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Preface

This book presents the analytical and numerical methods of vibration analysis of contin-
uous structural systems, including strings, bars, shafts, beams, circular rings and curved
beams, membranes, plates, shells, and composite structures. The objectives of the book
are (1) to make a methodical and comprehensive presentation of the vibration of various
types of structural elements, (2) to present the exact analytical, approximate analytical,
and approximate numerical methods of analysis, and (3) to present the basic concepts
in a simple manner with illustrative examples. Favorable reactions and encouragement
from professors, students and other users of the book have provided me with the impetus
to prepare this second edition of the book.

The following changes have been made from the first edition:

• Some sections were rewritten for better clarity.
• Some new problems are added.
• The errors noted in the first edition have been corrected.
• Some sections have been expanded. The chapter on “Elastic Wave Propagation”

has been deleted.
• A new chapter on “Vibration of Composite Structures” has been added.
• A new chapter entitled, “Approximate Numerical Methods: Finite Element

Method,” is added to complement the existing chapter on “Approximate Analyti-
cal Methods.”

Continuous structural elements and systems are encountered in many branches of
engineering, such as aerospace, architectural, chemical, civil, ocean, and mechanical
engineering. The design of many structural and mechanical devices and systems requires
an accurate prediction of their vibration and dynamic performance characteristics. The
methods presented in the book can be used in these applications. The book is intended
to serve as a textbook for a dual-level or first graduate degree-level course on vibra-
tions or structural dynamics. More than enough material is included for a one-semester
course. The chapters are made as independent and self-contained as possible so that a
course can be taught by selecting appropriate chapters or through equivalent self-study.
A successful vibration analysis of continuous structural elements and systems requires a
knowledge of mechanics of materials, structural mechanics, ordinary and partial differen-
tial equations, matrix methods, variational calculus, and integral equations. Applications
of these techniques are presented throughout. The selection, arrangement, and presenta-
tion of the material have been made based on the lecture notes for a course taught by the
author. The contents of the book permit instructors to emphasize a variety of topics, such
as basic mathematical approaches with simple applications, bars and beams, beams and
plates, or plates and shells. The book will also be useful as a reference book for practicing
engineers, designers, and vibration analysts involved in the dynamic analysis and design
of continuous systems.

xv
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xvi Preface

Organization of the Book

The book is organized into 18 chapters and two appendices. The basic concepts and termi-
nology used in vibration analysis are introduced in Chapter 1. The importance, origin, and
a brief history of vibration of continuous systems are presented. The difference between
discrete and continuous systems, types of excitations, description of harmonic functions,
and basic definitions used in the theory of vibrations and representation of periodic func-
tions in terms of Fourier series and the Fourier integral are discussed. Chapter 2 provides
a brief review of the theory and techniques used in the vibration analysis of discrete
systems. Free and forced vibration of single- and multidegree-of-freedom systems are
outlined. The eigenvalue problem and its role in the modal analysis used in the free and
forced vibration analysis of discrete systems are discussed.

Various methods of formulating vibration problems associated with continuous
systems are presented in Chapters 3, 4, and 5. The equilibrium approach is presented in
Chapter 3. Use of Newton’s second law of motion and D’Alembert’s principle is outlined,
with application to different types of continuous elements. Use of the variational approach
in deriving equations of motion and associated boundary conditions is described in
Chapter 4. The basic concepts of calculus of variations and their application to extreme
value problems are outlined. The variational methods of solid mechanics, including the
principles of minimum potential energy, minimum complementary energy, stationary
Reissner energy, and Hamilton’s principle, are presented. The use of Hamilton’s principle
in the formulation of continuous systems is illustrated with torsional vibration of a shaft
and transverse vibration of a thin beam. The integral equation approach for the formula-
tion of vibration problems is presented in Chapter 5. A brief outline of integral equations
and their classification, and the derivation of integral equations, are given together with
examples. The solution of integral equations using iterative, Rayleigh–Ritz, Galerkin,
collocation, and numerical integration methods is also discussed in this chapter.

