, while resistant
starches, present in high amount in legumes, together with non-starch polysaccha-
rides, are primarily insoluble residues from aqueous-alcohol extracts (Sparvoli et al.
2015). Colon carcinogenesis was induced by azoxymethane treatment in obese ob/ob
mice fed with a diet containing cooked navy beans (whole beans), the insoluble or
soluble fraction of aqueous-alcohol extracts, or a standard diet (Bobe et al. 2008).

1.2 Prioritizing Climate Smart (CS) Traits

1.2.1 Disease Resistance

1.2.1.1 Introduction

The abnormal functioning of diseased plants generally leads to a reduction in quan-
tity and quality of yield. Disease is the result of an interaction among the plant and
its environment and it is often affected by biotic and abiotic factors (e.g., microor-
ganisms, humidity, temperature, etc.) that are detected as signals for the activation
of plant response mechanisms (American Phytopathological Society 2005).
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When a plant is present in a stress situation (biotic or abiotic), it shows aminimum
resistance to this situation, which will slow down their vital functions, reducing their
development. This alarm phase is the one that will trigger all the mechanisms to
get over it. If this situation persists, the plant will die. However, if it triggers some
defense mechanisms, it will enter a resistance phase reaching a maximum level. If
the stress continues, the plant will enter a phase of exhaustion. This phase may cause
plant death if the stress does not disappear. Nevertheless, if the stress situation ends,
plant recovers its physiological functions, being able to regenerate and to reach a
new physiological state optimal for the present conditions, which corresponded to
the regeneration phase (Tadeo and Gómez-Cadenas 2008).

Crops are affected by a wide diversity of fungal pathogens, for example, Scle-
rotinia spp., Fusarium spp., Botrytis spp., Rhizoctonia spp., etc., causing important
economic losses (Mayo et al. 2017). A form of control to diseases is the application
of synthetic fungicides. Its application on the seed or directly to the soil can be effec-
tive against fungi that affect the crops during or shortly after germination (Beebe
and Corrales 1991) because they reduce its incidence and improve the emergence
of plants (Valenciano et al. 2004). However, applications with fungicides aimed at
avoiding damage caused by fungi that cause root rot or yellowing and wilting are
often ineffective and usually impracticable due to the large volume of soil to which
they should be directed. Actually, the number of authorized plant protection products
has been reduced in order to ensure food safety and its sustainable in the long term.
It is therefore proposed to prioritize nonchemical methods in integrated production,
organic farming, and others (Mayo et al. 2017).

As a strategy to control plant infectious diseases, mainly those caused by fungi,
the use of biocontrol agents can reduce the negative effects of plant pathogens and
they also can promote positive responses in the plant (Shoresh et al. 2010). Biocontrol
agents are perceived to have specific advantages over synthetic fungicides, includ-
ing fewer nontarget and environmental effects, efficacy against fungicide-resistant
pathogens, reduced probability of resistance development and use in organic farming
situations where synthetic fungicides are restricted (Brimner and Boland 2003).

Bacterial species belonging to genera such as Agrobacterium, Pseudomonas,
Streptomyces, and Bacillus, and fungal genera such as Gliocladium, Trichoderma,
Ampelomyces,Candida, andConiothyrium, are beneficial organisms that have shown
good efficiency as biocontrol agents against pathogenicmicroorganisms (Vinale et al.
2008a).

1.2.1.2 Trichoderma spp.

Trichoderma spp. (Teleomorph: Hypocrea) is a fungal genus that is found in the
soil, and it is a secondary fast growing opportunistic invasive (Mayo et al. 2016a,
b) producer of chitinases, glucanases and proteases, and metabolites with antimicro-
bial activity (Lorito et al. 2010). Many Trichoderma species are also well known as
biocontrol agents of important phytopathogenic fungi. The primary mechanisms of
biocontrol used by Trichoderma in direct confrontation with pathogenic fungi are
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mycoparasitism, antibiosis, and competition for nutrients with the pathogen (Har-
man et al. 2004). Trichoderma species colonize the root surface and cause substantial
changes in plant metabolism (Shoresh et al. 2010). The physical interaction between
Trichoderma and plants is limited to the first cell layer of the epidermis and the
root bark. In addition, Trichoderma biocontrol strains are able to induce the expres-
sion of genes involved in defense response and also to promote plant growth, root
development, and nutrient uptake (Hermosa et al. 2012).

