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Preface

This book discusses the state-of-the-art deep learning models used by researchers
recently. Various deep architectures and their components are discussed in detail.
Algorithms that are used to train deep architectures with fast convergence rate are
illustrated with applications. Various fine-tuning algorithms are discussed for opti-
mizing the deep models. These deep architectures not only are capable of learning
complex tasks but can even outperform humans in some dedicated applications.

Despite the remarkable advances in this area, training deep architectures with a
huge number of hyper-parameters is an intricate and ill-posed optimization prob-
lem. Various challenges are outlined at the end of each chapter. Another issue with
deep architectures is that learning becomes computationally intensive when large
volumes of data are used for training. The book describes a transfer learning
approach for faster training of deep models. The use of this approach is demon-
strated in fingerprint datasets.

The book is organized into eight chapters:
Chapter 1 starts with an introduction to machine learning followed by funda-

mental limitations of traditional machine learning methods. It introduces deep
networks and then briefly discusses why to use deep learning and how deep
learning works.

Chapter 2 of the book is dedicated to one of the most successful deep learning
techniques known as convolutional neural networks (CNNs). The purpose of this
chapter is to give its readers an in-depth but easy and uncomplicated explanation of
various components of convolutional neural network architectures.

Chapter 3 discusses the training and learning process of deep networks. The aim
of this chapter is to provide a simple and intuitive explanation of the backpropa-
gation algorithm for a deep learning network. The training process has been
explained step by step with easy and straightforward explanations.

Chapter 4 focuses on various deep learning architectures that are based on CNN.
It introduces a reader to block diagrams of these architectures. It discusses how
deep learning architectures have evolved while addressing the limitations of pre-
vious deep learning networks.

v



Chapter 5 presents various unsupervised deep learning architectures. The basics
of architectures and associated algorithms falling under the unsupervised category
are outlined.

Chapter 6 discusses the application of supervised deep learning architecture for
face recognition problem. A comparison of the performance of supervised deep
learning architecture with traditional face recognition methods is provided in this
chapter.

Chapter 7 focuses on the application of convolutional neural networks (CNNs)
for fingerprint recognition. This chapter extensively explains automatic fingerprint
recognition with complete details of the CNN architecture and methods used to
optimize and enhance the performance. In addition, a comparative analysis of deep
learning and non-deep learning methods is presented to show the performance
difference.

Chapter 8 explains how to apply the unsupervised deep networks to handwritten
digit classification problem. It explains how to build a deep learning model in two
steps, where unsupervised training is performed during the first step and supervised
fine-tuning is carried out during the second step.

Srinagar, India M. Arif Wani
Farooq Ahmad Bhat

Saduf Afzal
Asif Iqbal Khan
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Chapter 1
Introduction to Deep Learning

1.1 Introduction

Machine learning systems, with shallow or deep architectures, have ability to learn
and improve with experience. The process of machine learning begins with the raw
data which is used for extracting useful information that helps in decision-making.
The primary aim is to allow a machine to learn useful information just like humans
do.At abstract level,machine learning can be carried out using following approaches:

Supervised learning adapts a system such that for a given input data it produces
a target output. The learning data is made up of tuples (attributes, label) where
“attributes” represent the input data and “label” represents the target output. The
goal here is to adapt the system so that for a new input the system can predict the
target output. Supervised learning can use both continuous and discrete types of input
data.

Unsupervised learning involves data that comprises of input vectors without any tar-
get output. There are different objectives in unsupervised learning, such as clustering,
density estimation, and visualization. The goal of clustering is to discover groups
of similar data items on the basis of measured or perceived similarities between
the data items. The purpose of density estimation is to determine the distribution of
the data within the input space. In visualization, the data is projected down from a
high-dimensional space to two or three dimensions to view the similar data items.

Semi-supervised learning first uses unlabeled data to learn a feature representation
of the input data and then uses the learned feature representation to solve the super-
vised task. The training dataset can be divided into two parts: the data samples with
corresponding labels and the data samples where the labels are not known. Semi-
supervised learning can involve not providing with an explicit form of error at each
time but only a generalized reinforcement is received giving indication of how the
system should change its behavior, and this is sometimes referred to as reinforcement

© Springer Nature Singapore Pte Ltd. 2020
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2 1 Introduction to Deep Learning

learning. Reinforcement learning has been successful in applications as diverse as
autonomous helicopter flight, robot legged locomotion, cell-phone network routing,
marketing strategy selection, factory control and efficient webpage indexing.

1.2 Shallow Learning

Shallow architectures are well understood and perform good on many common
machine learning problems, and they are still used in a vast majority of today’s
machine learning applications. However, there has been an increased interest in deep
architectures recently, in the hope to find means to solve more complex real-world
problems (e.g., image analysis or natural language understanding) for which shallow
architectures are unable to learn models adequately.

1.3 Deep Learning

Deep learning is a new area ofmachine learningwhich has gained popularity in recent
past. Deep learning refers to the architectures which contain multiple hidden layers
(deep networks) to learn different features with multiple levels of abstraction. Deep
learning algorithms seek to exploit the unknown structure in the input distribution
in order to discover good representations, often at multiple levels, with higher level
learned features defined in terms of lower level features.

Conventional machine learning techniques are restricted in the way they process
the natural data in its raw form. For decades, constructing a pattern recognition or
machine learning system required considerable domain expertise and careful hand
engineering to come up with a feature extractor that transformed the raw data (such
as pixel values of an image) into suitable internal representation or feature vector
from which the learning system, such as a classifier, could detect or classify patterns
in the input. Deep learning allows inputting the raw data (pixels in case of image
data) to the learning algorithm without first extracting features or defining a feature
vector. Deep learning algorithms can learn the right set of features, and it does this
in a much better way than extracting these features using hand-coding. Instead of
handcrafting a set of rules and algorithms to extract features from raw data, deep
learning involves learning these features automatically during the training process.

In deep learning, a problem is realized in terms of hierarchy of concepts, with
each concept built on the top of the others. The lower layers of the model encode
some basic representation of the problem, whereas higher level layers build upon
these lower layers to form more complex concepts.

Given an image, the pixel intensity values are fed as inputs to the deep learning
system. A number of hidden layers then extract features from the input image. These
hidden layers are built upon each other in a hierarchal fashion. At first, the lower level
layers of the network detect only edge-like regions. These edge regions are then used
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to define corners (where edges intersect) and contours (outlines of objects). The
layers in the higher level combine corners and contours to lead to more abstract
“object parts” in the next layer. The key aspect of deep learning is that these layers
of features are not handcrafted and designed by human engineers; rather, they are
learnt from data gradually using a general-purpose learning procedure.

Finally, the output layer classifies the image and obtains the output class label—the
output obtained at the output layer is directly influenced by every other node avail-
able in the network. This process can be viewed as hierarchical learning as each layer
in the network uses the output of previous layers as “building blocks” to construct
increasingly more complex concepts at the higher layers. Figure 1.1 compares tra-
ditional machine learning approach based on handcrafted features to deep learning
approach based on hierarchical representation learning.

Specifically, in deep learning meaningful representations from the input data are
learnt by putting emphasis on buiding complicated mapping using a series of sim-

Fig. 1.1 a Conventional machine learning using hand-designed feature extraction algorithms
b deep learning approach using hierarchy of representations that are learnt automatically


