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Preface

Recently “network science” has been bridging various disciplines like mathematics,
physics, biology, chemistry, computer science, ecology, and the social sciences. This
is mainly due to its wide perspective in modeling the structure and dynamics of
complex systems, both natural and man-made, with different, large, or even multiple
scales. Some examples include genetic networks, food web, trade networks, the
World Wide Web (WWW), collaboration networks, power grids, and air traffic
networks.

The primary aim of the workshop series on Dynamics on and of Complex
Networks (DOOCN) is to systematically explore the statistical dynamics “on” and
“of” complex networks that prevail across a large number of scientific disciplines.
Dynamics on networks refers to dynamical processes which evolve on networks
and their evolution, which is impacted by their underlying topology. On the other
hand, dynamics of networks refers to the changes occurring in the topology due
to various interactions. The first DOOCN workshop (DOOCN-I) took place in
Dresden, Germany, 2007, as a satellite workshop of the European Conference
on Complex Systems (ECCS). After the success of DOOCN-I, new editions were
organized as satellites of ECCS/CCS in Jerusalem (2008), Warwick (2009), Lisbon
(2010), Vienna (2011), Barcelona (2013), Lucca (2014), Amsterdam (2016), and
Thessaloniki (2018) and also as satellites of the International School and Con-
ference on Network Science (NetSci) in Zaragoza (2015) and Indianapolis (2017).
Details of the workshop series are available at doocn.org.

Eminent speakers of the workshops in recent years included (alphabetically
ordered) Katharina Zweig (TU Kaiserslautern, Germany), Renaud Lambiotte (Uni-
versity of Oxford, UK), Yamir Moreno (University of Zaragoza, Spain), Sayan
Pathak (Microsoft Research Redmond, USA), Ginestra Bianconi (Queen Mary
University of London, UK), Constantine Dovrolis (Georgia Institute of Technology,
USA), Martin Rosvall (Umea University, Sweden), Frank Schweitzer (ETH Zurich,
Switzerland), Krishna Gummadi (Max Planck Institute for Software Systems,
Germany), Ciro Cattuto (ISI Foundation, Italy), Markus Strohmaier (RWTH Aachen
University, Germany), and Matthieu Latapy (UPMC, Paris).
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vi Preface

Notably, the workshop organizing committee has published two book volumes
from the selected talks of the series (2009: https://goo.gl/tmqPYm) and (2013:
https://goo.gl/GQkfEp). The first volume aimed to show how complex network
theory is being successfully used by researchers to tackle numerous difficult
problems in various domains and included three parts addressing applications of
complex networks in biological, social, and information sciences. The second
volume aimed to put forward burgeoning multidisciplinary research contributions
that combine methods from computer science, statistical physics, econometrics,
and social network theory toward modeling time-varying social, biological, and
information systems. This volume included three parts: (1) online social media,
the Internet, and the WWW, (2) community analysis, and (3) diffusion, spreading,
mobility, and transport.

The third book volume is the present one, edited by the DOOCN 2017 orga-
nizers, and aims to focus on this specific topic: “Machine Learning and Statistical
Physics”. Recently, machine learning (ML) techniques have been used to model
dynamics of massive complex networks generated from big data and various
functionalities resulting from the networks. It has become clear from the past
DOOCN workshop editions that modeling large-scale dynamic networks, such
as mobile adhoc networks and societal opinion networks, has gained enormous
relevance in the landscape today. The advent of big data technologies, which
allow effective acquisition and processing of massive amounts of unstructured data,
further promises to improve the effectiveness and cross-fertilization of ML and
network science. This motivated us to focus on this area of significant recent interest
in our last workshop editions. A key feature of the DOOCN workshops is that each
year, an exciting theme is chosen; some recent themes include “Big Data” (2014),
“Computational Aspects of Big Data” (2015), “Mining and learning for complex
networks” (2016), “Machine learning and statistical physics” (2017), and “Machine
learning for complex networks” (2018). This volume presents a mix of very relevant
reviews of important works in the field and gives the reader an up-to-date picture of
the state of the art. This edition also contains independent research reports.

