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Preface

The second edition of Eurokarst was held in Besançon, France, in July 2018 and involved
about 180 participants from 23 countries from all over Europe and the world. All five con-
tinents were represented at this event. Eurokarst is the largest event on this theme in Europe.

The aim of the Eurokarst conference series is to continue promoting advances in research
in the field of karst and carbonate reservoirs after more than 40 years of regular meetings.

Once again, the Eurokarst conference remains a platform where professionals, consultants,
researchers and students can meet to learn about new technologies and methods but also about
the practical challenges encountered in applications.

Knowing each other, sharing know-how and the latest scientific advances between the
various national and international communities are the major strengths of Eurokarst. Among
the current topics addressed during this event, and despite their recurrence, the understanding
of flows in karst and carbonate formations, the protection and management of water resources
are still relevant. In addition, some approaches are diversifying, particularly through the
development of new sensors or methodologies applied more specifically to karst.

Eurokarst is a collaboration generator as demonstrated by the “Karst Modelling Challenge”
(KMC) working group that was initiated by Pierre-Yves Jeannin at Eurokarst 2016 in
Neuchâtel (Switzerland) with the aim of identifying the most effective approach for modelling
karst aquifers in different situations. Eight teams actually submitted models for the Phase 1
of the challenge, which was to model time series of spring flow. The special session dedicated
to the KMC was a great success, and the discussions initiated during this session continued
around poster communications (20% of the posters dedicated to this research group).

Eurokarst is also a training event, as demonstrated by the success of the workshops to
familiarize participants with numerical fluid transfer modelling and new tools for protecting
the resource. This day was dedicated to professionals in water resources management, as well
as researchers and students. These workshops were initiated during Eurokarst 2016 in
Neuchâtel, and they met with great interest.

Finally, the frequency of this conference makes it possible to realize that the world of
research in this very specific environment is progressing. It is satisfying to see that young
researchers are as passionate as senior researchers. These young researchers were in the
spotlight during this edition by their presence in large numbers and by their professionalism.
Some of their works were highlighted by excellent presentations during the plenary sessions.
As in Eurokarst 2016, the IAH Commission on Karst Hydrology presented awards to three
of them. The choice was difficult and in no way detracts from the quality of the young
researchers on the side of these awards.

In 2018, for the second edition, Eurokarst conference included around 160 communications
covering a wide variety of topics in many fields related to karst. Among them, 27 are presented
in this book. These articles provide an overview of recent progresses made in karst research.
The articles are organized around five main topics:
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• Karst landscape and geological control;
• Surface and groundwater interactions;
• Time series analysis;
• Karst modelling;
• Multidisciplinary regional studies.

As the organizers of the Eurokarst event and editors of this book, we are extremely thankful to
a number of organizations and people who participated in the preparation of the event and
without whom the book could not be published. First of all, we would like to thank the
sponsors who contributed financially to support the conference:

• The French National Institute for Earth Sciences and Astronomy (CNRS-INSU);
• The Bourgogne-Franche-Comté region;
• The city of Besançon;
• The Communauté du savoir (CdS);
• The Laboratoire Chrono-environnement;
• Springer Verlag AG;
• The Rhone-Mediterranean Corsica Agency.

The partner organizations were the following:

• The University of Bourgogne - Franche-Comté, Besançon, France;
• The University of Neuchâtel, Switzerland;
• The University of Malaga, Spain;
• The Spanish Geological Survey (IGME);
• The SNO KARST;
• The Swiss Institute of Speleology and Karstology (SISKA);
• The International Association of Hydrology (IAH);
• The IAH Commission on Karst Hydrogeology.

We want also to thank very warmly the members of the Scientific Committee of the con-
ference and some additional reviewers (see list on the following page) who have shared their
expertise and knowledge with the authors in order to provide the best possible technical
quality within the limited time frame available to publish the book. Finally, we want to thank
Pierre Nevers who spent countless hours to polish the format of the papers as well as the
persons in charge of the project for Springer: Jim LaMoreaux, Samuel Goodchild and
Ramamoorthy Rajangam.

A special thanks to the members of the Laboratoire Chrono-environnement whose help was
invaluable in organizing the conference. Thanks to Catherine Pagani, Christophe Loup and
Nicolas Carry for their help throughout this organization. Thanks to postgraduate and students,
especially Thibaut Garin, Justine Cagnant and Selwyna Mereatu and to the colleagues of
Chrono-environment for their punctual but nonetheless valuable help.

