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Preface

The symposium Materials Processing Fundamentals is hosted at the Annual
Meeting of The Minerals, Metals & Materials Society (TMS) as the flagship
symposium of the Process Technology and Modeling Committee. It is a unique
opportunity for interdisciplinary presentations and discussions about, among others,
processing, sensing, modeling, multi-physics, computational fluid dynamics, and
thermodynamics.

The materials covered include ferrous and non-ferrous elements, and the pro-
cesses range from mining unit operations to joining and surface finishing of
materials. Acknowledging that modern processes involve multi-physics, the sym-
posium and its proceedings allow the reader to learn the methods and outcome of
other fields’ modeling practices, often enabling the development of practical
solutions to common problems. Modeling of basic thermodynamic and physical
properties plays a key role, along with computational fluid dynamics and multi-
phase transport and interface modeling.

Contributions to the proceedings include applications such as steel processing,
modeling of steel and non-ferrous alloys treatments for properties control,
multi-physics and computational fluid dynamics modeling for molten metal pro-
cesses and properties measurement. Extractive, recovery, and recycling process
modeling is also presented, completing a broad view of the field and practices of
modeling in materials processing.

The engagement of TMS and committee members to chair sessions and review
manuscripts makes this symposium and its proceedings possible. The editor and
coeditors acknowledge the invaluable support and contribution of these volunteers
as well as TMS staff members, in particular, Patricia Warren, Trudi Dunlap, and
Matt Baker.

Guillaume Lambotte
Jonghyun Lee

Antoine Allanore
Samuel Wagstaff
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Dynamic Current and Power
Distributions in a Submerged Arc
Furnace

Y. A. Tesfahunegn, T. Magnusson, M. Tangstad and G. Saevarsdottir

Abstract Most submerged arc furnaces used for the production of ferroalloys run on
three-phase alternating current. This affects the electrical operation of the furnace and
thus it is of interest to study alternating current distributions in the system. This work
presents computations of alternating electric current distributions inside an industrial
submerged arc furnace for silicon production. A 3D model has been developed in
ANSYS Maxwell using the eddy current solver. In each phase, electrode, central
arc, crater, crater wall and side arcs that connect electrode and crater wall are taken
into account. In this paper, the dynamic current distributions in different parts of
the furnace, as well as skin and proximity effects in and between electrodes are
presented. Moreover, active and reactive power distributions in various components
of the furnace are quantified.

Keywords Current distribution · Current paths · Power distributions
Submerged arc furnace
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Introduction

The current distribution in the submerged arc furnace is critical to good operation
in the silicon metal production process. Phase current or resistance are among the
most important control parameters, but for modern silicon metal or ferrosilicon fur-
naces, there is nomechanism tomeasure the actual current distribution.Metallurgists
operate the furnaces based on the analysis of limited data at hand. Recent dig-outs
of industrial furnaces have expanded available information on location-dependent
charge properties, this enables more realistic modelling of electrical conditions in the
furnace than previously possible. Having proper data makes the developed numerical
models reliable in predicting the furnace behavior. This will enhance the understand-
ing of critical process parameters and allow more accurate furnace control.

The current distribution is not well known for silicon furnaces and cannot be
directly measured. Sævarsdottir et al. [1] calculated that the arc could be a maximum
of 10–15 cm in length, based on magnetohydrodynamics (MHD) arc modelling.
Although there have been publications on this subject [2], results from an accurate
model where the current distribution can be calculated have not been published to
date.

The geometry of the zones in a silicon furnace is dependent on the operation
history, and hence a number of different geometries, sizes and compositions are
possible in the various parts of the furnace. A report from recent excavations of
industrial furnaces published by Tranell et al. [3] described the various zones in a
FeSi furnace. Myrhaug [4] reported similar features from a pilot scale excavation
operating around 150 kW. Tangstad et al. [5] published results from the excavation of
industrial furnaces, where the interior of the furnace is divided into zones depending
on the materials and their degree of conversion. Mapping the material distribution
gives a basis for quantifying the location-dependent physical properties of the charge
materials such as the electrical conductivity.