The common solution procedure based on eigenvalue and modal analyses for the
vibration analysis of continuous systems is outlined in Chapter 6. The orthogonality of
eigenfunctions and the role of the expansion theorem in modal analysis are discussed.
The forced vibration response of viscously damped systems are also considered in this
chapter. Chapter 7 covers the solution of problems of vibration of continuous systems
using integral transform methods. Both Laplace and Fourier transform techniques are
outlined together with illustrative applications.

The transverse vibration of strings is presented in Chapter 8. This problem finds
application in guy wires, electric transmission lines, ropes and belts used in machinery,
and the manufacture of thread. The governing equation is derived using equilibrium and
variational approaches. The traveling-wave solution and separation of variables solution
are outlined. The free and forced vibration of strings are considered in this chapter. The
longitudinal vibration of bars is the topic of Chapter 9. Equations of motion based on sim-
ple theory are derived using the equilibrium approach as well as Hamilton’s principle. The
natural frequencies of vibration are determined for bars with different end conditions.
Free vibration response due to initial excitation and forced vibration of bars are both
presented, as is response using modal analysis. Free and forced vibration of bars using
Rayleigh and Bishop theories are also outlined in Chapter 9. The torsional vibration of
shafts plays an important role in mechanical transmission of power in prime movers and
other high-speed machinery. The torsional vibration of uniform and nonuniform rods with
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both circular and noncircular cross-sections is described in Chapter 10. The equations of
motion and free and forced vibration of shafts with circular cross-section are discussed
using the elementary theory. The Saint-Venant and Timoshenko–Gere theories are con-
sidered in deriving the equations of motion of shafts with noncircular cross-sections.
Methods of determining the torsional rigidity of noncircular shafts are presented using
the Prandtl stress function and Prandtl membrane analogy.

Chapter 11 deals with the transverse vibration of beams. Starting with the equation
of motion based on Euler–Bernoulli or thin beam theory, natural frequencies and mode
shapes of beams with different boundary conditions are determined. The free vibra-
tion response due to initial conditions, forced vibration under fixed and moving loads,
response under axial loading, rotating beams, continuous beams, and beams on an elastic
foundation are presented using the Euler–Bernoulli theory. The effects of rotary inertia
(Rayleigh theory) and rotary inertia and shear deformation (Timoshenko theory) on the
transverse vibration of beams are also considered. The coupled bending-torsional vibra-
tion of beams is discussed. Finally, the use of transform methods for finding the free and
forced vibration problems is illustrated toward the end of Chapter 11. In-plane flexural
and coupled twist-bending vibration of circular rings and curved beams is considered in
Chapter 12. The equations of motion and free vibration solutions are presented first using
a simple theory. Then the effects of rotary inertia and shear deformation are considered.
The vibration of rings finds application in the study of the vibration of ring-stiffened
shells used in aerospace applications, gears, and stators of electrical machines.

The transverse vibration of membranes is the topic of Chapter 13. Membranes find
application in drums and microphone condensers. The equation of motion of membranes
is derived using both the equilibrium and variational approaches. The free and forced
vibration of rectangular and circular membranes are both discussed in this chapter.
Chapter 14 covers the transverse vibration of plates. The equation of motion and the
free and forced vibration of both rectangular and circular plates are presented. The
vibration of plates subjected to in-plane forces, plates on elastic foundation, and plates
with variable thickness is also discussed. Finally, the effect of rotary inertia and shear
deformation on the vibration of plates according to Mindlin’s theory is outlined. The
vibration of shells is the topic of Chapter 15. First, the theory of surfaces is presented
using shell coordinates. Then the strain-displacement relations according to Love’s
approximations, stress–strain, and force and moment resultants are given. Then the
equations of motion are derived from Hamilton’s principle. The equations of motion of
circular cylindrical shells and their natural frequencies are considered using Donnel–
Mushtari–Vlasov and Love’s theories. Finally, the effect of rotary inertia and shear
deformation on the vibration of shells is considered.

