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Preface

A great progress has recently been achieved in the research area of Nitrogen
Fixation, as one of the most important subjects in chemistry. Especially, the devel-
opment of catalytic ammonia formation from nitrogen gas under mild reaction
conditions has been repowered by several research groups. Although nitrogen
fixation chemistry is one of the most notable fields of research, books provide
comprehensive knowledge of the relevant fields are rather limited until now. I
believe that the latest research results by researchers engaged in state-of-the-art
research on synthesis of transition metal–dinitrogen complexes and their reac-
tivity in this book will give very useful information to researchers, teachers, and
students who are interested in the research filed of nitrogen fixation by using
transition metal–dinitrogen complexes.

I would like to thank all the contributors for their chapters in this book and
their enthusiastic efforts to present recent advances of Nitrogen Fixation by using
transition metal–dinitrogen complexes. I anticipate that their contributions will
stimulate further study in Nitrogen Fixation. I would like also to offer my warm
thanks to the Wiley-VCH team for their continuous support. Finally, I deeply
appreciate staffs and students in my research group for their valuable assistances.

May 2018 Yoshiaki Nishibayashi
The University of Tokyo

School of Engineering
Tokyo, Japan
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1

Overviews of the Preparation and Reactivity of Transition
Metal–Dinitrogen Complexes
Yoshiaki Tanabe and Yoshiaki Nishibayashi

Department of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan

1.1 Introduction

Nitrogen, the fifth most abundant element in the solar system, is the most abun-
dant element in the atmosphere of Earth [1] as well as the fourth most abun-
dant element in cellular biomass [2]. However, it is rather a trace element in the
lithosphere of Earth [3]. Thus, utilization of chemically inert gaseous molecular
dinitrogen (N2) that exists in the atmosphere of Earth as the primary nitrogen
source is inevitable in both biogeography and industry. Indeed, fixation of atmo-
spheric nitrogen can be achieved by the conversion of molecular dinitrogen into
ammonia (NH3) containing the most reduced form of nitrogen (−3) that can be a
convenient precursor for several nitrogen-containing compounds and has been
the most fundamental reaction pathway of the global nitrogen cycle [4, 5]. Indus-
trially, NH3 is one of the 10 largest commodity chemical products and has been
produced by the Haber–Bosch process in which atmospheric dinitrogen reacts
with gaseous dihydrogen (N2 + 3 H2 → 2 NH3) since the early twentieth century
[6–14]. Haber and van Oordt in 1904 first succeeded in the conversion of the
mixture of N2 and H2 into NH3 in the presence of transition metal catalyst (Fe or
Ni) at a high temperature in a laboratory [15–17]. Later, modification of the reac-
tors and catalysts was achieved, and 90 g of ammonia was shown to be obtained
every hour by using an osmium-based catalyst with the total yield of ammonia up
to 8 vol% at 550 ∘C and a total pressure of 175 atm of a stoichiometric mixture of
dinitrogen and dihydrogen (1 : 3) in an experimental lecture held in Karlsruhe on
18 March 1909 [18–20]. Further modification of the catalysts for industrialization
was investigated by Mittasch and coworkers in BASF, leading to the discovery of
the combination of iron, K2O, and Al2O3 as one of the most active catalysts by
1910 [6, 21]. The first commercial plant for ammonia synthesis at Oppau began
its operation by 1913 in collaboration with Bosch and coworkers at BASF, while
the earlier commercial methods to fix atmospheric nitrogen such as Frank–Caro
cyanamide process (CaC2 +N2 →CaCN2 +C) and Birkeland–Eyde electric arc
process (N2 +O2 → 2 NO) were gradually replaced by the Haber–Bosch ammo-
nia process [6–14]. Typical reaction conditions of the Haber–Bosch process are

Transition Metal-Dinitrogen Complexes: Preparation and Reactivity,
First Edition. Edited by Yoshiaki Nishibayashi.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
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N2 + 3 H2 2 NH3

cat. Fe3O4/K2O/Al2O3

100–200 atm, 300–500 °C(a)

N2 + 0.2682 O2 + 0.8841 CH4 + 1.2318 H2O

(b)

2 NH3 + 0.8841 CO2 

(N2 : O2 = 78.084 : 20.946)

50–100 atm
370–400 °C

cat. Ba–Ru/C

Air

Figure 1.1 (a) Prototype Haber–Bosch process operated at the first BASF’s Oppau plant. H2 is
originally obtained from steam reforming of coal. (b) Kellogg advanced ammonia process with
methane steam reforming.

shown in Figure 1.1a [6], where the reaction is carried out under high temperature
and high pressure in the presence of heterogeneous solid-state catalysts prepared
from magnetite (Fe3O4) with the addition of alumina (Al2O3), silica (SiO2), or
alkaline earth metal oxide (CaO) as a “structural” promoter and alkaline metal
oxide (K2O) as an “electronic” promoter.