This book volume consists of three major parts. The contributions in the first part
focus on network structure, with three chapters. In the first chapter “An Empirical
Study of the Effect of Noise Models on Centrality Metrics”, Sarkar et al. conducted
an empirical study of how different noise models affect the network structure,
precisely the ranking of centrality metrics. The analysis presented in this chapter
reveals that the stability of the ranking varies according to the structure of the
network, the noise model used, and the centrality metric to be computed. In the
second chapter “Emergence and Evolution of Hierarchical Structure in Complex
Systems”, Siyari et al. investigated the following key questions in the context of
modeling the emergence and evolution of hierarchical structure in complex systems:
(a) How do key properties of emergent hierarchies, like depth of the network,
centrality of each module, and complexity of intermediate modules, depend on the
evolutionary process that generates the new targets of the system? (b) Under what
conditions do the emergent hierarchies exhibit the so-called hourglass effect? (c) Do
intermediate modules persist during the evolution of hierarchies? In the third chapter
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“Evaluation of Cascading Infrastructure Failures and Optimal Recovery from a
Network Science Perspective”, Warner et al. reviewed the network science literature
in order to create a hypothesis for the recovery of infrastructure systems. They
represented the cascade of infrastructure systems through networks and simulated
perturbations within singular and discussed how these impact multiple layers of an
interconnected network.

Part II of the book volume focuses on network dynamics and it spans over
four chapters. In the fourth chapter “Automatic Discovery of Families of Network
Generative Processes”, Menezes and Roth first reviewed the principles, efforts, and
emerging literature in this direction, which is aligned with the idea of creating artifi-
cial scientists. Next, the authors developed an approach to demonstrate the existence
of families of networks that may be described by similar generative processes. In
the fifth chapter “Modeling User Dynamics in Collaboration Websites”, Kasper
et al. presented several approaches to deepen the understanding of user dynamics
in collaborative websites. Inevitably, these approaches are quite heterogeneous and
range from simple time-series analysis toward the application of dynamical systems
and generative probabilistic methods. In the sixth chapter “Interaction Prediction
Problems in Link Streams”, Arnoux et al. addressed the problem of predicting future
interactions, which is traditionally addressed by merging interactions into a graph
or a series of graphs, called snapshots. However, in this chapter, authors formalized
interactions within the link stream framework, which makes it possible to fully
capture both temporal and structural properties of the data. In the seventh chapter
“The Network Source Location Problem in the Context of Foodborne Disease
Outbreaks”, Horn and Friedrich introduced the source identification problem in the
context of foodborne disease outbreaks based on basic practical knowledge of food
supply networks and the foodborne disease contamination process.

The third part of the book volume focuses on theoretical models and applications
with three chapters. In the eighth chapter “Network Representation Learning using
Local Sharing and Distributed Graph Factorization (LSDGF)”, Pandey proposed
a distributed algorithm for network representation learning (NRL), which learns
matrix factorization of a given network in which a node utilizes only the information
available at its neighboring nodes and connected nodes for exchanging feature
vectors dynamically. The performance of the proposed algorithm is evaluated by
the learning of first-order proximity, spectral distance, and link prediction. In the
ninth chapter “The Anatomy of Reddit: An Overview of Academic Research”,
Medvedev et al. explored one of the most popular social media platforms, Reddit.
They developed a suite of methodologies to extract information from the structure
and dynamics of the Reddit system. In the tenth chapter, “Learning Information
Dynamics in Online Social Media: A Temporal Point Process Perspective”, Samanta
et al. proposed two models: (1) a probabilistic linear framework that unifies
influence of different factors contributing to the popularity of an item and inter-item
competitions and (2) a more generic model, with a deep probabilistic machinery that
unifies the nonlinear generative dynamics of a collection of diffusion processes, and
inter-process competition.
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This cross-disciplinary collection of articles highlights the bridging of a variety
of scientific branches. The chapters are designed to serve as the state of the art
not only for students and new entrants but also for experts who intend to pursue
research in this field. All the chapters have been carefully peer-reviewed in terms
of their scientific content as well as readability and self-consistency. We would like
to thank the authors for their contributions and their careful consideration of the
editorial comments. Moreover, we acknowledge all the reviewers as listed below for
their constructive criticisms, comments, and suggestions, which have significantly
improved the quality of the chapters. Also, we acknowledge Satadal Sengupta for
maintaining the electronic platform for the manuscript submission, management
and monitoring. Finally, we are extremely grateful to the entire support team from
Springer for their help that made the timely publication of this volume possible.
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Network Structure