Chapter 16 presents vibration of fiber-reinforced composite structures and struc-
tural members. The composite material mechanics of laminates including constitutive
relations, stress analysis under in-plane and transverse loads as well as free vibration
analysis of rectangular plates and beams are presented in this chapter. Chapter 17 is
devoted to the approximate analytical methods useful for vibration analysis. The com-
putational details of the Rayleigh, Rayleigh-Ritz, assumed modes, weighted residual,
Galerkin, collocation, subdomain collocation, and least squares methods are presented
along with numerical examples. Finally, the numerical methods, based on the finite ele-
ment method, for the vibration analysis of continuous structural elements and systems
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are outlined in Chapter 18. The displacement approach is used in deriving the element
stiffness and mass matrices of bar, beam, and linear triangle (constant strain triangle or
CST) elements. Numerical examples are presented to illustrate the application of the finite
element method for the solution of simple vibration problems.

Appendix A presents the basic equations of elasticity. Laplace and Fourier trans-
form pairs associated with some simple and commonly used functions are summarized
in Appendix B.
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1

Introduction: Basic Concepts
and Terminology

1.1 CONCEPT OF VIBRATION

Any repetitive motion is called vibration or oscillation. The motion of a guitar string,
motion felt by passengers in an automobile traveling over a bumpy road, swaying of tall
buildings due to wind or earthquake, and motion of an airplane in turbulence are typical
examples of vibration. The theory of vibration deals with the study of oscillatory motion
of bodies and the associated forces. The oscillatory motion shown in Fig. 1.1(a) is called
harmonic motion and is denoted as

𝑥(𝑡) = 𝑋 cos𝜔𝑡 (1.1)

where X is called the amplitude of motion, 𝜔 is the frequency of motion, and t is the time.
The motion shown in Fig. 1.1(b) is called periodic motion, and that shown in Fig. 1.1(c)
is called nonperiodic or transient motion. The motion indicated in Fig. 1.1(d) is random
or long-duration nonperiodic vibration.

The phenomenon of vibration involves an alternating interchange of potential
energy to kinetic energy and kinetic energy to potential energy. Hence, any vibrating
system must have a component that stores potential energy and a component that stores
kinetic energy. The components storing potential and kinetic energies are called a spring
or elastic element and a mass or inertia element, respectively. The elastic element stores
potential energy and gives it up to the inertia element as kinetic energy, and vice versa, in
each cycle of motion. The repetitive motion associated with vibration can be explained
through the motion of a mass on a smooth surface, as shown in Fig. 1.2. The mass is
connected to a linear spring and is assumed to be in equilibrium or rest at position 1.
Let the mass m be given an initial displacement to position 2 and released with zero
velocity. At position 2, the spring is in a maximum elongated condition, and hence the
potential or strain energy of the spring is a maximum and the kinetic energy of the mass
will be zero since the initial velocity is assumed to be zero. Because of the tendency
of the spring to return to its unstretched condition, there will be a force that causes the
mass m to move to the left. The velocity of the mass will gradually increase as it moves
from position 2 to position 1. At position 1, the potential energy of the spring is zero
because the deformation of the spring is zero. However, the kinetic energy and hence
the velocity of the mass will be maximum at position 1 because of the conservation of
energy (assuming no dissipation of energy due to damping or friction). Since the velocity

1
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2 Introduction: Basic Concepts and Terminology

is maximum at position 1, the mass will continue to move to the left, but against the
resisting force due to compression of the spring. As the mass moves from position 1 to
the left, its velocity will gradually decrease until it reaches a value of zero at position 3.
At position 3, the velocity and hence the kinetic energy of the mass will be zero and the

(c)

0 Time, t

Displacement (or force), x(t)

(a)

X

−X

0

Period,
2πτ = ω

2πτ = ω

Period,

Time, t

Displacement (or force), x(t)

Displacement (or force), x(t)

(b)

0 Time, t

Figure 1.1 Types of displacements (or forces): (a) periodic, simple harmonic; (b) periodic,
nonharmonic; (c) nonperiodic, transient; (d) nonperiodic, random.