Although formation of NH3 from N2 and H2 is thermodynamically favored
under standard conditions (ΔrH∘ = −45.90 kJ mol−1, ΔrG∘ = −16.37 kJ mol−1

at 1 bar and 25 ∘C), this conversion can hardly occur at ambient reaction
conditions because the dissociation energy of the dinitrogen triple bond is high
(D0

∘ = 945.37 kJ mol−1) [22]. To lower and surmount the activation energy of
this conversion, elevated pressure and temperature as well as heterogeneous
solid-state catalysts are necessary, where bond-breakings upon chemisorption
on the surface of solid-state catalysts were experimentally observed by Ertl
and coworkers, who clarified the surface reaction pathway of the Haber–Bosch
process as shown in Figure 1.2 [23–29]. Activation energy and turnover fre-
quency of the catalytic ammonia synthesis are highly dependent not only on
the catalyst but also on temperature, pressure, and the ratio of the substances
and products, where the logarithm of the equilibrium constant for the reaction
of N2 + 3 H2 = 2 NH3 at 1 bar becomes zero theoretically at 456 K [22]. For
example, the apparent activation energy for the catalytic ammonia synthesis on
the Fe(111) surface of an iron single crystal at around 748 K and a total pressure
of 20 atm of a stoichiometric mixture of dinitrogen and dihydrogen (1 : 3) was
determined by Somorjai and coworkers as 81.2 kJ mol−1 with an initial turnover
frequency of 12.7± 2.0 molecules of ammonia per C4 surface iron atom per
second [30].

A more improved method such as Kellogg advanced ammonia process
(KAAP) uses ruthenium-based catalyst supported on graphite-containing
carbon copromoted with barium, cesium, or rubidium performed at comparably
lower pressure and temperature, the stoichiometry of which can be expressed
as Figure 1.1b, when natural gas steam reforming is applied to ammonia
production without the separation of dinitrogen from air [8–14, 31–35]. In
this reaction, methane is the main hydrogen source of ammonia, and the
gaseous ammonia obtained from the stoichiometry in Figure 1.1b theoretically
contains 20.8 GJ per metric ton or 355 kJ mol−1 as chemical energy calculated
based on the heat of combustion of methane in the lower heating value (LHV)
(ΔcH∘ = −802.3 kJ mol−1, ΔcG∘ = −800.8 kJ mol−1) or 18.6 GJ per metric ton



1.1 Introduction 3

N + 3 H

NH + 2 H

NH2 + H

0

+1127

+813

+408

1/2 N2

+ 3/2 H2

ΔH
kJ mol−1

−23

1/2 N2,ad +25

+ 3/2 H2

−136

Nad

+ 3 Had
−116

NHad

+ 2 Had

NH2,ad

+ Had
NH3,ad

−106
−96

NH3−
−46−106 −96

−86

Radical pathway

Surface pathway

+106

+25

1/2 cis-N2H2 (g) + H2

1/2 N2H4 (l) + 1/2H2

Stepwise hydrogenation pathway

Figure 1.2 Potential energy diagram for ammonia synthesis on the surface of iron, via
stepwise hydrogenation or via formation of radicals.