An Empirical Study of the Effect of Noise
Models on Centrality Metrics

Soumya Sarkar, Abhishek Karn, Animesh Mukherjee,
and Sanjukta Bhowmick

Abstract An important yet little studied problem in network analysis is the effect
of the presence of errors in creating the networks. Errors can occur both due to the
limitations of data collection techniques and the implicit bias during modeling the
network. In both cases, they lead to changes in the network in the form of additional
or missing edges, collectively termed as noise. Given that network analysis is used
in many critical applications from criminal identification to targeted drug discovery,
it is important to evaluate by how much the noise affects the analysis results. In
this paper, we present an empirical study of how different types of noise affect real-
world networks. Specifically, we apply four different noise models to a suite of nine
networks, with different levels of perturbations to test how the ranking of the top-k
centrality vertices changes. Our results show that deletion of edges has less effect
on centrality than the addition of edges. Nevertheless, the stability of the ranking
depends on all three parameters: the structure of the network, the type of noise
model used, and the centrality metric to be computed. To the best of our knowledge,
this is one of the first extensive studies to conduct both longitudinal (across different
networks) and horizontal (across different noise models and centrality metrics)
experiments to understand the effect of noise in network analysis.

Keywords Noise models in networks · Centrality metrics · Accuracy of analysis
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1 Introduction

In recent years, network analysis has become an important mathematical tool
for studying the interactions of entities in complex systems. The entities are
represented as the vertices and their dyadic relations are represented as edges. The
structural properties of the network provide insights to the characteristics of the
underlying system. For example, high centrality vertices point to important proteins
in protein–protein interaction networks [5] and groups of tightly connected vertices,
or communities represent groups of friends in social networks [19].

An important yet little studied problem in network analysis is the effect of the
presence of errors in creating the networks. The errors primarily occur at two stages:
First, they occur when collecting real-world data. The measurements of any physical
system inherently include some degree of error, which is propagated to the network
model. Second, the errors occur during the creation of the network model. The inter-
relations (here edges) are often determined based on the subjective evaluation of
the modeler. For example, in a gene correlation network, two vertices (genes) are
connected by an edge only if the correlation between the two genes is higher than a
specified threshold. However, due to the absence of a standard value, this threshold
is decided by the person creating the model.

These errors in data collection and modeling are manifested as structural changes
in the network, in the form of additional or missing edges, collectively termed
as noise. An important question is by how much this noise affects the analysis
results. In particular, since network analysis is used in many critical applications
from criminal identification [12] to targeted drug discovery [3], a drastic change in
the accuracy can lead to serious consequences.

Overview In this paper we present an extensive empirical study of how different
types of noise affect real-world networks. Specifically, we apply four different noise
models. These are random deletion of edges (edge deletion), random addition of
edges (edge addition), swapping the end-points of a pair of edges (edge swap), and
overlaying the network with a random graph such that only the edges present in
either the original or the random network are kept (edge XOR). Each of these noise
models is applied to a suite of nine networks, with different levels of perturbations
to test how the ranking of the top-k centrality vertices changes.

We measure the change in the ranking using the Jaccard index (JI). We test
how the following centrality metrics, degree centrality, betweenness centrality, and
closeness centrality, are affected by these noise models. While there have been
several studies [4, 6, 18] conducted on individual noise models and how they affect
network properties, to the best of our knowledge, this is one of the first studies
to conduct both a longitudinal (across several different networks) and a horizontal
(across noise models and centrality metrics) evaluation of the effect of noise in
networks. Some of the results that we observe through these experiments are:
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• Variations in Noise Models: Edge swap produces the highest average JI, i.e., the
least amount of change in the vertex ranking. This is followed by, in order of
highest to lowest average JI, edge deletion, edge XOR, and finally edge addition.

• Variations in Network Structure: Networks from the technological domain,
particularly the autonomous network AS2 and the peer-to-peer network P2P,
show the most stability, i.e., high JI across all noise models. The network of
the power grid of the Western United States shows the least stability with lowest
JI across all noise models. The other networks show high stability for edge swap
and edges deletion and low stability for the other two models.

• Variations in Centrality Metrics: Of the three centrality metrics, degree centrality
was the most stable, and betweenness centrality was the least stable.

The remainder of this paper is organized as follows: In Sect. 2, we present our
experimental methodology along with the datasets and definitions of the centrality
measures. In Sect. 3, we describe the effect of the noise models and provide a
summary of our observations. In Sect. 4, we discuss related research in this domain.
We conclude in Sect. 5 with an overview of our future research plans.

2 Experimental Setup

In this section we provide a brief description of our experimental setup, including
description of the networks used, the definitions of the centrality metrics, and an
overview of how we conducted the experiments.

2.1 Test Suite of Networks

We consider the following nine networks that were collected from public repos-
itories [8, 13]. We group these networks into three categories: (1) technological
networks that are formed through interconnections of routers or peer-to-peer
networks, (2) social networks that are formed through collaborations, chats, or
linking between blogs, and (3) miscellaneous networks formed from other varied
applications, including biological networks, software networks, and power grids. A
summary of the networks, their descriptions, and sizes is given in Table 1.