Besançon, France Catherine Bertrand
Besançon, France Sophie Denimal
Besançon, France Marc Steinmann
Neuchâtel, Switzerland Philippe Renard
Málaga, France Bartolomé Andreo Navarro
January 2019
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Part I

Karst Landscape and Geological Control



Detection and Characterization of Sinkholes
Through Integration of Field Surveys
and Semi-automated Techniques

M. Parise, L. Pisano, and V. Zumpano

Abstract
Sinkholes are among the most typical landforms of karst
terrains. They may originate from a simple downward
process, through dissolution of carbonate rocks, or
through rapid, sometimes catastrophic, collapse, due to
the presence of underground voids or cavities, from
where the instability may eventually reach the ground
surface. These two extremes imply a great variety in
vulnerability of man-made structures, and damage to the
population, which makes the analysis of sinkholes
extremely important to society. In this contribution, we
present an integrated workflow to detect, classify and
analyze sinkholes. The ultimate aim is to evaluate the
sinkhole susceptibility and hazard. The methodology used
will be illustrated by means of an example from the karst
of Apulia, south-eastern Italy.

Keywords
Sinkholes � Karst � Susceptibility � Automatic
mapping � Apulia

Introduction

Different mechanisms are at the origin of the formation of
sinkholes, the most typical landforms of karst terrains
(Waltham et al. 2005; Beck 2007; Gutierrez et al. 2014):
some start at the ground surface, as the simple action of
dissolution, slowly acting in downward direction; others

originate from underground, which lead to instability and to
the collapse of the cave roof (collapse sinkholes), or of the
overburden (cover-collapse sinkholes). The variety of
mechanisms implies also significant differences in terms of
velocity processes, with important effects concerning civil
protection issues and impacts on the built-up environment.

In regions as Apulia, the south-eastern sector of the
Italian peninsula, almost entirely built of soluble rocks, karst
is definitely the main morphogenetic agent. Along the
coastlines landforms are produced by the interaction
between karst and sea wave actions.

Identification of sinkholes, and full comprehension of the
relationships between the observed karst landforms and the
hydrogeological behavior of the carbonate rock mass, is a
great challenge in Apulia (Del Prete et al. 2010; Festa et al.
2012; Margiotta et al. 2012; Parise 2015a, b). Especially
when working over large areas, mapping sinkholes strongly
depends on the scale of the final cartographic product, and
the expertise of the operator as well. Changing the scale,
some features may become impossible to map, while others
can be shown in a quite different way. Subjectivity and karst
knowledge of the operator is also a crucial point, as maps
produced by several operators for a same area may be very
different.

In the last decades, sinkhole occurrence in Apulia has
become the main geological hazard, and many tens of
sinkholes related to karst caves and with known time of
occurrence have been documented (Parise and Vennari
2017). They represent only a small part of a high number of
karst features which characterize the different karst
sub-regions in Apulia.

In the attempt to find a semi-automatic methodology
which might integrate, but not substitute, the classical
mapping approach, we present in this contribution a com-
parison among three inventories produced for a sample area
in the karst of Apulia. The first inventory was produced by
the first author through intensive field mapping, while the
other two were obtained by applying a semi-automated
methodology.
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Dataset and Methods

Available Data

The study area was selected in the municipality of Ceglie
Messapica (Brindisi province), in southern Apulia. It is an
entirely karst area, showing some of the most typical land-
scape in the region, which covers a territory of 47 km2.
Choice of the area was dictated, beside the interesting karst
features and the more than 50 natural caves registered in the
municipality, by availability of some base data; namely,
these consisted of the Regional Technical Map (topographic
map, in scale 1:5000), aerial photographs from different
years (nominal scale 1:32,000), 8-mt Digital Terrain Model
(DTM) by Apulia Region, and 1-m resolution LiDAR DTM,
produced by the local municipality.