Complete numericalmodeling of submerged arc furnace (SAF) requires electrical,
chemical, thermal and fluid flow considerations. In this paper, we only consider the
electrical aspect, which needs electrical conductivity of the different parts of the
furnace. Some works have been done to address this issue. Krokstad [6] outlined
an experimental method and published data on the electrical conductivity of silicon
carbide and Vangskåsen [7] looked in detail at the metal producing mechanisms.
Mølnås [8] and Nell and Joubert [9] have also published data on dig-out samples and
material analysis that are relevant. These are some of the essential inputs necessary
to set up a reasonably realistic modeling domain with correct physical properties to
model the current and power distributions within a furnace, and this opens a unique
opportunity to create a model which enables understanding of the current and power
distributions in the furnace. These results can be used in the development of furnace
control strategies that can enable improved silicon recovery and current efficiency.

The recent developments of electrical numerical modeling include several fea-
tures of the furnace. Tesfahunegn et al. [10, 11] developed a 3D numerical furnace
model that contains electrodes,main arcs, side arcs, crater wall, crater, and other parts
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using ANSYS Fluent electric potential solver. The authors showed results for current
distribution with or without taking into account the main arc. As a continuation of
their work, they have implemented a vector potential method using a user-defined
function in ANSYS Fluent environment to calculate dynamic current distributions
[12, 13]. Their model is only able to consider electrodes and capable of predicting
skin and proximity effects. Other researchers have developed different numerical
models for SAF based on Computational Fluid Dynamics (CFD) and Finite Element
Method (FEM). Herland et al. [14] studied proximity effects in large FeSi and FeMn
furnaces using FEM. In their model, they have included different parts of the fur-
naces. Dhainaut [15] presented computations of electric field in SAF using CFD.
The author showed the effect of contact resistance by studying the contact between
two coke particles before dealing with a full-scale furnace. The furnace is parti-
tioned in layers to consider different materials and no assumption has been made
on the current path. Bezuidenhout et al. [16] applied CFD on a three-phase elec-
tric smelting furnace to investigate the electrical aspects, thermal and flow behavior.
They showed relationships between electrode positions, current distribution and slag
electrical resistivity. Darmana et al. [17] developed a modeling concept applicable
for SAFs using CFD that considers various physical phenomena such as thermo-
dynamics, electricity, hydrodynamics, heat radiation and chemical reactions. Wang
et al. [18] investigated the thermal behavior inside three different electric furnaces
for MgO production.

This paper presents computations of alternating current and power distributions
inside an industrial submerged arc furnace for silicon metal production. A 3Dmodel
has been developed inANSYSMaxwell [19] using the eddy current solver. Electrode,
main arc, crater, crater wall, and side arc that connects the electrode and crater wall
are taken into account for each phase. Other furnace parts such as carbon block, steel
shell, and aluminum block are also incorporated.

The Process

In the silicon production process, quartz and carbon materials, that are called charge,
are fed into a submerged arc furnace. Three electrodes penetrate the charge from
above. Electric heating from the current provides the energy to charge through the
electrodes, each of which carries one of the three phases of 50 Hz AC current,
canceling out at a star point in the charge.

The overall reaction for producing Silicon metal is

SiO2 + 2C � Si + 2CO(g) (1)

This reaction, however, takes a series of sub-reactions, changing the properties of
the charge along the way as intermediary reaction products are formed. The current
passes from the electrodes through the rawmaterial charge and an electric arc burning
at the tip of the electrode. The arc, which consists of thermal plasma in the range



6 Y. A. Tesfahunegn et al.

of 10,000–20,000 K [20], provides heat for energy-consuming silicon-producing
reaction (4), while the SiC-forming reaction and SiO(g) condensation reactions (2)
and (3) take place at a lower temperature higher up in the furnace, see Schei et al.
[21].