based on that of ammonia (ΔcH∘ = −316.8 kJ mol−1, ΔcG∘ = −326.5 kJ mol−1)
if full recovery of the reaction heat is assumed (ΔrH∘ = −37.8 kJ mol−1 and
ΔrG∘ = −27.5 kJ mol−1 per NH3 for Figure 1.1b) [22]. A classical BASF-type
Haber–Bosch process that uses coke consumes chemical energy of 100 GJ per
metric ton of NH3 in 1920 [6], which is much more efficient than the
Birkeland–Eyde electric arc process (600 GJ per metric ton of fixed nitro-
gen) or the Frank–Caro cyanamide process (190 GJ per metric ton of NH3
derived from the decomposition of CaCN2 with H2O) [12], whereas the most
efficient ammonia plant with the ruthenium-based catalyst and methane steam
reforming consumes as low as 27.2 GJ per metric ton or 463 kJ mol−1 of NH3,
where energy efficiency of around 75% with respect to the stoichiometric
methane demand is achieved, which also means that additional chemical energy
of 108 kJ mol−1 is required for the industrial synthesis of NH3 as represented in
Figure 1.1b [13]. In an exergy analysis of a low-energy ammonia process to obtain
the liquefied ammonia at −33 ∘C (20.14 GJ per metric ton or 343 kJ mol−1) by
Dybkjaer under a model reaction at 140 kgf cm−2 in an indirectly cooled two-bed
radial converter using pure methane, cooling water available at 30 ∘C, a steam
to the carbon ratio of 2.5, and so forth, a total exergy of 30.69 GJ per metric
ton or 523 kJ mol−1 is consumed with an exergy loss of 10.55 GJ per metric ton
or 180 kJ mol−1 corresponding to a thermodynamic efficiency of 66% for the
production of NH3, where the biggest loss of exergy occurs at methane steam
reforming sections with rather a slight loss made during the actual ammonia
synthesis (1.70 GJ per metric ton or 29 kJ mol−1) [13, 36]. Further improvement
of Haber–Bosch catalysts is still in progress, especially in the development of
electronic and structural promoters. For example, Hosono and coworkers have
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developed ruthenium-loaded electrode catalysts, which show higher catalytic
performance than the conventional ruthenium catalysts at lower temperatures
and pressures [37–40].

In total, the Haber–Bosch process annually produces more than 170 million
metric tons of NH3 [41], consumes fossil fuels as the hydrogen source of NH3, cor-
responding to 1–2% of the world’s annual primary energy supply, and is respon-
sible for the emission of more than 450 million metric tons of CO2 [42–44]. This
pollution can be reduced by using renewable energy sources for producing dihy-
drogen from water, but it should be more convenient to use water as a proton
source for ammonia without using dihydrogen gas in high pressure and temper-
ature.

It must be noted that ammonia is attracting attention as a possible hydrogen
carrier in the future, as well as a fuel for vehicles [45–49], which can minimize
the use of fossil fuels. The present Haber–Bosch process requires a lot of reactors
to obtain high pressure and temperature; thus, biological nitrogen fixation that
can be carried out in small cells at ambient reaction conditions by using water as
a proton source has been investigated as a model of an alternative method for the
Haber–Bosch process [50–54].

1.2 Biological Nitrogen Fixation

Atmospheric molecular dinitrogen has been fixed as ammonia via biologi-
cal nitrogen fixation using electron carriers (ferredoxins or flavodoxins) as
reducing reagents and water as a proton source under ambient pressure and
temperature by some specific bacterial and archaeal organisms that possess
nitrogen-fixing enzyme called nitrogenase [51, 52]. Based on the difference in
transition metal (Mo, V, or Fe) included in its key cofactor (iron–molybdenum
cofactor (FeMo-co), iron–vanadium cofactor (FeV-co), or iron–iron cofactor
(FeFe-co)) consisting of an iron–sulfur cluster, nitrogenase can be classified
into molybdenum nitrogenase, vanadium nitrogenase, or iron-only nitrogenase,
among which molybdenum nitrogenase, the canonical form of this enzyme,
works most efficiently, where 8 equiv of electrons and protons is consumed for
reducing 1 equiv of dinitrogen to form 2 equiv of ammonia together with the
formation of an equimolar amount of dihydrogen gas (Figure 1.3a), whereas
vanadium nitrogenase (Figure 1.3b) or iron-only nitrogenase (Figure 1.3c) is
less effective requiring more protons and electrons wasted to form more dihy-
drogen molecules [55, 56]. All the diazotrophic bacteria known to date encode
molybdenum nitrogenase, whereas some diazotrophic bacteria especially living
in soils possess the genes for alternative vanadium or iron-only nitrogenase. Few
species such as Azotobacter vinelandii, an aerobic free-living microorganism in
soils, are known to contain all the three types of nitrogenases, but utilization
of alternative vanadium or iron-only nitrogenase occurs under molybdenum
limitation or both molybdenum and vanadium limitations, respectively [57–59].