2.2 Centrality Metrics

In our experiments we study the stability of the following centrality metrics. Given
a graph G(V,E), with |V | vertices and |E| edges, the metrics are computed as:
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Table 1 Description of the nine networks in the test suite

Network Description Node Edges

Technological networks

AS Network of routers obtained from University of Oregon Route
Views Project

6474 13,895

CA Network of routers obtained from Center for Internet Data
Analysis (CAIDA)

16,493 66,744

P2P Gnutella peer-to-peer file sharing network 26,518 65,369

Social networks

APH Collaboration network of authors of papers posted in arXiv’s
Astrophysics

16,046 121,251

AnyBeat Social network where users connect anonymously 12,645 67,053

Blog Network of front-page hyperlinks between blogs related to the
2004 US election

1224 19,025

Miscellaneous networks

PW Network of power grid of the Western United States 4941 6594

BIO Protein–protein interaction network 7393 25,569

SW Dependency network of classes in JUNG and javax 6120 50,535

From left to right, the columns are: abbreviation of the network name, short description of the
network, the number of vertices, the number of edges, and the global clustering co-efficient

Degree centrality, D(v), of a vertex v measures the number of its neighbors.
Closeness centrality of a vertex v measures its average distance from all other
vertices in the network. It is computed as CC(v) = |V |∑

s �=v∈V

dis(v,s)
, where dis(v, s) is

the length of a shortest path between v and s.
Betweenness centrality of a vertex v is defined as the fraction of the total

number of shortest paths that pass through the vertex. It is computed as BC(v) =∑

s �=v �=t∈V

σst (v)
σst

, where σst is the total number of shortest paths between s and t , and

σst (v) is the total number of shortest paths between s and t that pass through v.

2.3 Methodology

To test the stability of the networks and centrality metrics under different noise
models, we perform the following experiment. We first compute the centrality values
of each network, and rank the vertices from highest to lowest centrality values. There
can be potentially different ranking for each centrality metric. We test the effect
on rank, rather than the value of the centrality, because most applications, such as
information spreading or vaccination, require finding the high ranked vertices and
do not require their exact value. We apply the noise models to the networks over
different levels of perturbations, and compute the centrality, and subsequent ranking
on the perturbed network.
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We then use Jaccard index (JI) to measure how many of the top-k vertices from
the original ranking are retained. The JI of two sets A and B is given by A∩B

A∪B
. The

highest value is 1, when both sets A and B are the same and the lowest value is
0, when the sets A and B do not have any common elements. We test JI for the
top ranked 5, 10, 25, and 50 vertices. Since the noise models are stochastic, test is
repeated 5 times, and the average JI over the five tests is reported for each tuple of
noise model, network types, centrality metric, and perturbation level.

3 Empirical Results

We describe the stability results as per our experiments on the four noise models.
We test one model for only addition of edges, one for only deletion, and two models
that involve both addition and deletion of edges. Addition and deletion are the units
of change in a network, so we study them individually. Variations of the other two
models have been used in [2] and [6]. We present the detailed results for each model
separately in Sects. 3.1–3.4 and summarize our findings from all these experiments
in Table 2.

3.1 Edge Addition

In this noise model we add edges to the network. We select a pair of vertices from
the set V with probability p

|V | . If the edge is not already part of the network we add
it to the network. Figures 1, 2, and 3 show how the top-k centralities change as the
value of p is increased. The values of p ranged from 0.5, 1.5, 2.5, 3.5, and 4.5. As

Table 2 Average across centrality metrics for each noise model for each network

Network Edge deletion Edge addition Edge swap Edge XOR

Technological networks

AS2 0.8 0.59 0.9 1

CA 0.7 0 0.96 0

P2P 0.68 0.61 1 0.80

Social networks

AnyBeat 0.8 0 1 0

APH 0.6 0 1 0

Blog 0.97 0.09 0.93 0.03

Miscellaneous networks

BIO 0.78 0 0.88 0

PW 0.47 0.02 0.34 0.11

SW 0.95 0.13 0.9 0.21



8 S. Sarkar et al.

Fig. 1 Effect of edge addition on technological networks. X-axis: perturbations values; Y-axis:
Jaccard index. Left: degree; middle: betweenness; right: closeness. Top to bottom: AS, CAIDA,
and P2P

can be seen, apart from AS2 and P2P, all the other classes of networks exhibit very
low JI for every perturbation and every value of k. Thus edge addition even at small
levels of perturbation can significantly change the ranking.
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Fig. 2 Effect of edge addition on social networks. X-axis: perturbations values; Y-axis: Jaccard
index. Left: degree; middle: betweenness; right: closeness. Top to bottom: APH, AnyBeat, and
Blog

3.2 Edge Deletion

In this noise model we delete edges from the network. We select an existing edge
from the set E and remove it with a probability of p. In our experiments we set p to
range from 2, 4, 6, 8, and 10% of the edges. Figures 4, 5, and 6 show how the top-k
centralities change as the value of p is increased.