Manual Mapping

The first inventory was obtained through intensive field
mapping, by using the 1:5000 topographic map as base map;
the field work was integrated by analogical stereoscopic
analysis of the 1998 aerial photographs. As in many settings
in Apulia, land morphology is generally flat, and the use of
stereoscopic view is of great help to exaggerate the relief, in
order to identify slight features created in the topography by
karst processes. In the manual inventory, sinkholes were
discriminated by endorheic basins, these latter being defined
as terminal areas of confluence of two or more temporary
water courses (named lame, in the local karst terminology;
see Parise et al. 2003). Endorheic basins are generally of
larger size with respect to sinkholes, but they show the same
shape (mostly, circular to sub-elliptical), and often are
located along the main lame. Morphologically, sinkholes
produced by collapse processes are generally more well
defined and recognizable, due to steeper margins and greater
depth. The distinction becomes more difficult when dealing
with sinkholes produced by solution processes and suffusion
(Gutierrez et al. 2014), showing more subtle boundaries.
Both sinkholes and endorheic basins may become partly or
totally flooded after heavy rainstorms, with water remaining
at the surface for hours or days, following the most signifi-
cant rainfall events. This implies that from a hydrogeological
standpoint the two features share the same behavior, acting
as sites of concentrated infiltration of the waters under-
ground, thus actively recharging the carbonate aquifer.
However, given the different processes at the origin of
sinkholes and endorheic basins, they were kept separated in
the manual inventory.

Automated Mapping Using Lidar DTM
and 8m-DTM

The sinkholes extraction through the semi-automatic map-
ping was performed by using the algorithm described by Zhu
et al. (2014) and by Wall et al. (2017). This algorithm is
based on the DTM exploitation in GIS environment and was
successfully used to map sinkholes (dolines) in karst envi-
ronment (Doctor and Young 2013; Wall et al. 2017).

We used the “Fill” tool available in ArcGIS software, that
in karst topography is applied for the recognition of topo-
graphically depressed areas (Doctor and Young 2013;
Jeanpert et al. 2016; Wall et al. 2017). This tool identifies the
depressions in the input raster, so that it is possible to obtain
a filled DTM that can be differentiated from the original to
produce a depth raster. The tool can be reiterated multiple
times in order to fill all the depressions with different depths
in the raster. We decided to choose z-limits fills of 2-m
intervals, starting from 2-m depth until we had redundancy
in the number of filled depressions (Kobal et al. 2015). After
obtaining the filled rasters for each z-limits, the difference
with the initial raster was determined, and using the Boolean
Logic the fill-differences were transformed into polygons
representing the sinkholes.

Before moving to the calculation of the morphometric
parameters, we decided to choose the shapefile polygons
map with the z-limit better representing the real situation in
the analyzed study area by using the expert opinion and field
activity, but also through careful comparison with the
manually mapped database (Fig. 1).

In order to make the process lighter and faster, we built a
tool by using the Model Builder in ArcGis software. Once
the model was set up, it required only the input DTM to
perform the analysis and to provide the sinkholes polygon
shapefile for the multiple z-limit.

In the case of automatic procedure, the identified features
include both sinkholes and endorheic basins, regardless of the
processes at the origin of these landforms. An overview of the
number of features in each database can be found in Table 1.

At this point, we set up another model to smooth the
polygons and calculate a series of morphometric parameters
(Table 2) useful to characterize the obtained database: area;
perimeter; CI (Circularity Index); nearest feature and its dis-
tance; length of the long and the short sinkhole axes (Kobal
et al. 2015); azimuth of the sinkhole long axis, elongation ratio
and shape (Basso et al. 2013). These parameters, well known
in the literature (Basso et al. 2013; Pepe and Parise 2014;
Kobal et al. 2015), are calculated for both the automatically
and the manually obtained databases, and only two of them
will be presented hereafter (Figs. 2 and 3).
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Fig. 1 Extract from the study area, showing the three datasets in different colors: green and red colors mark, respectively, the endorheic basins and
the sinkholes mapped manually; yellow color indicates the sinkholes identified through the Lidar analysis, and purple color those identified
through the 8m-DTM

Table 1 Summary table of the mapped features, according to the different used techniques

Mapping technique Number

Manual mapping 131 (40 are endorheic basins)

Automated mapping (8m-DTM) 192

Automated mapping (Lidar) 523

Table 2 Summary table of the calculated morphometric parameters, the method used and the related reference