Structures of FeMo-co (Figure 1.4a) and FeV-co (Figure 1.4b) are determined
both crystallographically and spectroscopically, where Fe4S3 and Fe3MS3
(M = Mo or V) cuboidal units share one central carbon atom, and are further
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N2 + 8 e– + 8 H+
Mo nitrogenase

2 NH3 + H2
rt

(1 atm)

N2 + 12 e– + 12 H+
V nitrogenase

2 NH3 + 3 H2
rt

(1 atm)

16 Mg∙ATP + 16 H2O 16 Mg∙ADP + 16 H3PO4

24 Mg∙ADP + 24 H3PO424 Mg∙ATP + 24 H2O

N2 + 21 e– + 21 H+
Fe-only nitrogenase

2 NH3 + 7.5 H2
rt

(1 atm)
42 Mg∙ADP + 42 H3PO442 Mg∙ATP + 42 H2O

(a)

(b)

(c)

Figure 1.3 Proposed stoichiometry of biological nitrogen fixation by three types of
nitrogenases: (a) molybdenum nitrogenase, (b) vanadium nitrogenase, and (c) iron-only
nitrogenase.
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bridged by three sulfur atoms for FeMo-co [60–62] or a combination of two
sulfur atoms and one carboxylate for FeV-co [63], respectively. The structure
of FeFe-co has not yet been determined crystallographically but has been
spectroscopically supposed to have a similar structure to FeMo-co or FeV-co,
where molybdenum or vanadium atom is substituted for the corresponding iron
atom [51, 52]. As shown in Figure 1.4a,b, molybdenum and vanadium atoms
are coordinatively saturated by the chelation of homocitrate, whereas the iron
atoms surrounding the carbon atom have vacant sites. Thus, recent theories on
the reaction mechanism of nitrogen fixation prefer coordinatively unsaturated
iron atoms to molybdenum or vanadium atom where conversion of dinitrogen
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into ammonia occurs, whereas the precise reaction pathways for the conversion
of dinitrogen into ammonia remain arguable [64–72].

Thermodynamic favorability of the formation of ammonia in aqueous solu-
tion changes depending on the pH of the solution because proton transfers
are involved in the reaction, and ammonia exists as an ammonium cation
(pK a = 9.25) in acidic or neutral conditions. Standard transformed Gibbs energy
of the reaction of dinitrogen, electrons, and protons to form ammonium cation
and dihydrogen in a ratio of 2 : 1 in an aqueous solution is given as−159.7 kJ mol−1

per dinitrogen at pH 0 (a+
H = 1) and zero ionic strength, which corresponds

to standard electrode potential of +0.276 V. On the other hand, standard
transformed Gibbs energy at pH 7 shifts to +239.8 kJ mol−1, corresponding to
standard apparent reduction potential of −0.311 V vs. SHE (standard hydrogen
electrode) (Figure 1.5a) [73]. Thus, the reaction requires the introduction of
appropriate reducing reagents such as ferredoxin (E′∘ value varies from −0.377
to −0.434 V at pH 7 from different biological sources) (Figure 1.5b) [74, 75] and
hydrolysis of several ATPs (ATP = adenosine triphosphate; Figure 1.5c) [75–77].

The schematic shown in Figure 1.6 summarizes the key metabolic pathways
related to nitrogen fixation by molybdenum nitrogenase, which consists of two
component proteins: molybdenum–iron protein also called dinitrogenase or
nitrogenase component 1 containing FeMo-co and P-cluster whose structures
in different oxidation states are shown in Figure 1.4c,d [78] and iron protein
also called dinitrogenase reductase or nitorgenase component 2 containing
[4Fe–4S] cluster whose structure is shown in Figure 1.4e [79, 80]. An electron is
transferred from ferredoxin or flavodoxin to the [4Fe–4S] cluster in iron protein,
which docks with the aid of 2 M amount of ATP to molybdenum–iron protein to

(a)

(b)

(c)

N2 (aq) + 8 e– + 10 H+ 2 NH4
+ + H2 (aq)

16 ATP4– + 16 H2O (l) 16 ADP3– +16 HPO4
2– + 16 H+

8 Fdred
–

8 Fdox + 8 e–

(d)

N2 (aq) + 8 Fdred
– + 16 ATP4– + 16 H2O (l) 2 NH4

+ + H2 (aq) + 8 Fdox

+ 16 ADP3–  + 16 HPO4
2– + 6 H+

ΔrG′° = +239.8 kJ mol–1

E′° = –0.311 V

ΔrG′° = –304.6 kJ mol–1

E′° = –0.395 V 

ΔrG′° = –602.2 kJ mol–1

ΔrG′° = –667.0 kJ mol–1

Figure 1.5 Standard transformed Gibbs energies and standard apparent reduction potentials
of reactions in molybdenum nitrogenase at 25 ∘C, 0 ionic strength, and pH 7: (a) nitrogen
fixation, (b) reduction of ferredoxin (reduction potential based on the data obtained from
Clostridium pasteurianum), (c) hydrolysis of ATP, and (d) total reactions. Stoichiometry in (c) and
(d) is shown ignoring HATP3− (pKa = 7.60), HADP2− (pKa = 7.18), and H2PO4