Trichoderma spp. is recognized for their important benefits to agriculture such as
its ability to protect crops against diseases (Benítez et al. 2004) and increase crop
yield under field conditions (Harman et al. 2004). Most species of Trichoderma have
been linked to biocontrol and biotechnological applications (Monte 2001), and the
versatility of Trichoderma strains to suppress diseases caused by pathogens (Howell
2003). Since Trichoderma strains grow and proliferate best when there are abundant
healthy roots, they have evolved numerous mechanisms of action both to attack other
fungi and to enhance plant and root growth (Benítez et al. 2004).

In a symbiotic relationship with Trichoderma, the transport of sucrose from plants
with subsequent intracellular hydrolysis by T. virens has been shown (Fig. 1.1). This
source–sink communicationmay be central to themutualistic interaction, influencing
the development ofTrichoderma in the rhizosphere and root plant (Vargas et al. 2012).

Competition and Mycoparasitism

Competition between Trichoderma and pathogens (Fig. 1.1) would be established
with the purpose to getmore nutrients, oxygen, light, etc. (Paulitz 1990).Trichoderma
is an excellent competitor for space and nutritional resources. It appears in almost
all soils and in habitats that contain high amounts of organic matter. In those niches,
it would be an excellent decomposer of plant and fungal material. Moreover, some
species of the genus Trichoderma show great metabolomic versatility that allows
them to grow using a wide range of nitrogen and carbon sources. Furthermore,
Trichoderma has the ability to colonize the rhizosphere, and this skill might be
essential for being used as an excellent biological control agent (Howell 2003).

Mycoparasitism (Fig. 1.1) consists in the recognition of the fungus, attacking it,
and penetrating it with the purpose to cause its death. This process involves some
different phases. Firstly, Trichoderma locates the pathogen without previous contact,
beginning to enlarge toward the pathogen by tropism (Chet et al. 1981; Lu et al.
2004). During this process, Trichoderma secretes some enzymes that hydrolyze the
cell wall of the pathogen (Howell 2003; Woo et al. 2006). It has been studied that
Trichoderma releases an extracellular exochitinase (Brunner et al. 2003) that might
cause the liberation of some oligomers from the fungus, which could induce the
expression of toxic endochitinases that would diffuse and would start to attack to the
pathogen, even before the physical contact had happened. Some enzymes belonging
to these fungi have been purified and used for biocontrol. When they have been



8 A. M. De Ron et al.

Fig. 1.1 Interactions between phytopathogen fungus, plant, and biocontrol agent Trichoderma.
The green lines and circles are compounds and actions produced/induced by Trichoderma. The
red lines are compounds and responses produced/caused by the phytopathogen fungus. The purple
lines and circles are the compounds and plant responses produced/induced by the fungi (Altomar
et al. 1999; Druzhinina et al. 2011; Howell 2003; Rubio et al. 2009; Vargas et al. 2011; Vinale et al.
2009; Vinale et al. 2008a, b) (6PP 6-pentyl-α-pyrone; AAC 1-aminocyclopropane-1-carboxylic
acid; IAA indoleacetic acid; ISR induced systemic resistance; MAMPs microorganism-associated
molecular patterns; PAMPs pathogen-associated molecular patterns; ROS reactive oxygen species;
SAR systemic acquired resistance)

assessed, they have shown antifungal activity and have controlled a large number
of pathogens, such as Fusarium, Rhizoctonia, Alternaria, Ustilago, Venturia, and
Colletotrichum (Lorito et al. 1993; Lorito et al. 1994).

A major part of the Trichoderma antifungal system consists of a num-
ber of genes encoding an astonishing variety of secreted lytic enzymes (Sanz
et al. 2004) including endochitinases, N-acetyl-β-glucosaminidases, chitin 1,4-β-
chitobiosidases, proteases, glucan β-1,3-glucosidases, glucan β-1,6-glucosidases,
glucan α-1,3-glucosidases, lipases, xylanases, mannanases, pectinases, pectin lyases,
amylases, phospholipases, RNAses, DNAses, etc. Some of these proteins have been
purified and their corresponding genes have been cloned and characterized by our
group: protease PRA1 (Suarez et al. 2004), chitinases CHIT36 and CHIT37 (Viterbo