Parameter Method References

Area and perimeter Calculate Geometry tool, ArcMap, ESRI ArcGIS® –

Circularity Index (CI) CI = 4pArea/Perimeter De Carvalho et al. (2014)

Nearest feature Near tool in Proximity Toolset, ArcMap, ESRI ArcGIS® –

Distance nearest feature Near tool in Proximity Toolset, ArcMap, ESRI ArcGIS® –

Shortest and longest axes length Minimum bounding Geometry in Feature Toolset, ArcMap, ESRI ArcGIS® (Kobal et al. 2015)

Azimuth of the longest axis Minimum Bounding Geometry in Feature Toolset, ArcMap, ESRI ArcGIS® (Kobal et al. 2015)

Elongation Ratio (ER) Ratio between the major and the minor axes (Basso et al. 2013)

Shape Circular: ER < 1.05;
Sub-circular 1.05 < ER � 1.21; Elliptical 1.21 < ER � 1.65;
Sub-elliptical 1.65 < ER � 1.8; Elongated ER > 1.8

(Basso et al. 2013)
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This procedure was applied to the 8 � 8 m resolution
DTM and to 1 � 1 m Lidar DTM, giving different results in
the number of mapped sinkholes (Table 1), but also in their
shapes and the morphometric parameters (Figs. 2 and 3).

Finally we set up a last model to automatically clean the
maps from possible artefacts attributable to errors in the
DTM generation process, keeping only features significant
as sinkholes. Following the published literature (de Carvalho
et al. 2014; Bauer et al. 2015) the model was set up in order
to operate a selection of the obtained polygons, on the basis
of the diameter length and the CI. For the Lidar DTM, given
its high resolution we decided to pick only the polygons with
a diameter greater than, or equal to, 10 m, in order to
eliminate small features probably not significant as karst
forms (Kunaver 1983; Kobal et al. 2015). Furthermore, we
eliminated the polygons with CI < 0.1 in order to have
prevailing circular forms, and to decrease the number of
elongated ones, which are typically attributable to water
course segments.

For the 8m-DTM, we eliminated the polygons with a
diameter smaller than 25 m, and with CI < 0.1.

The obtained databases were finally compared with the
manually compiled inventory, and the differences were
analyzed highlighting the strengths and weakness of each
database.

Results

On the one hand, looking at the morphometric parameters
considered, we evaluated that there is a certain degree of
agreement in the elongation ratio (Fig. 2), showing the range
1–2 as the most common for all the considered techniques.

On the other hand, concerning the orientation (Fig. 3),
there is a high heterogeneity in the data belonging to the
different inventories. For the LiDAR- and the DTM-derived
map, the highest count was found in the classes between 80°
and 180°. In the manual inventory, the elements were almost
homogeneously distributed in the entire 60–120° range
(Fig. 3).

Other differences were also found in the shape of the
sinkholes in the three inventories, and an example is reported
in Fig. 4. In fact, it was observed that very often the accu-
racy of the sinkholes depicted with the automatic mapping is
strictly connected with the DTM resolution, giving better
results using LiDAR (the highest resolution). Further, during
field observations the manual mapping was observed as the
most accurate in the delineation of the correct sinkhole
contouring.

Nevertheless, it is important to point out that some rele-
vant sinkholes verified in the field were not detected by

Fig. 2 Percentage of elements
mapped with different elongation
ratio
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manual mapping but only by the automatic method. This
indicates the understandable fallibility of the human eye in
operating a complete scanning of the territory during
mapping, especially in difficult conditions such as in
areas with presence of a dense vegetational cover (Bauer
2015).

Conclusions

Overall the automated mapping can be considered an
effective method, as demonstrated by multiple authors (i.e.,
Pardo-Igúzquiza et al. 2013, 2016; Wall et al. 2017), but on

Fig. 3 Orientation of the major axis of sinkholes and endorheic basins, with respect to the North, for a range of 180°

Fig. 4 Example of a sinkhole mapped by the different techniques. The
“manual mapping” (through aerial photo interpretation) is shown in red,
the automatic one obtained by using the Lidar DTM in yellow, and that

by the DTM in purple. The dashed line in the picture to the left marks
the boundary of the manual mapping
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the basis of the evidences presented here, it cannot be con-
sidered self-sufficient to compile accurate and reliable
sinkhole inventories. In fact, it was observed that automatic
mapping can detect a much larger number of features with
respect to the manual, this difference being commensurate
with the resolution of the input topographic data.