− (pKa = 7.22), but
thermodynamic data in (c) and (d) are calculated considering these equilibria at pH 7 (not 16
H+ but 11.9 H+ for (c), not 6 H+ but 1.9 H+ for (d)).
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Figure 1.6 Metabolic relationship between nitrogen fixation by Mo nitrogenase and electron
transfers from pyruvate degradation, hydrogen uptake, respiration, or photosynthesis by
ferredoxin/flavodoxin.

transfer an electron from the [4Fe–4S] cluster to the P-cluster, from which the
FeMo-co obtains electrons [81, 82]. The rate-determining step is the dissociation
of iron protein from molybdenum–iron protein (6 s−1 at 25 ∘C, pH = 7.4) [83],
whereas the turnover of the formation of 1 M ammonia per molybdenum nitro-
genase has been measured to be 1.5 seconds at 23 ∘C by Thorneley and Lowe
[84], who proposed a kinetic model of the catalytic cycle of nitrogenase reaction,
where eight steps of reduction and protonation against dinitrogen occur for
molybdenum nitrogenase (Figure 1.7) [64, 66, 69]. Although the amount of ATPs
required for the reduction of 1 M dinitrogen has not been precisely determined
by experiments, 16 ATPs are at least consumed by molybdenum nitrogenase
(Figure 1.3a) based on the assumption that 2 ATPs are hydrolyzed for the transfer
of one electron, whereas vanadium and iron-only nitrogenases consume at least
24 and 42 ATPs, respectively, based on the same assumption (Figure 1.3b,c)
[51, 52, 55, 56]. In a typical stoichiometry by molybdenum nitrogenase, the
standard transformed Gibbs energy of the reduction of dinitrogen is given as
−667 kJ mol−1 at zero ionic strength (Figure 1.5d) [73, 75–77].

It must be noted that both diazene (HN=NH) and hydrazine (H2N—NH2)
are the substrates of nitrogenase to afford ammonia and that hydrazine is
obtained as a minor product from the reduction of dinitrogen in appropriate
reaction conditions [85, 86]. Without dinitrogen, protons can work as substrates
to afford only dihydrogen [64]. In addition, other substrates such as ethylene,
cyclopropene, acetylene, propyne, 1- or 2-butyne, allene, propargyl alcohol or
amine, cyanide, cyanamide, several nitriles or isocyanides, diazirine, dimethyl-
diazenze, carbon monoxide, carbon dioxide, carbon disulfide, carbonyl sulfide,
thiocyanate, cyanate [87], nitrite, hydroxylamine [88], or azide have been known
to be reduced by nitrogenase [64]. Figure 1.7 denotes the Lowe–Thorneley
kinetic model modified by Hoffman and coworkers [66, 69], where formation
of at least an equimolar amount of dihydrogen is inevitable for the reduction
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form mononuclear complexes, although M can be multimetallic centers and sulfur atoms
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of dinitrogen [89]. The first four reduction/protonation steps from E0, the
resting state of FeMo-co (CFe7MoS9), give a (CFe7MoS9)(H+)2(H−)2 species,
where hydrido can bridge several transition metal centers in FeMo-co, whereas
protonation likely occurs on bridging sulfur atoms. Reductive elimination of
dihydrogen and coordination of dinitrogen occur in the E4 “Janus” intermediate
and then pairs of reduction/protonation on dinitrogen take place to afford 2 M
amounts of ammonia and the starting resting E0 state. Here, the “alternating”
reaction pathway where both distal and proximal nitrogen atoms are protonated
stepwise and the “distal” reaction pathway where the first three protonation
reactions occur at the distal nitrogen atom to give the nitrido intermediate can
be drawn as shown in Figure 1.7, but the “alternating” pathway is highly likely
because similar intermediates are spectroscopically observed when diazene or
hydrazine is used as a reactant, and formation of hydrazine as an intermediary
product is also detected.

Ferredoxin or flavodoxin, the reducing reagent of nitrogenase, transfers
electrons from several metabolites, but the main source of electrons is the degra-
dation of pyruvate for both anaerobic and aerobic microorganisms (Figure 1.6).
Hydrogenase can further recycle the dihydrogen produced in nitrogen fixation,
thereby minimizing the loss of energy during nitrogenase catalysis. Ferredoxin or
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flavodoxin can also be reduced by NADH (nicotinamide adenine dinucleotide),
NADPH (nicotinamide adenine dinucleotide phosphate), or quinones, which
are produced by several metabolic pathways including both anaerobic and
aerobic respiration or photosynthesis (Figure 1.6) [57–59, 90]. Cyanobacteria
such as Anabaena variabilis perform oxygen-evolving photosynthesis and
oxygen-inhibited nitrogen fixation in different cells (vegetable cells and hetero-
cysts), or the former during day and the latter during night in the same cells,
preventing the inactivation of nitrogenase by dioxygen gas [91, 92].