SiO(g) + 2C � SiC + CO(g) (2)

2SiO(g) � Si + SiO2 (3)

SiO2 + SiC � SiO(g) + CO(g) + Si(l) (4)

It is essential for the silicon recovery in this process that there is a balance between
the high-temperature reactions (4) and the low-temperature reactions (2) and (3).
Therefore, it is necessary that sufficient heat is released in the arc to drive reaction (4),
while a certain part should be released in the rawmaterial charge to drive reaction (2).
The stoichiometry of reaction (4) is affected by temperature, and the ratio is decreased
at higher temperature, which above 1900 °C enables a high silicon recovery. In
the silicon process, it is the electric arc that creates sufficiently high temperature;
therefore, sufficient arcing is important for good silicon recovery.

Computational Model

In this section, we describe the mathematical modeling, the furnace geometry, mate-
rial properties, mesh generation and boundary conditions.

Mathematical Modeling

In this paper, we will focus only on the electrical aspects of SAF. The 3D electrical
model is developed in ANSYS Maxwell [19] using eddy current solver, which is
suitable for low-frequency devices and phenomena. It solves sinusoidally varying
magnetic fields in the frequency domain. The frequency domain solution assumes
frequency to be the same throughout the domain. Induced fields such as skin and
current proximity effects are also considered. It is a quasi-static solver. To solve for
the magnetic field H, the solver computes the values as follows [19]:

∇ ×
(

1

σ + jωε
∇ × H

)
� −jωμH (5)

where σ , ω, μ and ε are electrical conductivity, circular frequency, magnetic perme-
ability and electrical permittivity. The magnetic permeability is typically given by
μ � μrμ0, where μ0 � 4π × 10−7[H/m] is the constant magnetic permeability of
vacuum and μr [–] is the relative magnetic permeability. Once Eq. (5) is solved, the
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electric field (E) and the electric current density (J) are solved using Faraday’s and
Ampere’s laws. Also J and E are related by Ohm’s law. The equation is solved using
the finite element method.

Furnace Geometry and Material Properties

The computational domain is based on the actual design of a 32 MW industrial
furnace with AC frequency of 50 Hz. A simplified schematic drawing of the furnace
is shown in Fig. 1. The furnace is partitioned into different zones based on the
material properties. Included in the modeling are the furnace lining, three electrodes,
charge, molten material, three arcs below electrodes, side arcs, and three craters
with crater walls made of carbides. The geometry of each electrode is considered
as a truncated right conical shape. The upper surface of the electrode is the base of
the cone with radius equals to the radius of the electrode. The radius of the bottom
surface of the electrodes changes as the slope of the slant height changes. We assume
that several concentrated side arcs are distributed around the circumference of the
electrode near the tip electrodes, and the circular distances between each side arc
are held constant. With this configuration, the number of side arcs increases linearly
with the circumference of the electrode.

For brevity, a section of the furnace and one electrode are depicted in Fig. 1.
For each phase, two types of arcs are introduced. The main-arc, burning below the
electrode, with an arc length of 10 cm and diameter of 5 cm [2], and some shorter side
arcs connecting the crater wall to the side of the electrode. The curvature of the three
crater walls is assumed to be a circular section with a diameter of 100 cm [22]. Each

agh

k

i
j

f

b
c

e

e
e
d

Fig. 1 Schematic of the industrial Silicon SAFwith different zones (a) electrode, (b) arc, (c) crater,
(d) side arc, (e) gap, (f) carbide, (g) charge, (h) alumina brick, (i) carbon block and carbide, (j)
molten material, and (k) carbon block
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Table 1 Electrical
conductivity of different
zones

Zones Electrical conductivity [S/m]

Electrode [6] 225,000

Arc [22] 7000

Crater 1e−14

Carbide [6] 400

Charge 0.15, 15

Molten material [23] 1,388,900

Carbon block [6] 225,000

Alumina brick 1e−14

Steel shell [14] 6.3e+10

of the zones is assumed to have constant electrical conductivity. The conductivity of
each zone is taken from various literature sources and summarized in Table 1.