However, considering the evidence collected during the
field observations we can conclude that the automatic
mapping cannot disregard the expert validation via visual
interpretation and even better when it is carried out using
digital stereoscopy. In some cases the automatic tool can
overestimate the number of features counting morphological
convergences or artifacts.

An advantage of the automatic procedure by using
LiDAR is definitely the possibility to detect karst landforms
in forested areas, where the vegetation covers might hinder,
or completely mask, the presence of terrain features, making
very difficult their identification in the field (Parise et al.
2018). In these situations, the possibility to have a look at the
land without the canopy cover will certainly allow a better
depiction of the landforms.

Generally, low-resolution DTMs are more easy to acquire
as it is in our case study; moreover, one must take into
account that the results are not fully satisfactory, especially
in areas where depressions are of smaller dimensions.

On the other hand, applying the automatic mapping tool,
especially over large areas, before starting the expert-based
interpretation, could provide an important support in terms
of time, precision and gaps reduction. In conclusion, we
believe that integrating or better, anticipating, the manual
mapping with the automatic one could be the right com-
promise for karst sinkhole interpretation and mapping.
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Karst and Vegetation: Biodiversity
and Geobotany in the Sierra de las Nieves
Karst Aquifer (Málaga, Spain)

Juan Antonio Luque-Espinar, Eulogio Pardo-Igúzquiza,
Víctor Francisco Rodríguez-Galiano, Mario Chica-Olmo,
and Rogelio de la Vega-Panizo

Abstract
The Sierra de las Nieves karst system is a high-relief
Mediterranean karst that hosts important botanical diver-
sity, including the unique Spanish fir Abies pinsapo.
Vegetation is mainly controlled by the soil development
and climatic conditions. In turn, the soil is controlled by
lithology, fracturing, weathering and slope. There is also
positive of soil and vegetation feedback in the epikarst
development. This study focuses on the spatial variability
of vegetation in a karst massif and its relationship with the
main lithologies, karst depressions, fracturation density
and slope. Contingency analysis shows degrees of
association between the plant species studied and the
other parameters. Thus, plant species preferences have
been found for certain lithologies, degree of fracture
development, karst depressions of ground slope.

Keywords
Karst � Biodiversity � Vegetation � Geology

Introduction

Only limited research has been carried out into the influence
of karstic terrain lithology on vegetation (Williams 2008;
Bakalowicz 2004, 2012). The spatial development of the
epikarst is influenced by the interaction of different factors
such as lithology, tectonic structure, density and orientation
of faults and joints, degree of weathering, slope, vegetation
and/or climatology (Klimchouk 2004). In addition, rainfall
seeping through fractures and organic material increases the
dissolution rate and fracture growth (Williams 1983; Ford
and Williams 2007). Other characteristics or concentrations
of different parameters related to chemical and microbial
properties of soil or climate and their influence on vegetation
have been analyzed by various authors (Bakalowicz 2004;
Efe 2014; Liang et al. 2015; Tonga et al. 2017; Shen et al.
2013 among others). Results obtained show specifically that
the chemical and microbial properties of the soil differed
significantly depending on the vegetation types analyzed (Lu
et al. 2014).

Factors such as topography, soil formation and vegetation
distribution have been studied by several authors (Atalay
1988, 1991, 1997; Barany-Kevei and Horváth 1996). The
development of soils and the successional evolution and
establishment of vegetation in karst terrains are primarily
conditioned by the physical and chemical properties of
limestones (Shen et al. 2013).

Liang et al. (2016) studied Arbuscular mycorrhizal fungi
that form an important part of plant growth and restoration in
degraded ecosystems. Thus, soil pH shows highest in the
shrub and lowest in the tussock, and the clay content is lower
and the silt and sand content is higher in the primary forest
than in the other three vegetation types. Liu et al. (2016)
study carbon sequestration potentials of karst vegetation.
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Both biotic and abiotic factors, such as climate, site condi-
tion, species composition, community structure and human
disturbance, largely influence vegetation carbon stocks (Liu
et al. 2016).

In this context, the availability of the above parameters
together with plant species mapping would enable us to
determine which factors influence the vegetation
distribution.