1.3 Historical Background of Transition
Metal–Dinitrogen Complexes

Biological nitrogen fixation was experimentally confirmed by 1888 [93–95],
and lithium was reported to react with dinitrogen at room temperature and
an atmospheric pressure to form lithium nitride (LiN3) that can be easily
converted to ammonia in 1892 [96–99]. However, formation of other nitrido
complexes from the reaction dinitrogen requires higher temperature [100, 101],
and further reactivities of metals with molecular dinitrogen under ambient
reaction conditions have been limited in number. In 1964, Haight and Scott have
reported the detection of a small amount of ammonia on prolonged cathodic
reduction of dinitrogen or reduction by stannous chloride in the presence of
aqueous solution of molybdate and tungstate at room temperature, although
the pressure of dinitrogen gas is not well documented in the literature [102].
Conversion of dinitrogen into ammonia using transition metal complexes under
ambient reaction conditions has been first reported in 1964 by Vol’pin and Shur,
who obtained a small amount of ammonia when dinitrogen gas at atmospheric
pressure was passed through a mixture of anhydrous CrCl3 and LiAlH4 or
EtMgBr in ether at room temperature [103]. Other transition metal complexes
such as [Cp2TiCl2] (Cp = η5-C5H5) or TiCl4 in combination with EtMgBr or
iPr3Al also fixes dinitrogen [104–106]. Formation of aniline, p-toluidine, or
aliphatic amines as a dinitrogen-derived nitrogen-containing compound has
also been reported by bubbling dinitrogen through a mixture of [Cp2TiCl2] or
[Cp2TiPh2], with PhLi, p-TolLi, EtMgBr, or nBuLi at an atmospheric pressure
and room temperature, followed by further hydrolysis [107, 108].

Isolation of a series of transition metal–dinitrogen complexes where a
molecular dinitrogen is coordinated to a transition metal was first reported
in 1965 by Allen and Senoff [109, 110], who performed the reduction of
[RuCl3(H2O)3] with hydrazine hydrate in water at room temperature to
afford a ruthenium–dinitrogen complex [Ru(NH3)5(N2)]2+ in the late 1963
(Figure 1.8a) [111]. At first, they mistakenly identified that they obtained a
ruthenium–hydrido complex but later found that the compound was diamag-
netic with a strong infrared band around 2170–2100 cm−1 attributable to the
coordinated N≡N stretching, liberating dinitrogen gas on treatment with sulfu-
ric acid. [Ru(NH3)5(N2)]Cl2 also became the first transition metal–dinitrogen
complex whose molecular structure was determined by a single-crystal X-ray
analysis in 1966 [112].
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The second example of transition metal–dinitrogen complexes was reported
in 1966 by Collman and Kang, who obtained the iridium–dinitrogen com-
plex trans-[IrCl(N2)(PPh3)2] by the reaction of Vaska’s iridium complex
trans-[IrCl(CO)(PPh3)2] with a variety of aromatic acyl azides in chloroform at
0 ∘C (Figure 1.8b) [113–115].

The first transition metal–dinitrogen complex with the direct fixation of
gaseous molecular dinitrogen was reported in 1967 by Yamamoto et al. who
obtained the cobalt–dinitrogen complex [CoH(N2)(PPh3)3] by the reduction of
[Co(acac)3] with AlEt2OEt under atmospheric pressure of dinitrogen in the pres-
ence of PPh3 in ether or toluene (Figure 1.8c), which became the third example
of isolated transition metal–dinitrogen complexes [116–118]. There was a
confusion in the identification of its structure whether the compound contained
a hydrido ligand or not, but it was later confirmed as a (hydrido)(dinitrogen)
complex [119–124].

