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Liquid chromatography is one of the workhorses in the analysis of polymers when it
comes to addressing the challenges associated with characterising their complex
molecular structure. The gold standard for molar mass determination is size exclu-
sion chromatography (SEC) as it not only provides reliable and accurate information
but also has a well-developed theoretical foundation from which to predict and
explain the retention behaviour of polymers.

However, SEC separates polymers according to their size in solution and not
according to their molar mass. The correlation between hydrodynamic size and
molar mass is obtained through SEC calibration or the use of molar mass sensitive
detectors. SEC also has limitations when it comes to complex or high molar mass
samples (such as block copolymers, polyelectrolytes and polymer self-assemblies)
as these can undergo shear degradation or even adsorption onto the stationary phase.
Moreover, since SEC separates only according to size, multidimensional techniques
(such as two-dimensional liquid chromatography) need to be developed in order to
obtain more than just molar mass data. However, these techniques can be tedious and
experimentally iterative.

To address the limitations inherent to column-based fractionation techniques,
channel-based fractionation techniques, such as field-flow fractionation, have
become important alternative fractionation platforms to separate and characterise
not only polymers but also other complex analytes such as polymer self-assemblies.
One of the most prominent subtechniques of field-flow fractionation for polymer
characterisation is thermal field-flow fractionation (ThFFF) as it can separate
polymers based on not only their size in solution (or molar mass) but also according
to their chemical composition in a single analysis. Over the last few years, both the
development of ThFFF theory and the application of the technique to characterise
complex analytes have shown tremendous growth and as a result have started to gain
increased attention from the polymer community.

In this textbook, we address the theoretical and experimental aspects of ThFFF
and demonstrate its remarkable fractionating capabilities through various examples
and experiments. This book is written for beginners as well as for experienced
separation scientists and will enable not only polymer chemists but also physicists,
material scientists as well as students of polymer and analytical sciences to optimise
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experimental conditions for a specific fractionation problem and solve various
problems that can arise during the operation of the instrument.

This book is dedicated to friends and colleagues who contributed (directly or
indirectly) to this book by their perseverance and dedication to developing not only
the fundamental understanding of the thermal diffusion of polymers but also
pioneering the characterisation of complex polymers and other nanosized materials.
Amongst others, Kim R. Williams (USA), Albena Lederer (Germany), Michel Martin
(France), Wim Kok (Amsterdam), Edwin Mes (Netherlands), Martin Schimpf (USA),
Frédéric Violleau (France) and their graduate students are gratefully acknowledged.

Stellenbosch, South Africa Guilaume Greyling
Harald Pasch
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Abstract

Synthetic polymers are complex and multicomponent materials. Their development
and further advancement is driven by the increasing demand for new functional
materials with improved performance and tailored properties. Synthetic polymers
are inherently complex materials as they can exhibit various distributions in
properties such as molar mass (chain length), chemical composition, microstructure
as well as molecular architecture and topology. As property distributions signifi-
cantly influence the physical properties and end-use applications, proper monitor-
ing and characterisation of distributions in key physical and physicochemical
parameters is crucial for the improvement of polymer properties and performance.
Most frequently, in order to characterise the various property distributions, a
separation is required. As a result, fractionation techniques such as liquid chroma-
tography and field-flow fractionation have become principal techniques for
polymer characterisation.
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