Mesh Generation and Boundary Conditions

Mesh generation is a crucial part of any computational method. It has a significant
influence on the runtime and memory use of simulation, as well as the accuracy
and stability of the solution. Since the eddy current solver utilizes an adaptive mesh
refinement algorithm, the material volumes described in Section “Furnace Geometry
andMaterial Properties” weremeshed according to themethod. This type ofmeshing
technique provides automated mesh refinement capability based on reported energy
error in simulation.

The model boundary conditions were imposed based on the positions of the sur-
faces in the model. Two types of boundary conditions are required, i.e., the natural
and Neumann. The natural boundary condition is used for interface between objects.
It describes the natural variation from one material to the next one, as defined by
material property. The Neumann boundary condition is applied for exterior boundary
of solution domain and theH field is tangential to the boundary and flux cannot cross
it. To impose appropriate boundary conditions on theH field, a large far-field around
the furnace which is filled with air is created. The top surface of the three electrodes
is excited by current with equivalent value of Irms � 99 kA. The phase shift between
electrodes is 120°.

Numerical Cases

In this section, we determine the current and power distributions inside the furnace
described in Section “Furnace Geometry and Material Properties” as well as other
parameters, such as resistance, power factor, and voltage of the system. We consider
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Table 2 Two simulation groups

Category Number of side arcs Charge conductivity

8 14 0.15 S/m 15 S/m

Main arcs ✓ ✓ ✓ ✓

No main arcs ✓ ✓ ✓ ✓

three factors. The first factor is the number of side arcs with two levels (8 and 14), the
second aspect is the charge conductivity with two levels (0.15 and 15 S/m) and the
third element is the consideration of the main arcs with two levels (with main arcs
and without main arcs). Hence, a total of 8 simulation cases have been performed.
For discussion purposes, we group them into two categories based on the third factor.
We only vary the other two factors, i.e., number of side arcs and charge conductivity.
The two categories are summarized in Table 2.

For all cases, the phase current has the same value. This means that with changing
domain configuration the total resistance changes, and thus the voltage for the system.
Some of the cases represent realistic phase resistance in the system while others do
not, and the goalwith this effort is to gain a qualitative understanding of the governing
mechanisms for the current and power distributions in the system. For all cases, the
simulations were performed by adaptive meshing algorithm using energy error as a
convergence criterion. The energy error was set to 2%. For all cases, the initial mesh
size is ~0.7e+06 elements and the simulation is converged the mesh size is ~1.5e+06

elements. The simulation time per a case on average is around 3 h.
Since the results that are required for this study are not directly obtained from

the simulation, we need to perform postprocessing. The current is calculated from
current density by integrating on the surface of interest. The active power density,
p [W/m3], given by p � |J|2/2σ , and the reactive power density q [W/m3], given by
q � (π f /μ)|B|2. By integrating the respective power densities over differentmaterial
domain and the entire furnace, we obtain active power, P[MW ] and reactive power,
Q[MW ]. Once the active and reactive powers of the furnace are calculated, others
results such as power factor (PF) and resistance (R) of the system can be calculated.

Figure 2 shows the resulting nonuniform current density on the three electrodes
due of skin and proximity effects. Figure 3 shows the total current through electrode
and the main arc at different height of the furnace. The vertical axis is a normalized
current, which is the fraction of the phase current in the electrode and arc. The
horizontal axis is dimensionless furnace height, which is the ratio between a given
height and the total height of the furnace. In this paper, we define the total height of
the furnace from the bottom of the furnace to the top of the electrodes. In Fig. 3a,
main arc is considered whereas in Fig. 3b is not included. In both figures, the charge
conductivity and the number of side arcs are varying as shown in Table 2. Irrespective
of the magnitude of reduction, the current is decreasing from the top of the electrode
to the bottom as the charge conductivity increases. Moreover, the current passed to
the main-arc (Fig. 3a) is also decreased as the number of side arcs is increased.