All the above three complexes are mononuclear complexes with a dinitrogen
ligand coordinated to a metal center in an “end-on” manner. On the other
hand, the binuclear transition metal–dinitrogen complex with a bridging
dinitrogen was first reported in 1968 by Taube and coworkers, who prepared the
diruthenium–dinitrogen complex trans-[{Ru(NH3)5}2(μ-N2)]4+ by the reduction
of trans-[Ru(NH3)5Cl]2+ with zinc amalgam in water under an atmospheric pres-
sure of dinitrogen (Figure 1.9a) [125]. This compound was first identified in 1967
as the same complex with Allen and Senoff’s complex [Ru(NH3)5(N2)][BF4]2,
which shows a strong IR absorption band at 2154 cm−1 [109, 126], whereas
a Raman band at 2100 cm−1 was observed for [{Ru(NH3)5}2(N2)][BF4]4 [127],
whose molecular structure was determined crystallographically [128].

Preparation of the heterobimetallic dinitrogen-bridged transition metal–
dinitrogen complex [(PMe2Ph)4ClRe(μ-N2)MoCl4(PEtPh2)] was reported by
Chatt et al. in 1969 via the ligand exchange reaction of a molybdenum phosphine
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complex [MoCl4(PEtPh2)2] with the mononuclear rhenium–dinitrogen com-
plex trans-[ReCl(N2)(PMe2Ph)4] [129–131], the dinitrogen ligand of which is
originated from benzoylhydrazine [132–134]. The IR band attributable to the
N≡N triple bond shifts from 1922 cm−1 for mononuclear rhenium complex to
1810 cm−1 for the heterobimetallic complex [129]. The molecular structure of its
analogous complex [(PMe2Ph)4ClRe(μ-N2)MoCl4(OMe)] was later confirmed
by an X-ray analysis (Figure 1.9b) [135, 136]. Preparation of another hetero-
bimetallic dinitrogen-bridged transition metal–dinitrogen complex [(NH3)5-
Os(μ-N2)Ru(NH3)5]4+ was also reported in 1969 [137–140].

Preparation of iron– [141–145], molybdenum– [146–152], or vanadium–
dinitrogen complexes [153–156] has been of great interest from the viewpoint of
a model for the active site of nitrogenase. Sacco and Aresta reported the forma-
tion of the first iron–dinitrogen complex cis,mer-[FeH2(N2)(PEtPh2)3] in 1968
by the reaction of dinitrogen with the dihydrogen complex cis,mer-[FeH2(H2)-
(PEtPh2)3], which was first formulated as a dihydrido complex [FeH2(PEtPh2)3]
[157], then reformulated as a tetrahydrido complex [FeH4(PEtPh2)3] [158, 159],
but later identified as the dihydrogen complex based on the T1 relaxation time
measurement (Figure 1.9c) [160]. Thus, coordination of dinitrogen occurs by the
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ligand exchange with a dihydrogen ligand rather than by the reductive elimina-
tion of two dihydrido ligands. The molecular structures of these complexes were
later determined by X-ray and neutron diffraction studies [161].

Preparation of molybdenum–dinitrogen complex was first reported by Hidai
et al. in 1969, who obtained the molybdenum–dinitrogen complex trans-
[Mo(N2)2(dppe)2] by the reaction of [Mo(acac)3] with aluminum-reducing
reagents in the presence of dppe under atmospheric pressure of dinitrogen
(Figure 1.9d) [162–164]. The structure of this compound was later determined
by an X-ray crystallographic analysis [165].

It is very surprising that several transition metal–dinitrogen complexes have
been prepared in the late 1960s within a few years since the first discovery of tran-
sition metal–dinitrogen complexes [166–168]. Preparation and identification of
dinitrogen complex of vanadium, another important transition metal of nitroge-
nase, was reported comparably later, when Ihmels and Rehder have reported the
preparation of the anionic vanadium–dinitrogen complex [V(CO)5(N2)]− by UV
irradiation of [V(CO)6]− or [V(CO)5(acetone)]− in 2-methylteterahydrofuran
at 200 K in the presence of atmospheric dinitrogen in 1985 [169, 170]. The
first vanadium–dinitrogen complex crystallographically analyzed was reported
in 1989 by Gambarotta and coworkers, who succeeded in the preparation of
dinitrogen-bridged divanadium complex [(V{o-(Me2NCH2)C6H4}2(py))2(μ-N2)]
(Figure 1.10a) [171].

For construction of biomimetic reactions based on the metal–sulfur clus-
ters in metalloenzymes, a lot of sulfur-bridged transition metal clusters have
been synthesized as models of nitrogenase [53, 141, 172–179], but the first
dinitrogen complex [(Cp*Ir)3{Ru(tmeda)(N2)}(μ3-S)4] (Cp* = η5-C5Me5) where
dinitrogen is coordinated to sulfur-bridged transition metal cluster has been
isolated rather recently by Mizobe and coworkers (Figure 1.10b) [180, 181].
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Isolation of the sulfur-supported multimetallic iron complex [{Fe(N2)}2(μ-SAr)]−
(Ar = 2,5-C6H4{Si(C6H4PiPr2-o)2}2) has also been reported more recently by
Creutz and Peters (Figure 1.10c) [182].