We observe that in contrast to the edge addition model, the JI values for degree
and closeness centralities are generally high for all networks. The behavior of the JI
values of betweenness centrality varies from being 1, i.e., ranking unaffected (Blog)
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Fig. 3 Effect of edge addition on miscellaneous networks. X-axis: perturbations values; Y-axis:
Jaccard index. Left: degree; middle: betweenness; right: closeness. Top to bottom: BIO, PW, and
SW

to gradually decreasing (AnyBeat) to being 0, i.e., ranking completely changed
(APH). We conclude that uniform deletion does not significantly affect the ranking
of degree and closeness centralities.
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Fig. 4 Effect of edge deletion on technological networks. X-axis: perturbations values; Y-axis:
Jaccard index. Left: degree; middle: betweenness; right: closeness. Top to bottom: AS, CAIDA,
and P2P

3.3 Edge Swap

We now consider noise models that include both addition and deletion of edges.
The first example we consider is swapping edges between two pairs of connected
vertices. Let us consider two edges, (a, b) and (c, d), where none of the vertices a

and b are connected to vertices c and d. In the swapping model, we disconnect the
edge between a and b, and between c and d. Then, to maintain the degree of the
vertices, we reconnect a with c and b with d. A version of this noise model was
used in [6] to measure robustness of communities.
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Fig. 5 Effect of edge deletion on social networks. X-axis: perturbations values; Y-axis: Jaccard
index. Left: degree; middle: betweenness; right: closeness. Top to bottom: APH, AnyBeat, and
Blog

Figures 7, 8, and 9 show how the top-k ranking changes as the value of p,
the percentage of edge selected, is increased. Values of p are 2, 4, 6, 8,and 1.
Due to the characteristics of the model, the ranking of degree will remain mostly
unchanged. We see that for most networks and centrality metrics, the JI values are
high indicating that swapping does not significantly perturb the centrality ranking.
The exceptions are the power network, and some cases of betweenness centrality.
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Fig. 6 Effect of edge deletion on miscellaneous networks. X-axis: perturbations values; Y-axis:
Jaccard index. Left: degree; middle: betweenness; right: closeness. Top to bottom: BIO, PW, and
SW

3.4 Edge XOR

In this model, we also consider both addition and deletion of edges. Here we create
a random graph R(n, p) with the same number of vertices, |V | = n as the original
graph G. We perform a perturbation in the form that if an edge (a, b) is present in
both R and G, the edge is deleted from the G. However, if the edge is present in R

but not in G, we add the edge to G. We term this as the XOR perturbation, because
of its similarity to the boolean XOR operation (output is true if exactly one, but
not both conditions are true). A version of this model was used in [1], for testing
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Fig. 7 Effect of edge swapping on technological networks. X-axis: perturbations values; Y-axis:
Jaccard index. Left: degree; middle: betweenness; right: closeness. Top to bottom: AS, CAIDA,
and P2P

robustness of the k-core. Because the networks are sparse, more edges will be added
than deleted in the perturbed network. The probability with which the edges in the
random network were connected is varied from 0.5, 1.5, 2.5, 3.5, and 4.5.

The results in Figs. 10, 11, and 12 show that for all networks, except for AS2
and P2P, the JI value is close to zero for all networks and centrality measures. This
indicates that the XOR model can easily disrupt the ranking of the high centrality
vertices, even for low perturbations.
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Fig. 8 Effect of edge swapping on social networks. X-axis: perturbations values; Y-axis: Jaccard
index. Left: degree; middle: betweenness; right: closeness. Top to bottom: APH, AnyBeat, and
Blog

3.5 Summary of the Results

In this set of experiments, we studied how different noise models affect the ranking
of high centrality vertices. Table 2 summarizes the average JI for each network over
all the centrality metrics, and for each noise model.

From the results it can be clearly seen that the edge deletion and edge swap affect
the ranking of the high centrality vertices far less than the edge addition and edge
XOR. Out of these two, the edge addition model is more disruptive. Note that almost
any new edges has the potential to change the route of the shortest paths, leading