10 Y. A. Tesfahunegn et al.

Fig. 2 Current density in the electrodes

Fig. 3 Normalized current passing through electrode and main arc as a function of normalized
height from the furnace bottom to the top of electrodes: (a) with main arc, and (b) without main arc

Table 3 shows the active and reactive power distributions in different zones for
eight side arcs with and without main arcs consideration. Besides, the charge con-
ductivity is varying. When the main arcs are included and charge conductivity is
low, most of the power is accumulated in the main arcs and crater wall, while some
power is deposited in the remaining zones. However, when the charge conductivity is
changed by the order of two magnitudes, the active power in the charge is increased
by the same order of magnitude while decreasing in the main arcs and crater wall.
Without themain arcs, we can see the same trend except for no power in themain arcs.
The main contributors to the reactive power are the far-field, charge, and electrodes.
The other materials have some contributions. Since we have not included the electric
components outside the furnace, such as bus bars and flexibles, the total value of the
reactive power could be higher than the reported values. The simulation results for
the 14 side arcs are not reported as in Table 3 since we saw the same trend. Instead,
the results are summarized for all simulations results as shown in Table 4. Having
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Table 3 Active and reactive power distributions in different zones for eight side arcs setup

With main arcs No main arcs

Zones Charge cond. 0.15 Charge cond. 15 Charge cond. 0.15 Charge cond. 15

P [MW] Q [MW] P [MW] Q [MW] P [MW] Q [MW] P [MW] Q [MW]

Electrode 2.36 1.88 2.15 1.75 2.07 1.73 1.80 1.55

Main
arcs

23.07 0.02 17.25 0.02 0.00 0.00 0.00 0.00

Side arcs 0.55 0.00 0.38 0.00 4.64 0.00 2.24 0.00

Crater
wall

10.30 0.42 7.42 0.32 83.94 0.25 40.23 0.13

Crater 0.00 0.40 0.00 0.30 0.00 0.11 0.00 0.06

Charge 0.06 6.79 4.64 5.84 0.45 6.78 20.30 4.88

Molten
Si

0.15 0.13 0.12 0.10 0.06 0.07 0.04 0.04

Carbon
block

0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.02

Farfield 0.00 13.00 0.00 13.00 0.00 13.00 0.00 12.99

Steel
shell

0.01 0.14 0.01 0.14 0.01 0.15 0.01 0.13

Alumina
brick

0.00 0.18 0.00 0.17 0.00 0.18 0.00 0.16

Total 36.53 23.00 32.00 21.66 91.18 22.29 64.63 19.97

main arcs show that resistance of the system is sensitive to the change of charge
conductivity and the number of side arcs. Without the main arcs, the resistance in the
furnace is increased by 100–150%, compared with corresponding simulation cases
(Table 4). Most furnaces are operated to strive towards constant resistances. The
variations in conductivity conditions in the furnace are met by moving the electrodes
up and down. From these simulations, we see how the phase resistance can change
with either the conductivity of the charge is changed and (or) exist main arcs and(or)
side arcs. One of the assumptions that we made in the simulations is that for each
case the charge conductivity is uniform. In a real furnace, however, the charge con-
ductivity is increasing as it moves from the top of the furnace to the bottom. Overall
the trend that can be observed is that increasing the system conductivity will result
in a reduction of the system resistance.