Recent analyses of nitrogenase have clarified that FeMo-co contains a carbide
atom that constitutes the edge of two cuboidal clusters ([Fe4S3] and [Fe3MoS3])
[60–62], where the carbon atom has been transferred from the methyl radical
originated from S-adenosylmethionine to bridge the two clusters [183]. The
iron–dinitrogen complex [Fe(N2)(L)]2− (LH2 = 6,6′′-F2-3,3′′-(2,4,6-iPr3C6H2)2-
m-terphenyl-2,2′′-(SH)2) bearing both Fe—S and Fe—C bonds has been prepared
by Holland and coworkers in 2015 (Figure 1.10d) [179, 184].

1.4 Coordination Chemistry of Transition
Metal–Dinitrogen Complexes

1.4.1 Coordination Patterns of Dinitrogen and Mononuclear
Transition Metal–Dinitrogen Complexes

Dinitrogen is a diatomic molecule with a Raman band at 2330, 2291, or 2252 cm−1

for gaseous 14N2, 14N15N, or 15N2, respectively, because of the stretching vibra-
tion of the N≡N triple bond [185, 186]. The interatomic distance between two
nitrogen atoms has been measured to be ranging from 1.09 to 1.11 Å by X-ray
analyses of several different phases of solid-state dinitrogen (α-, β-, γ-, and δ-N2)
at very low temperatures or at extremely high pressures [187–198], whereas that
of gaseous molecular dinitrogen calculated based on the spectroscopic data for
the electronic ground state is 1.0977 Å (Figure 1.11a) [199, 200].

Three isomers are known for diazene or diimine: trans-diazene (Figure 1.11b),
cis-diazene (Figure 1.11c), and isodiazene (H2N+=N−) [201, 202]. trans-Diazene
is the most stable isomer among them, but cis-diazene, only 21 kJ mol−1 higher
in enthalpy than trans-diazene [202, 203], works as an hydrogenation reagent
against unsaturated compounds with stereoselective syn addition of H2 [204]
and is also regarded as an intermediary structure of the reduction of dinitrogen
in nitrogenase reactions [205]. The interatomic distance between two nitrogen
atoms in trans-diazene has been determined to be 1.247 Å based on the UV and

Figure 1.11 Molecular structures of
(a) N2, (b) trans-N2H2, (c) cis-N2H2, and
(d) N2H4.
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IR spectroscopies (Figure 1.11b) [206, 207], whereas spectroscopic observations
for cis-diazene that has not been isolated in the pure form have been problematic
[208]. The bond lengths and angles of cis-diazene shown in Figure 1.11c are those
taken from theoretical calculations [203, 209, 210].

The melting point of free hydrazine is not low (+1.4 ∘C), and the solid-state
structure was analyzed by an X-ray analysis, which gave the N—N bond length at
1.46 Å at −15 ∘C [211], whereas the electron diffraction studies and microwave
spectroscopies gave the N—N bond distance at 1.447 Å (Figure 1.11d) [212–215].
The Raman and IR spectra give the stretching vibration for N–N in the range
of 1076–1126 cm−1, which can vary according to the phases of hydrazine (gas,
liquid, or solid) [216–220]. It must be noted that the dihedral angle of the
H–N–N–H is almost 90∘ because of the existence of lone pairs of nitrogen
atoms, suggesting that the bond order of N—N in hydrazine is one. Based on the
crystallographic data of compounds containing N—N bonds, bond distances of
1.10, 1.22, and 1.46 Å as reference values for triple-, double-, and single-bond
orders are proposed [221].

Since 1965, a lot of transition metal–dinitrogen complexes have been prepared
[166–168, 221–231], including both mononuclear dinitrogen complexes and
dinitrogen-bridged multinuclear complexes. General bonding modes of dinitro-
gen in mononuclear and dinuclear transition metal–dinitrogen complexes are
summarized in Figure 1.12a [221, 227].
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Figure 1.12 (a) General bonding modes of dinitrogen in mononuclear and dinuclear transition
metal–dinitrogen complexes. (b) Schematics of molecular orbital interactions of mononuclear
end-on-bound transition metal–dinitrogen complex. (c) Metric difference of side-on-bridged
dinuclear transition metal–dinitrogen complexes and bis(nitrido)-bridged complexes.