This paper is a first comprehensive approach to identifying
the relationship between vegetation and karst in Sierra de las
Nieves. To do this, vegetation maps, lithologies, fracture
density, karstic depressions and slope have been used. Geo-
statistical methods and ArcGIS tools have been used to
process the information. Contingency analysis has been used
to estimate the statistical significance between the plant
species and other parameters available in the study area.

Case Study

Geological Setting

The Sierra de las Nieves karst system is a high-relief
Mediterranean karst in Málaga province in southern Spain
(Fig. 1) with a surface area of 125 km2. The aquifer presents
a wide range of altitudes from the system base level at the
source of Río Grande Spring (359 m a.s.l.) to the maximum
altitude on the Torrecilla peak (1919 m a.s.l.) as shown in

the digital elevation model in Fig. 2. From a geological
viewpoint, the Sierra de las Nieves aquifer is part of the
Nieves Unit, formed by a Triassic to early Miocene suc-
cession mainly composed of carbonate formations (Fig. 1).
From base to top, the Triassic series comprises dolostones,
alternating marls, marly limestones and micritic limestones.
The Jurassic–Paleogene sequence is dominated by cherty
limestones, nodular limestone, marly limestones and marls
(Martín-Algarra 1987).

The fractures and joints are taken from Pedrera et al.
(2015) to estimate the fracture density by geostatistical
methods (Fig. 3).

Previous Studies and Inventory of Vegetation

The vegetation database used is produced by of the Junta de
Andalucía, Consejería de Medio Ambiente y Ordenación del
Territorio (JA 2017).

Sierra de las Nieves displays a wide range of vegetation
of significant biological interest including Abies pinsapo,
Quercus alpestris, Juniperus Sabina, Berberis hispanica,
Ulex baeticus, Pinus halepensis, Pinus sylvestris and
Quercus faginea (Cabezudo-Artero et al. 1998). The main
plant associations or species mapped by JA (2017) are Abies
pinsapo (Figs. 4 and 8), Juniperus sabina (Figs. 5 and 8),
garrigue (Berberis hispanica, Ulex baeticus) (Figs. 6 and 8),
Quercus faginea, Quercus alpestris (Figs. 7 and 9), mixture

Fig. 1 Geological map of Sierra
de las Nieves (modified from
IGME 2015)
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of Quercus ilex and Pinus genus (Fig. 9), Pinus genus and
high mountain scrub (Cenista spartoides, Juniperus comunis
and Berberis hispanica) (Fig. 9) and Quercus ilex (Fig. 9).

Following observations in the study area, a four-stage
conceptual model of spatial vegetation development is pro-
posed (Fig. 10).

Fig. 2 Digital elevation model
of the Sierra de las Nieves karst
aquifer

Fig. 3 Fractures and fracturing
density estimated by Ordinary
Kriging
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Vegetation Mapping by Remote Sensing

Sierra de las Nieves shows a wide range of vegetation types:
needleleaved evergreen trees (Abies pinsapo, Pinus
halepensis or Pinus sylvestris), broadleaved deciduous trees
(Quercus alpestris, Quercus faginea and Quercus ilex) and

shrubland (Juniperus Sabina, Berberis hispanica, Ulex
baeticus, Cenista spartoides and Juniperus comunis)
(Cabezudo-Artero et al. 1998).

This study used spring and summer images for land-cover
classification. Two Level 1C Sentinel-2 scenes of the same
area in southeast Spain were downloaded (tile T30SUF). The

Fig. 4 Abies pinsapo forest

Fig. 5 Quercus faginea and
Juniperus Sabina
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images were acquired on July 23 and March 20, 2017, and
downloaded from the ESA Sentinels data hub. Both
Sentinel-2 scenes were cloud-free and were processed from
Top-Of-Atmosphere (TOA) Level 1C to Bottom-Of-
Atmosphere (BOA) Level 2A reflectance using Sentinel-2

Toolbox (Sen2Cor). The spatial resolution of the red-edge
and short-wave infrared (SWIR) bands was resampled to
10 m using the nearest-neighbor method to ensure integra-
tion with the 10-m visible and near-infrared (NIR) bands.
Normalized difference vegetation index (NDVI) (Rouse

Fig. 6 Garrigue (Berberis
hispanica, Ulex baeticus)

Fig. 7 Quercus alpestris
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