Conclusions

This paper presents computations of dynamic current and power distributions inside
an industrial submerged arc furnace for silicon production. A 3D model has been
developed in ANSYS Maxwell using eddy current solver. Electrodes, main arcs,
crater, crater wall, and side arcs that connect electrode and crater wall are considered
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for each phase. In this paper, the current distributions in the electrodes and main arcs
and the power distributions in different parts of the furnace are presented by varying
the charge conductivity, the number of side arcs and with and without main arcs.
The presented model is able to capture skin and proximity effects. It was observed
that the resistance of the furnace is sensitive to changes in charge conductivity,
number of side arcs and existence of main arcs. When main arcs are present, most
of the power is accumulated in the main arcs and crater wall for both high and low
charge conductivities. It is the conductivity in the crater wall that determines the
resistance in the volume at the side-arc attachment and limits the side-arc current.
Thus, without main arcs, a significant portion of the power is placed in the crater and
charge depending on the charge conductivity value, but the overall resistance in the
system is unrealistically high. It is seen that most of the reactive power in the furnace
resides in the charge and far-field and depends on the overall current in the system.
It is observed that a more narrow current path tends to increase the reactive power in
the furnace and thus reduce the power factor. However as the phase resistance and
thus real-power dissipation is much more sensitive to the current path, the power
factor is much higher for the cases without the main arcs.
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Modeling of Steel–Slag–Air Three-Phase
Flow in Continuous Casting Strand

Xubin Zhang, Wei Chen, Lifeng Zhang and Piotr Roman Scheller

Abstract In the current study, a three-dimensional mold model was established by
Fluent software to investigate the fluid flow of three phases (steel–slag–air) in the
mold. A quarter of the mold was simulated through the k-ε model, volume of fluid
(VOF) model, solidification model and continuum surface force (CFS) method. The
interfacial tension between liquid steel and liquid slag and the oscillation of the
mold were added into the model to show the 3D steel–slag interface. The liquid steel
exiting from the submerged entry nozzle (SEN) existed as the upper backflow and
lower backflow, and flowed towards the wide face and the SEN. The largest speed
on the steel–slag interface was located at approximately 0.25 m from the narrow
face, which was approximately 0.15 m/s. Under the influence of the upper backflow
and the movement of the shell, the slag on the steel–slag interface moved from the
narrow face to the SEN, and infiltrated into the gap, which affected the lubrication
in the gap.

Keywords Three-phase flow · Steel–slag interface · Simulation
Continuous casting

Introduction

In the continuous casting process [1], the liquid steel in the tundish moved through
the SEN into the mold [2] and then existed as double-roll flow or single-roll flow
patterns [3] with different casting parameters. The powder was added into the mold
successively and existed as liquid slag, solid slag and powder from the bottom up
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[4, 5]. The slag covering the liquid steel could protect the steel from oxidation, slow
the heat transfer from the steel to the air, and absorb the inclusion from the steel.
Meanwhile, the slag could infiltrate into the gap between the steel shell and the
copper plate, and exist as lubricant [6], and the phenomena near the meniscus from
2D mold model [7] were shown in Fig. 1. However, the flow of the liquid steel and
slag could be affected by the interaction. The slag entrapment [8] was easy to occur
with the high speed of the upper backflows.

It was reported that the curved meniscus formed with the interfacial tension
between the steel and slag [9]. The meniscus solidification led to the formation
of hooks, which could entrap bubbles, inclusions and slags, deteriorating the surface
quality of the slab [10]. Hence, the understanding of the slag movement in the mold
was extremely important. However, most studies about the fluid flow in the mold
only involved the flow of the steel.

In the current study, a three-dimensionalmoldmodelwas established to investigate
the fluid flow and heat transfer of three phases (steel–slag–air) in the mold. The
double-roll flow pattern in the mold was revealed, and the velocity of the slag on
the steel–slag interface and slag–air interface was obtained. The interfacial tension
between liquid steel and liquid slag and the oscillation of the mold were added into
the model to show the 3D steel–slag interface.