Trim Size: 7.375in x 9.25in Rao424147 c01.tex V1 - 01/09/2019 3:16pm Page 3�

� �

�

1.1 Concept of Vibration 3

Displacement (or force), x(t)

(d)

0 Time, t

Figure 1.1 (continued)

(a)

m
k

Position 1 (equilibrium)

x(t)

m
k

Position 2
(extreme right)

(b)

m
k

(c)

Position 3
(extreme left)

Figure 1.2 Vibratory motion of a spring–mass system: (a) system in equilibrium (spring
undeformed); (b) system in extreme right position (spring stretched); (c) system in extreme left
position (spring compressed).

deflection (compression) and hence the potential energy of the spring will be maximum.
Again, because of the tendency of the spring to return to its uncompressed condition,
there will be a force that causes the mass m to move to the right from position 3. The
velocity of the mass will increase gradually as it moves from position 3 to position 1.
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At position 1, all the potential energy of the spring has been converted to the kinetic
energy of the mass, and hence the velocity of the mass will be maximum. Thus, the
mass continues to move to the right against increasing spring resistance until it reaches
position 2 with zero velocity. This completes one cycle of motion of the mass, and the
process repeats; thus, the mass will have oscillatory motion.

The initial excitation to a vibrating system can be in the form of initial displace-
ment and/or initial velocity of the mass element(s). This amounts to imparting potential
and/or kinetic energy to the system. The initial excitation sets the system into oscilla-
tory motion, which can be called free vibration. During free vibration, there will be an
exchange between the potential and the kinetic energies. If the system is conservative, the
sum of the potential energy and the kinetic energy will be a constant at any instant. Thus,
the system continues to vibrate forever, at least in theory. In practice, there will be some
damping or friction due to the surrounding medium (e.g. air), which will cause a loss of
some energy during motion. This causes the total energy of the system to diminish con-
tinuously until it reaches a value of zero, at which point the motion stops. If the system is
given only an initial excitation, the resulting oscillatory motion eventually will come to
rest for all practical systems, and hence the initial excitation is called transient excitation
and the resulting motion is called transient motion. If the vibration of the system is to
be maintained in a steady state, an external source must continuously replace the energy
dissipated due to damping.

1.2 IMPORTANCE OF VIBRATION

Any body that has mass and elasticity is capable of oscillatory motion. In fact, most
human activities, including hearing, seeing, talking, walking, and breathing, also involve
oscillatory motion. Hearing involves vibration of the eardrum, seeing is associated with
the vibratory motion of light waves, talking requires oscillations of the larynx (tongue),
walking involves oscillatory motion of legs and hands, and breathing is based on the
periodic motion of the lungs. In engineering, an understanding of the vibratory behavior
of mechanical and structural systems is important for the safe design, construction, and
operation of a variety of machines and structures.

The failure of most mechanical and structural elements and systems can be associ-
ated with vibration. For example, the blade and disk failures in steam and gas turbines
and structural failures in aircraft are usually associated with vibration and the resulting
fatigue. Vibration in machines leads to rapid wear of parts, such as gears and bearings, to
loosening of fasteners, such as nuts and bolts, to poor surface finish during metal cutting,
and excessive noise. Excessive vibration in machines causes not only the failure of com-
ponents and systems but also annoyance to humans. For example, imbalance in diesel
engines can cause ground waves powerful enough to create a nuisance in urban areas.
Supersonic aircraft create sonic booms that shatter doors and windows. Several spectac-
ular failures of bridges, buildings, and dams are associated with wind-induced vibration,
as well as oscillatory ground motion during earthquakes.

In some engineering applications, vibrations serve a useful purpose. For example, in
vibratory conveyors, sieves, hoppers, compactors, dentist drills, electric toothbrushes,
washing machines, clocks, electric massaging units, pile drivers, vibratory testing of
materials, vibratory finishing processes, and materials processing operations, such as
casting and forging, vibration is used to improve the efficiency and quality of the process.