Fig. 1 Phenomena near meniscus from 2D mold model [7]
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Mathematical Modeling

In the current study, a three-dimensional mathematical model was established to
investigate the three-phase (Steel–slag–air) fluid flow in the mold, and the velocity
on the steel–slag interface was focused on. The k-ε model, VOF (volume of fluid)
model, solidification model and CFSmethod were applied in the model, and the fluid
flow, heat transfer and the solidification of the steel were calculated through solving
the continuity equation, Navier–Strokes equations, and energy equation [11]. The
interfacial tension between the liquid steel and slag was considered to reveal the
shape of steel–slag interface. The oscillation of the mold was added to obtain the
infiltration of the slag into the gap between the steel shell and the copper plate.

The mesh and simulation conditions of the mold model are shown in Fig. 2. The
computation domain included a quarter of the submerged entry nozzle (SEN), a
quarter of the mold with the length of 0.9 and 0.5 m below the exit of the mold to
reduce the amount of computation. In order to investigate the flow velocity near the
meniscus, the finer mesh of 50 μm was applied near the initial steel–slag interface
and the wall of the mold, as shown in Fig. 2(a). The total mesh number was 1462044.
In Fig. 2(b), the initial thickness of the air and slag above the steel were both 50 mm.
The velocity inlet (1.512 m/s) was applied at the inlet of the SEN, and the velocity
was calculated on the basis of mass conservation. The temperature of the steel at the
inlet was 1830 K. The pressure outlet was applied at the bottom of the model, and the
turbulent kinetic energy and dissipation rate were 0.0001 m2/s2 and 0.0001 m2/s3,
respectively. The free surface was applied on the top of the mold, the symmetry
conditions were applied on the central section, and other boundaries were applied as
non-slip wall. Simulation parameters were shown in Table 1, and other details could
be found elsewhere [12]. The simulated shape of steel–slag interface was compared
with the measured shape of hook lines to validate the accuracy of the model [13].

Fluid Flow in the Mold

The streamline of liquid steel in the mold is exhibited in Fig. 3. Under the current
simulation condition, the liquid steel existed as double-roll flow pattern in the mold.
When the liquid steel exiting from the SEN rushed to the narrow face, the liquid steel
flowed towards the wide face, and then the upper and lower backflows formed. The
speed of the upper and lower backflows was below 0.4 m/s. In Fig. 4, the vector of
several sections in themold is demonstrated to show the velocity of the steel and slag.
Under the influence of the upper backflow, the lower part of the slag moved from
the narrow face to the SEN. On the contrary, the upper part of the slag flowed from
the SEN to the narrow face, when neglecting the powder slag. The speed near the
steel–slag interface is larger than that near the slag–air interface. Hence, a circulation
might also be found in the slag zone.
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Fig. 2 Mesh and simulation
conditions of the mold model

(a) Mold mesh (b) Simulation conditions

Table 1 Simulation parameters

Parameters Value Parameters Value

Mold section 1300 mm × 247 mm Density of liquid steel 7020 kg/m3

Simulation length 1400 mm Viscosity of liquid
steel

0.0063 kg/(m s)

Submerged depth of
SEN

180 mm Density of liquid slag 2500 kg/m3

Inner diameter of port 85 mm Viscosity of liquid
slag

0.262 kg/(m s)

Air thickness 50 mm Specific heat of steel 750 J/(kg K)

Slag thickness 50 mm Latent heat of steel 270,000 J/kg

Interfacial tension of
slag–steel

1.3 N/m Mold oscillation mode Sinusoidal

Casting speed 1.45 m/min Oscillation frequency 3 Hz

Contact angle between
steel and slag

46° Oscillation stroke 6 mm
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Fig. 3 Streamlines of liquid steel in the mold

Fig. 4 Vector of several sections in the mold

Velocity and Profile of the Steel–Slag Interface

In order to investigate the movement of the slag above the steel, the flow velocity on
the steel–slag interface and slag–air interface is shown in Fig. 5. Under the influence
of the upper backflow, the slag on the steel–slag interface flowed from the narrow
face to the SEN, while the slag on the slag–air interface flowed from the SEN to the
narrow face. In Fig. 5(a), the slag flowed from the point near the narrow face of the


